mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
85e9601862
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97450 91177308-0d34-0410-b5e6-96231b3b80d8
1932 lines
50 KiB
Plaintext
1932 lines
50 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should add support for the "movbe" instruction, which does a byte-swapping
|
|
copy (3-addr bswap + memory support?) This is available on Atom processors.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
CodeGen/X86/lea-3.ll:test3 should be a single LEA, not a shift/move. The X86
|
|
backend knows how to three-addressify this shift, but it appears the register
|
|
allocator isn't even asking it to do so in this case. We should investigate
|
|
why this isn't happening, it could have significant impact on other important
|
|
cases for X86 as well.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should be one DIV/IDIV instruction, not a libcall:
|
|
|
|
unsigned test(unsigned long long X, unsigned Y) {
|
|
return X/Y;
|
|
}
|
|
|
|
This can be done trivially with a custom legalizer. What about overflow
|
|
though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improvements to the multiply -> shift/add algorithm:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improve code like this (occurs fairly frequently, e.g. in LLVM):
|
|
long long foo(int x) { return 1LL << x; }
|
|
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
|
|
|
|
Another useful one would be ~0ULL >> X and ~0ULL << X.
|
|
|
|
One better solution for 1LL << x is:
|
|
xorl %eax, %eax
|
|
xorl %edx, %edx
|
|
testb $32, %cl
|
|
sete %al
|
|
setne %dl
|
|
sall %cl, %eax
|
|
sall %cl, %edx
|
|
|
|
But that requires good 8-bit subreg support.
|
|
|
|
Also, this might be better. It's an extra shift, but it's one instruction
|
|
shorter, and doesn't stress 8-bit subreg support.
|
|
(From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html,
|
|
but without the unnecessary and.)
|
|
movl %ecx, %eax
|
|
shrl $5, %eax
|
|
movl %eax, %edx
|
|
xorl $1, %edx
|
|
sall %cl, %eax
|
|
sall %cl. %edx
|
|
|
|
64-bit shifts (in general) expand to really bad code. Instead of using
|
|
cmovs, we should expand to a conditional branch like GCC produces.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Compile this:
|
|
_Bool f(_Bool a) { return a!=1; }
|
|
|
|
into:
|
|
movzbl %dil, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
(Although note that this isn't a legal way to express the code that llvm-gcc
|
|
currently generates for that function.)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some isel ideas:
|
|
|
|
1. Dynamic programming based approach when compile time if not an
|
|
issue.
|
|
2. Code duplication (addressing mode) during isel.
|
|
3. Other ideas from "Register-Sensitive Selection, Duplication, and
|
|
Sequencing of Instructions".
|
|
4. Scheduling for reduced register pressure. E.g. "Minimum Register
|
|
Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
|
|
and other related papers.
|
|
http://citeseer.ist.psu.edu/govindarajan01minimum.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should we promote i16 to i32 to avoid partial register update stalls?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leave any_extend as pseudo instruction and hint to register
|
|
allocator. Delay codegen until post register allocation.
|
|
Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
|
|
the coalescer how to deal with it though.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears icc use push for parameter passing. Need to investigate.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Only use inc/neg/not instructions on processors where they are faster than
|
|
add/sub/xor. They are slower on the P4 due to only updating some processor
|
|
flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The instruction selector sometimes misses folding a load into a compare. The
|
|
pattern is written as (cmp reg, (load p)). Because the compare isn't
|
|
commutative, it is not matched with the load on both sides. The dag combiner
|
|
should be made smart enough to cannonicalize the load into the RHS of a compare
|
|
when it can invert the result of the compare for free.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In many cases, LLVM generates code like this:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on some processors (which ones?), it is more efficient to do this:
|
|
|
|
_test:
|
|
movl 8(%esp), %ebx
|
|
xor %eax, %eax
|
|
cmpl %ebx, 4(%esp)
|
|
setl %al
|
|
ret
|
|
|
|
Doing this correctly is tricky though, as the xor clobbers the flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate bts/btr/etc instructions on targets where they are cheap or
|
|
when codesize is important. e.g., for:
|
|
|
|
void setbit(int *target, int bit) {
|
|
*target |= (1 << bit);
|
|
}
|
|
void clearbit(int *target, int bit) {
|
|
*target &= ~(1 << bit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instead of the following for memset char*, 1, 10:
|
|
|
|
movl $16843009, 4(%edx)
|
|
movl $16843009, (%edx)
|
|
movw $257, 8(%edx)
|
|
|
|
It might be better to generate
|
|
|
|
movl $16843009, %eax
|
|
movl %eax, 4(%edx)
|
|
movl %eax, (%edx)
|
|
movw al, 8(%edx)
|
|
|
|
when we can spare a register. It reduces code size.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
|
get this:
|
|
|
|
define i32 @test1(i32 %X) {
|
|
%Y = sdiv i32 %X, 8
|
|
ret i32 %Y
|
|
}
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
sarl $31, %ecx
|
|
shrl $29, %ecx
|
|
addl %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
GCC knows several different ways to codegen it, one of which is this:
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
cmpl $-1, %eax
|
|
leal 7(%eax), %ecx
|
|
cmovle %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
which is probably slower, but it's interesting at least :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
|
|
We should leave these as libcalls for everything over a much lower threshold,
|
|
since libc is hand tuned for medium and large mem ops (avoiding RFO for large
|
|
stores, TLB preheating, etc)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize this into something reasonable:
|
|
x * copysign(1.0, y) * copysign(1.0, z)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize copysign(x, *y) to use an integer load from y.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following tests perform worse with LSR:
|
|
|
|
lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Adding to the list of cmp / test poor codegen issues:
|
|
|
|
int test(__m128 *A, __m128 *B) {
|
|
if (_mm_comige_ss(*A, *B))
|
|
return 3;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movl 4(%esp), %eax
|
|
movaps (%eax), %xmm1
|
|
comiss %xmm0, %xmm1
|
|
setae %al
|
|
movzbl %al, %ecx
|
|
movl $3, %eax
|
|
movl $4, %edx
|
|
cmpl $0, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
|
|
are a number of issues. 1) We are introducing a setcc between the result of the
|
|
intrisic call and select. 2) The intrinsic is expected to produce a i32 value
|
|
so a any extend (which becomes a zero extend) is added.
|
|
|
|
We probably need some kind of target DAG combine hook to fix this.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We generate significantly worse code for this than GCC:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
|
|
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
|
|
|
|
There is also one case we do worse on PPC.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
int test(int a)
|
|
{
|
|
return a * 3;
|
|
}
|
|
|
|
We currently emits
|
|
imull $3, 4(%esp), %eax
|
|
|
|
Perhaps this is what we really should generate is? Is imull three or four
|
|
cycles? Note: ICC generates this:
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,2), %eax
|
|
|
|
The current instruction priority is based on pattern complexity. The former is
|
|
more "complex" because it folds a load so the latter will not be emitted.
|
|
|
|
Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
|
|
should always try to match LEA first since the LEA matching code does some
|
|
estimate to determine whether the match is profitable.
|
|
|
|
However, if we care more about code size, then imull is better. It's two bytes
|
|
shorter than movl + leal.
|
|
|
|
On a Pentium M, both variants have the same characteristics with regard
|
|
to throughput; however, the multiplication has a latency of four cycles, as
|
|
opposed to two cycles for the movl+lea variant.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
__builtin_ffs codegen is messy.
|
|
|
|
int ffs_(unsigned X) { return __builtin_ffs(X); }
|
|
|
|
llvm produces:
|
|
ffs_:
|
|
movl 4(%esp), %ecx
|
|
bsfl %ecx, %eax
|
|
movl $32, %edx
|
|
cmove %edx, %eax
|
|
incl %eax
|
|
xorl %edx, %edx
|
|
testl %ecx, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
vs gcc:
|
|
|
|
_ffs_:
|
|
movl $-1, %edx
|
|
bsfl 4(%esp), %eax
|
|
cmove %edx, %eax
|
|
addl $1, %eax
|
|
ret
|
|
|
|
Another example of __builtin_ffs (use predsimplify to eliminate a select):
|
|
|
|
int foo (unsigned long j) {
|
|
if (j)
|
|
return __builtin_ffs (j) - 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears gcc place string data with linkonce linkage in
|
|
.section __TEXT,__const_coal,coalesced instead of
|
|
.section __DATA,__const_coal,coalesced.
|
|
Take a look at darwin.h, there are other Darwin assembler directives that we
|
|
do not make use of.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
define i32 @foo(i32* %a, i32 %t) {
|
|
entry:
|
|
br label %cond_true
|
|
|
|
cond_true: ; preds = %cond_true, %entry
|
|
%x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ] ; <i32> [#uses=3]
|
|
%t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ] ; <i32> [#uses=1]
|
|
%tmp2 = getelementptr i32* %a, i32 %x.0.0 ; <i32*> [#uses=1]
|
|
%tmp3 = load i32* %tmp2 ; <i32> [#uses=1]
|
|
%tmp5 = add i32 %t_addr.0.0, %x.0.0 ; <i32> [#uses=1]
|
|
%tmp7 = add i32 %tmp5, %tmp3 ; <i32> [#uses=2]
|
|
%tmp9 = add i32 %x.0.0, 1 ; <i32> [#uses=2]
|
|
%tmp = icmp sgt i32 %tmp9, 39 ; <i1> [#uses=1]
|
|
br i1 %tmp, label %bb12, label %cond_true
|
|
|
|
bb12: ; preds = %cond_true
|
|
ret i32 %tmp7
|
|
}
|
|
is pessimized by -loop-reduce and -indvars
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
u32 to float conversion improvement:
|
|
|
|
float uint32_2_float( unsigned u ) {
|
|
float fl = (int) (u & 0xffff);
|
|
float fh = (int) (u >> 16);
|
|
fh *= 0x1.0p16f;
|
|
return fh + fl;
|
|
}
|
|
|
|
00000000 subl $0x04,%esp
|
|
00000003 movl 0x08(%esp,1),%eax
|
|
00000007 movl %eax,%ecx
|
|
00000009 shrl $0x10,%ecx
|
|
0000000c cvtsi2ss %ecx,%xmm0
|
|
00000010 andl $0x0000ffff,%eax
|
|
00000015 cvtsi2ss %eax,%xmm1
|
|
00000019 mulss 0x00000078,%xmm0
|
|
00000021 addss %xmm1,%xmm0
|
|
00000025 movss %xmm0,(%esp,1)
|
|
0000002a flds (%esp,1)
|
|
0000002d addl $0x04,%esp
|
|
00000030 ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When using fastcc abi, align stack slot of argument of type double on 8 byte
|
|
boundary to improve performance.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Codegen:
|
|
|
|
int f(int a, int b) {
|
|
if (a == 4 || a == 6)
|
|
b++;
|
|
return b;
|
|
}
|
|
|
|
|
|
as:
|
|
|
|
or eax, 2
|
|
cmp eax, 6
|
|
jz label
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
|
|
simplifications for integer "x cmp y ? a : b". For example, instead of:
|
|
|
|
int G;
|
|
void f(int X, int Y) {
|
|
G = X < 0 ? 14 : 13;
|
|
}
|
|
|
|
compiling to:
|
|
|
|
_f:
|
|
movl $14, %eax
|
|
movl $13, %ecx
|
|
movl 4(%esp), %edx
|
|
testl %edx, %edx
|
|
cmovl %eax, %ecx
|
|
movl %ecx, _G
|
|
ret
|
|
|
|
it could be:
|
|
_f:
|
|
movl 4(%esp), %eax
|
|
sarl $31, %eax
|
|
notl %eax
|
|
addl $14, %eax
|
|
movl %eax, _G
|
|
ret
|
|
|
|
etc.
|
|
|
|
Another is:
|
|
int usesbb(unsigned int a, unsigned int b) {
|
|
return (a < b ? -1 : 0);
|
|
}
|
|
to:
|
|
_usesbb:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
sbbl %eax, %eax
|
|
ret
|
|
|
|
instead of:
|
|
_usesbb:
|
|
xorl %eax, %eax
|
|
movl 8(%esp), %ecx
|
|
cmpl %ecx, 4(%esp)
|
|
movl $4294967295, %ecx
|
|
cmovb %ecx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider the expansion of:
|
|
|
|
define i32 @test3(i32 %X) {
|
|
%tmp1 = urem i32 %X, 255
|
|
ret i32 %tmp1
|
|
}
|
|
|
|
Currently it compiles to:
|
|
|
|
...
|
|
movl $2155905153, %ecx
|
|
movl 8(%esp), %esi
|
|
movl %esi, %eax
|
|
mull %ecx
|
|
...
|
|
|
|
This could be "reassociated" into:
|
|
|
|
movl $2155905153, %eax
|
|
movl 8(%esp), %ecx
|
|
mull %ecx
|
|
|
|
to avoid the copy. In fact, the existing two-address stuff would do this
|
|
except that mul isn't a commutative 2-addr instruction. I guess this has
|
|
to be done at isel time based on the #uses to mul?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Make sure the instruction which starts a loop does not cross a cacheline
|
|
boundary. This requires knowning the exact length of each machine instruction.
|
|
That is somewhat complicated, but doable. Example 256.bzip2:
|
|
|
|
In the new trace, the hot loop has an instruction which crosses a cacheline
|
|
boundary. In addition to potential cache misses, this can't help decoding as I
|
|
imagine there has to be some kind of complicated decoder reset and realignment
|
|
to grab the bytes from the next cacheline.
|
|
|
|
532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines
|
|
942 942 0x3d03 movl %dh, (1809(%esp, %esi)
|
|
937 937 0x3d0a incl %esi
|
|
3 3 0x3d0b cmpb %bl, %dl
|
|
27 27 0x3d0d jnz 0x000062db <main+11707>
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This could be a single 16-bit load.
|
|
|
|
int f(char *p) {
|
|
if ((p[0] == 1) & (p[1] == 2)) return 1;
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should inline lrintf and probably other libc functions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use the FLAGS values from arithmetic instructions more. For example, compile:
|
|
|
|
int add_zf(int *x, int y, int a, int b) {
|
|
if ((*x += y) == 0)
|
|
return a;
|
|
else
|
|
return b;
|
|
}
|
|
|
|
to:
|
|
addl %esi, (%rdi)
|
|
movl %edx, %eax
|
|
cmovne %ecx, %eax
|
|
ret
|
|
instead of:
|
|
|
|
_add_zf:
|
|
addl (%rdi), %esi
|
|
movl %esi, (%rdi)
|
|
testl %esi, %esi
|
|
cmove %edx, %ecx
|
|
movl %ecx, %eax
|
|
ret
|
|
|
|
As another example, compile function f2 in test/CodeGen/X86/cmp-test.ll
|
|
without a test instruction.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These two functions have identical effects:
|
|
|
|
unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;}
|
|
unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
|
|
|
|
We currently compile them to:
|
|
|
|
_f:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
incl %ecx
|
|
movl 8(%esp), %edx
|
|
cmpl %edx, %ecx
|
|
jne LBB1_2 #UnifiedReturnBlock
|
|
LBB1_1: #cond_true
|
|
addl $2, %eax
|
|
ret
|
|
LBB1_2: #UnifiedReturnBlock
|
|
movl %ecx, %eax
|
|
ret
|
|
_f2:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
incl %ecx
|
|
cmpl 8(%esp), %ecx
|
|
sete %cl
|
|
movzbl %cl, %ecx
|
|
leal 1(%ecx,%eax), %eax
|
|
ret
|
|
|
|
both of which are inferior to GCC's:
|
|
|
|
_f:
|
|
movl 4(%esp), %edx
|
|
leal 1(%edx), %eax
|
|
addl $2, %edx
|
|
cmpl 8(%esp), %eax
|
|
cmove %edx, %eax
|
|
ret
|
|
_f2:
|
|
movl 4(%esp), %eax
|
|
addl $1, %eax
|
|
xorl %edx, %edx
|
|
cmpl 8(%esp), %eax
|
|
sete %dl
|
|
addl %edx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
void test(int X) {
|
|
if (X) abort();
|
|
}
|
|
|
|
is currently compiled to:
|
|
|
|
_test:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
jne LBB1_1
|
|
addl $12, %esp
|
|
ret
|
|
LBB1_1:
|
|
call L_abort$stub
|
|
|
|
It would be better to produce:
|
|
|
|
_test:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
jne L_abort$stub
|
|
addl $12, %esp
|
|
ret
|
|
|
|
This can be applied to any no-return function call that takes no arguments etc.
|
|
Alternatively, the stack save/restore logic could be shrink-wrapped, producing
|
|
something like this:
|
|
|
|
_test:
|
|
cmpl $0, 4(%esp)
|
|
jne LBB1_1
|
|
ret
|
|
LBB1_1:
|
|
subl $12, %esp
|
|
call L_abort$stub
|
|
|
|
Both are useful in different situations. Finally, it could be shrink-wrapped
|
|
and tail called, like this:
|
|
|
|
_test:
|
|
cmpl $0, 4(%esp)
|
|
jne LBB1_1
|
|
ret
|
|
LBB1_1:
|
|
pop %eax # realign stack.
|
|
call L_abort$stub
|
|
|
|
Though this probably isn't worth it.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
|
|
a neg instead of a sub instruction. Consider:
|
|
|
|
int test(char X) { return 7-X; }
|
|
|
|
we currently produce:
|
|
_test:
|
|
movl $7, %eax
|
|
movsbl 4(%esp), %ecx
|
|
subl %ecx, %eax
|
|
ret
|
|
|
|
We would use one fewer register if codegen'd as:
|
|
|
|
movsbl 4(%esp), %eax
|
|
neg %eax
|
|
add $7, %eax
|
|
ret
|
|
|
|
Note that this isn't beneficial if the load can be folded into the sub. In
|
|
this case, we want a sub:
|
|
|
|
int test(int X) { return 7-X; }
|
|
_test:
|
|
movl $7, %eax
|
|
subl 4(%esp), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leaf functions that require one 4-byte spill slot have a prolog like this:
|
|
|
|
_foo:
|
|
pushl %esi
|
|
subl $4, %esp
|
|
...
|
|
and an epilog like this:
|
|
addl $4, %esp
|
|
popl %esi
|
|
ret
|
|
|
|
It would be smaller, and potentially faster, to push eax on entry and to
|
|
pop into a dummy register instead of using addl/subl of esp. Just don't pop
|
|
into any return registers :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The X86 backend should fold (branch (or (setcc, setcc))) into multiple
|
|
branches. We generate really poor code for:
|
|
|
|
double testf(double a) {
|
|
return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
|
|
}
|
|
|
|
For example, the entry BB is:
|
|
|
|
_testf:
|
|
subl $20, %esp
|
|
pxor %xmm0, %xmm0
|
|
movsd 24(%esp), %xmm1
|
|
ucomisd %xmm0, %xmm1
|
|
setnp %al
|
|
sete %cl
|
|
testb %cl, %al
|
|
jne LBB1_5 # UnifiedReturnBlock
|
|
LBB1_1: # cond_true
|
|
|
|
|
|
it would be better to replace the last four instructions with:
|
|
|
|
jp LBB1_1
|
|
je LBB1_5
|
|
LBB1_1:
|
|
|
|
We also codegen the inner ?: into a diamond:
|
|
|
|
cvtss2sd LCPI1_0(%rip), %xmm2
|
|
cvtss2sd LCPI1_1(%rip), %xmm3
|
|
ucomisd %xmm1, %xmm0
|
|
ja LBB1_3 # cond_true
|
|
LBB1_2: # cond_true
|
|
movapd %xmm3, %xmm2
|
|
LBB1_3: # cond_true
|
|
movapd %xmm2, %xmm0
|
|
ret
|
|
|
|
We should sink the load into xmm3 into the LBB1_2 block. This should
|
|
be pretty easy, and will nuke all the copies.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This:
|
|
#include <algorithm>
|
|
inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
|
|
{ return std::make_pair(a + b, a + b < a); }
|
|
bool no_overflow(unsigned a, unsigned b)
|
|
{ return !full_add(a, b).second; }
|
|
|
|
Should compile to:
|
|
|
|
|
|
_Z11no_overflowjj:
|
|
addl %edi, %esi
|
|
setae %al
|
|
ret
|
|
|
|
FIXME: That code looks wrong; bool return is normally defined as zext.
|
|
|
|
on x86-64, not:
|
|
|
|
__Z11no_overflowjj:
|
|
addl %edi, %esi
|
|
cmpl %edi, %esi
|
|
setae %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following code:
|
|
|
|
bb114.preheader: ; preds = %cond_next94
|
|
%tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1]
|
|
%tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1]
|
|
%tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1]
|
|
%tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1]
|
|
%tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1]
|
|
%tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2]
|
|
%tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1]
|
|
%tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1]
|
|
%tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1]
|
|
%tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1]
|
|
%tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1]
|
|
br label %bb114
|
|
|
|
produces:
|
|
|
|
LBB3_5: # bb114.preheader
|
|
movswl -68(%ebp), %eax
|
|
movl $32, %ecx
|
|
movl %ecx, -80(%ebp)
|
|
subl %eax, -80(%ebp)
|
|
movswl -52(%ebp), %eax
|
|
movl %ecx, -84(%ebp)
|
|
subl %eax, -84(%ebp)
|
|
movswl -70(%ebp), %eax
|
|
movl %ecx, -88(%ebp)
|
|
subl %eax, -88(%ebp)
|
|
movswl -50(%ebp), %eax
|
|
subl %eax, %ecx
|
|
movl %ecx, -76(%ebp)
|
|
movswl -42(%ebp), %eax
|
|
movl %eax, -92(%ebp)
|
|
movswl -66(%ebp), %eax
|
|
movl %eax, -96(%ebp)
|
|
movw $0, -98(%ebp)
|
|
|
|
This appears to be bad because the RA is not folding the store to the stack
|
|
slot into the movl. The above instructions could be:
|
|
movl $32, -80(%ebp)
|
|
...
|
|
movl $32, -84(%ebp)
|
|
...
|
|
This seems like a cross between remat and spill folding.
|
|
|
|
This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
|
|
change, so we could simply subtract %eax from %ecx first and then use %ecx (or
|
|
vice-versa).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
%tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp659, label %cond_true662, label %cond_next715
|
|
|
|
produces this:
|
|
|
|
testw %cx, %cx
|
|
movswl %cx, %esi
|
|
jns LBB4_109 # cond_next715
|
|
|
|
Shark tells us that using %cx in the testw instruction is sub-optimal. It
|
|
suggests using the 32-bit register (which is what ICC uses).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile this:
|
|
|
|
void compare (long long foo) {
|
|
if (foo < 4294967297LL)
|
|
abort();
|
|
}
|
|
|
|
to:
|
|
|
|
compare:
|
|
subl $4, %esp
|
|
cmpl $0, 8(%esp)
|
|
setne %al
|
|
movzbw %al, %ax
|
|
cmpl $1, 12(%esp)
|
|
setg %cl
|
|
movzbw %cl, %cx
|
|
cmove %ax, %cx
|
|
testb $1, %cl
|
|
jne .LBB1_2 # UnifiedReturnBlock
|
|
.LBB1_1: # ifthen
|
|
call abort
|
|
.LBB1_2: # UnifiedReturnBlock
|
|
addl $4, %esp
|
|
ret
|
|
|
|
(also really horrible code on ppc). This is due to the expand code for 64-bit
|
|
compares. GCC produces multiple branches, which is much nicer:
|
|
|
|
compare:
|
|
subl $12, %esp
|
|
movl 20(%esp), %edx
|
|
movl 16(%esp), %eax
|
|
decl %edx
|
|
jle .L7
|
|
.L5:
|
|
addl $12, %esp
|
|
ret
|
|
.p2align 4,,7
|
|
.L7:
|
|
jl .L4
|
|
cmpl $0, %eax
|
|
.p2align 4,,8
|
|
ja .L5
|
|
.L4:
|
|
.p2align 4,,9
|
|
call abort
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Tail call optimization improvements: Tail call optimization currently
|
|
pushes all arguments on the top of the stack (their normal place for
|
|
non-tail call optimized calls) that source from the callers arguments
|
|
or that source from a virtual register (also possibly sourcing from
|
|
callers arguments).
|
|
This is done to prevent overwriting of parameters (see example
|
|
below) that might be used later.
|
|
|
|
example:
|
|
|
|
int callee(int32, int64);
|
|
int caller(int32 arg1, int32 arg2) {
|
|
int64 local = arg2 * 2;
|
|
return callee(arg2, (int64)local);
|
|
}
|
|
|
|
[arg1] [!arg2 no longer valid since we moved local onto it]
|
|
[arg2] -> [(int64)
|
|
[RETADDR] local ]
|
|
|
|
Moving arg1 onto the stack slot of callee function would overwrite
|
|
arg2 of the caller.
|
|
|
|
Possible optimizations:
|
|
|
|
|
|
- Analyse the actual parameters of the callee to see which would
|
|
overwrite a caller parameter which is used by the callee and only
|
|
push them onto the top of the stack.
|
|
|
|
int callee (int32 arg1, int32 arg2);
|
|
int caller (int32 arg1, int32 arg2) {
|
|
return callee(arg1,arg2);
|
|
}
|
|
|
|
Here we don't need to write any variables to the top of the stack
|
|
since they don't overwrite each other.
|
|
|
|
int callee (int32 arg1, int32 arg2);
|
|
int caller (int32 arg1, int32 arg2) {
|
|
return callee(arg2,arg1);
|
|
}
|
|
|
|
Here we need to push the arguments because they overwrite each
|
|
other.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
main ()
|
|
{
|
|
int i = 0;
|
|
unsigned long int z = 0;
|
|
|
|
do {
|
|
z -= 0x00004000;
|
|
i++;
|
|
if (i > 0x00040000)
|
|
abort ();
|
|
} while (z > 0);
|
|
exit (0);
|
|
}
|
|
|
|
gcc compiles this to:
|
|
|
|
_main:
|
|
subl $28, %esp
|
|
xorl %eax, %eax
|
|
jmp L2
|
|
L3:
|
|
cmpl $262144, %eax
|
|
je L10
|
|
L2:
|
|
addl $1, %eax
|
|
cmpl $262145, %eax
|
|
jne L3
|
|
call L_abort$stub
|
|
L10:
|
|
movl $0, (%esp)
|
|
call L_exit$stub
|
|
|
|
llvm:
|
|
|
|
_main:
|
|
subl $12, %esp
|
|
movl $1, %eax
|
|
movl $16384, %ecx
|
|
LBB1_1: # bb
|
|
cmpl $262145, %eax
|
|
jge LBB1_4 # cond_true
|
|
LBB1_2: # cond_next
|
|
incl %eax
|
|
addl $4294950912, %ecx
|
|
cmpl $16384, %ecx
|
|
jne LBB1_1 # bb
|
|
LBB1_3: # bb11
|
|
xorl %eax, %eax
|
|
addl $12, %esp
|
|
ret
|
|
LBB1_4: # cond_true
|
|
call L_abort$stub
|
|
|
|
1. LSR should rewrite the first cmp with induction variable %ecx.
|
|
2. DAG combiner should fold
|
|
leal 1(%eax), %edx
|
|
cmpl $262145, %edx
|
|
=>
|
|
cmpl $262144, %eax
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
define i64 @test(double %X) {
|
|
%Y = fptosi double %X to i64
|
|
ret i64 %Y
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_test:
|
|
subl $20, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, 8(%esp)
|
|
fldl 8(%esp)
|
|
fisttpll (%esp)
|
|
movl 4(%esp), %edx
|
|
movl (%esp), %eax
|
|
addl $20, %esp
|
|
#FP_REG_KILL
|
|
ret
|
|
|
|
This should just fldl directly from the input stack slot.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
int foo (int x) { return (x & 65535) | 255; }
|
|
|
|
Should compile into:
|
|
|
|
_foo:
|
|
movzwl 4(%esp), %eax
|
|
orl $255, %eax
|
|
ret
|
|
|
|
instead of:
|
|
_foo:
|
|
movl $255, %eax
|
|
orl 4(%esp), %eax
|
|
andl $65535, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We're codegen'ing multiply of long longs inefficiently:
|
|
|
|
unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) {
|
|
return arg1 * arg2;
|
|
}
|
|
|
|
We compile to (fomit-frame-pointer):
|
|
|
|
_LLM:
|
|
pushl %esi
|
|
movl 8(%esp), %ecx
|
|
movl 16(%esp), %esi
|
|
movl %esi, %eax
|
|
mull %ecx
|
|
imull 12(%esp), %esi
|
|
addl %edx, %esi
|
|
imull 20(%esp), %ecx
|
|
movl %esi, %edx
|
|
addl %ecx, %edx
|
|
popl %esi
|
|
ret
|
|
|
|
This looks like a scheduling deficiency and lack of remat of the load from
|
|
the argument area. ICC apparently produces:
|
|
|
|
movl 8(%esp), %ecx
|
|
imull 12(%esp), %ecx
|
|
movl 16(%esp), %eax
|
|
imull 4(%esp), %eax
|
|
addl %eax, %ecx
|
|
movl 4(%esp), %eax
|
|
mull 12(%esp)
|
|
addl %ecx, %edx
|
|
ret
|
|
|
|
Note that it remat'd loads from 4(esp) and 12(esp). See this GCC PR:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We can fold a store into "zeroing a reg". Instead of:
|
|
|
|
xorl %eax, %eax
|
|
movl %eax, 124(%esp)
|
|
|
|
we should get:
|
|
|
|
movl $0, 124(%esp)
|
|
|
|
if the flags of the xor are dead.
|
|
|
|
Likewise, we isel "x<<1" into "add reg,reg". If reg is spilled, this should
|
|
be folded into: shl [mem], 1
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase misses a read/modify/write opportunity (from PR1425):
|
|
|
|
void vertical_decompose97iH1(int *b0, int *b1, int *b2, int width){
|
|
int i;
|
|
for(i=0; i<width; i++)
|
|
b1[i] += (1*(b0[i] + b2[i])+0)>>0;
|
|
}
|
|
|
|
We compile it down to:
|
|
|
|
LBB1_2: # bb
|
|
movl (%esi,%edi,4), %ebx
|
|
addl (%ecx,%edi,4), %ebx
|
|
addl (%edx,%edi,4), %ebx
|
|
movl %ebx, (%ecx,%edi,4)
|
|
incl %edi
|
|
cmpl %eax, %edi
|
|
jne LBB1_2 # bb
|
|
|
|
the inner loop should add to the memory location (%ecx,%edi,4), saving
|
|
a mov. Something like:
|
|
|
|
movl (%esi,%edi,4), %ebx
|
|
addl (%edx,%edi,4), %ebx
|
|
addl %ebx, (%ecx,%edi,4)
|
|
|
|
Here is another interesting example:
|
|
|
|
void vertical_compose97iH1(int *b0, int *b1, int *b2, int width){
|
|
int i;
|
|
for(i=0; i<width; i++)
|
|
b1[i] -= (1*(b0[i] + b2[i])+0)>>0;
|
|
}
|
|
|
|
We miss the r/m/w opportunity here by using 2 subs instead of an add+sub[mem]:
|
|
|
|
LBB9_2: # bb
|
|
movl (%ecx,%edi,4), %ebx
|
|
subl (%esi,%edi,4), %ebx
|
|
subl (%edx,%edi,4), %ebx
|
|
movl %ebx, (%ecx,%edi,4)
|
|
incl %edi
|
|
cmpl %eax, %edi
|
|
jne LBB9_2 # bb
|
|
|
|
Additionally, LSR should rewrite the exit condition of these loops to use
|
|
a stride-4 IV, would would allow all the scales in the loop to go away.
|
|
This would result in smaller code and more efficient microops.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In SSE mode, we turn abs and neg into a load from the constant pool plus a xor
|
|
or and instruction, for example:
|
|
|
|
xorpd LCPI1_0, %xmm2
|
|
|
|
However, if xmm2 gets spilled, we end up with really ugly code like this:
|
|
|
|
movsd (%esp), %xmm0
|
|
xorpd LCPI1_0, %xmm0
|
|
movsd %xmm0, (%esp)
|
|
|
|
Since we 'know' that this is a 'neg', we can actually "fold" the spill into
|
|
the neg/abs instruction, turning it into an *integer* operation, like this:
|
|
|
|
xorl 2147483648, [mem+4] ## 2147483648 = (1 << 31)
|
|
|
|
you could also use xorb, but xorl is less likely to lead to a partial register
|
|
stall. Here is a contrived testcase:
|
|
|
|
double a, b, c;
|
|
void test(double *P) {
|
|
double X = *P;
|
|
a = X;
|
|
bar();
|
|
X = -X;
|
|
b = X;
|
|
bar();
|
|
c = X;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
handling llvm.memory.barrier on pre SSE2 cpus
|
|
|
|
should generate:
|
|
lock ; mov %esp, %esp
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The generated code on x86 for checking for signed overflow on a multiply the
|
|
obvious way is much longer than it needs to be.
|
|
|
|
int x(int a, int b) {
|
|
long long prod = (long long)a*b;
|
|
return prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1);
|
|
}
|
|
|
|
See PR2053 for more details.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should investigate using cdq/ctld (effect: edx = sar eax, 31)
|
|
more aggressively; it should cost the same as a move+shift on any modern
|
|
processor, but it's a lot shorter. Downside is that it puts more
|
|
pressure on register allocation because it has fixed operands.
|
|
|
|
Example:
|
|
int abs(int x) {return x < 0 ? -x : x;}
|
|
|
|
gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.:
|
|
abs:
|
|
movl 4(%esp), %eax
|
|
cltd
|
|
xorl %edx, %eax
|
|
subl %edx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
int test(unsigned long a, unsigned long b) { return -(a < b); }
|
|
|
|
We currently compile this to:
|
|
|
|
define i32 @test(i32 %a, i32 %b) nounwind {
|
|
%tmp3 = icmp ult i32 %a, %b ; <i1> [#uses=1]
|
|
%tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
|
|
%tmp5 = sub i32 0, %tmp34 ; <i32> [#uses=1]
|
|
ret i32 %tmp5
|
|
}
|
|
|
|
and
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setb %al
|
|
movzbl %al, %eax
|
|
negl %eax
|
|
ret
|
|
|
|
Several deficiencies here. First, we should instcombine zext+neg into sext:
|
|
|
|
define i32 @test2(i32 %a, i32 %b) nounwind {
|
|
%tmp3 = icmp ult i32 %a, %b ; <i1> [#uses=1]
|
|
%tmp34 = sext i1 %tmp3 to i32 ; <i32> [#uses=1]
|
|
ret i32 %tmp34
|
|
}
|
|
|
|
However, before we can do that, we have to fix the bad codegen that we get for
|
|
sext from bool:
|
|
|
|
_test2:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setb %al
|
|
movzbl %al, %eax
|
|
shll $31, %eax
|
|
sarl $31, %eax
|
|
ret
|
|
|
|
This code should be at least as good as the code above. Once this is fixed, we
|
|
can optimize this specific case even more to:
|
|
|
|
movl 8(%esp), %eax
|
|
xorl %ecx, %ecx
|
|
cmpl %eax, 4(%esp)
|
|
sbbl %ecx, %ecx
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take the following code (from
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541):
|
|
|
|
extern unsigned char first_one[65536];
|
|
int FirstOnet(unsigned long long arg1)
|
|
{
|
|
if (arg1 >> 48)
|
|
return (first_one[arg1 >> 48]);
|
|
return 0;
|
|
}
|
|
|
|
|
|
The following code is currently generated:
|
|
FirstOnet:
|
|
movl 8(%esp), %eax
|
|
cmpl $65536, %eax
|
|
movl 4(%esp), %ecx
|
|
jb .LBB1_2 # UnifiedReturnBlock
|
|
.LBB1_1: # ifthen
|
|
shrl $16, %eax
|
|
movzbl first_one(%eax), %eax
|
|
ret
|
|
.LBB1_2: # UnifiedReturnBlock
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
There are a few possible improvements here:
|
|
1. We should be able to eliminate the dead load into %ecx
|
|
2. We could change the "movl 8(%esp), %eax" into
|
|
"movzwl 10(%esp), %eax"; this lets us change the cmpl
|
|
into a testl, which is shorter, and eliminate the shift.
|
|
|
|
We could also in theory eliminate the branch by using a conditional
|
|
for the address of the load, but that seems unlikely to be worthwhile
|
|
in general.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile this function:
|
|
|
|
define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext %d) nounwind {
|
|
entry:
|
|
%tmp2 = icmp eq i8 %d, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp2, label %bb7, label %bb
|
|
|
|
bb: ; preds = %entry
|
|
%tmp6 = add i32 %b, %a ; <i32> [#uses=1]
|
|
ret i32 %tmp6
|
|
|
|
bb7: ; preds = %entry
|
|
%tmp10 = sub i32 %a, %c ; <i32> [#uses=1]
|
|
ret i32 %tmp10
|
|
}
|
|
|
|
to:
|
|
|
|
_foo:
|
|
cmpb $0, 16(%esp)
|
|
movl 12(%esp), %ecx
|
|
movl 8(%esp), %eax
|
|
movl 4(%esp), %edx
|
|
je LBB1_2 # bb7
|
|
LBB1_1: # bb
|
|
addl %edx, %eax
|
|
ret
|
|
LBB1_2: # bb7
|
|
movl %edx, %eax
|
|
subl %ecx, %eax
|
|
ret
|
|
|
|
The coalescer could coalesce "edx" with "eax" to avoid the movl in LBB1_2
|
|
if it commuted the addl in LBB1_1.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
See rdar://4653682.
|
|
|
|
From flops:
|
|
|
|
LBB1_15: # bb310
|
|
cvtss2sd LCPI1_0, %xmm1
|
|
addsd %xmm1, %xmm0
|
|
movsd 176(%esp), %xmm2
|
|
mulsd %xmm0, %xmm2
|
|
movapd %xmm2, %xmm3
|
|
mulsd %xmm3, %xmm3
|
|
movapd %xmm3, %xmm4
|
|
mulsd LCPI1_23, %xmm4
|
|
addsd LCPI1_24, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_25, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_26, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_27, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_28, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd %xmm1, %xmm4
|
|
mulsd %xmm2, %xmm4
|
|
movsd 152(%esp), %xmm1
|
|
addsd %xmm4, %xmm1
|
|
movsd %xmm1, 152(%esp)
|
|
incl %eax
|
|
cmpl %eax, %esi
|
|
jge LBB1_15 # bb310
|
|
LBB1_16: # bb358.loopexit
|
|
movsd 152(%esp), %xmm0
|
|
addsd %xmm0, %xmm0
|
|
addsd LCPI1_22, %xmm0
|
|
movsd %xmm0, 152(%esp)
|
|
|
|
Rather than spilling the result of the last addsd in the loop, we should have
|
|
insert a copy to split the interval (one for the duration of the loop, one
|
|
extending to the fall through). The register pressure in the loop isn't high
|
|
enough to warrant the spill.
|
|
|
|
Also check why xmm7 is not used at all in the function.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Legalize loses track of the fact that bools are always zero extended when in
|
|
memory. This causes us to compile abort_gzip (from 164.gzip) from:
|
|
|
|
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
|
|
target triple = "i386-apple-darwin8"
|
|
@in_exit.4870.b = internal global i1 false ; <i1*> [#uses=2]
|
|
define fastcc void @abort_gzip() noreturn nounwind {
|
|
entry:
|
|
%tmp.b.i = load i1* @in_exit.4870.b ; <i1> [#uses=1]
|
|
br i1 %tmp.b.i, label %bb.i, label %bb4.i
|
|
bb.i: ; preds = %entry
|
|
tail call void @exit( i32 1 ) noreturn nounwind
|
|
unreachable
|
|
bb4.i: ; preds = %entry
|
|
store i1 true, i1* @in_exit.4870.b
|
|
tail call void @exit( i32 1 ) noreturn nounwind
|
|
unreachable
|
|
}
|
|
declare void @exit(i32) noreturn nounwind
|
|
|
|
into:
|
|
|
|
_abort_gzip:
|
|
subl $12, %esp
|
|
movb _in_exit.4870.b, %al
|
|
notb %al
|
|
testb $1, %al
|
|
jne LBB1_2 ## bb4.i
|
|
LBB1_1: ## bb.i
|
|
...
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile:
|
|
|
|
int test(int x, int y) {
|
|
return x-y-1;
|
|
}
|
|
|
|
into (-m64):
|
|
|
|
_test:
|
|
decl %edi
|
|
movl %edi, %eax
|
|
subl %esi, %eax
|
|
ret
|
|
|
|
it would be better to codegen as: x+~y (notl+addl)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
int foo(const char *str,...)
|
|
{
|
|
__builtin_va_list a; int x;
|
|
__builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a);
|
|
return x;
|
|
}
|
|
|
|
gets compiled into this on x86-64:
|
|
subq $200, %rsp
|
|
movaps %xmm7, 160(%rsp)
|
|
movaps %xmm6, 144(%rsp)
|
|
movaps %xmm5, 128(%rsp)
|
|
movaps %xmm4, 112(%rsp)
|
|
movaps %xmm3, 96(%rsp)
|
|
movaps %xmm2, 80(%rsp)
|
|
movaps %xmm1, 64(%rsp)
|
|
movaps %xmm0, 48(%rsp)
|
|
movq %r9, 40(%rsp)
|
|
movq %r8, 32(%rsp)
|
|
movq %rcx, 24(%rsp)
|
|
movq %rdx, 16(%rsp)
|
|
movq %rsi, 8(%rsp)
|
|
leaq (%rsp), %rax
|
|
movq %rax, 192(%rsp)
|
|
leaq 208(%rsp), %rax
|
|
movq %rax, 184(%rsp)
|
|
movl $48, 180(%rsp)
|
|
movl $8, 176(%rsp)
|
|
movl 176(%rsp), %eax
|
|
cmpl $47, %eax
|
|
jbe .LBB1_3 # bb
|
|
.LBB1_1: # bb3
|
|
movq 184(%rsp), %rcx
|
|
leaq 8(%rcx), %rax
|
|
movq %rax, 184(%rsp)
|
|
.LBB1_2: # bb4
|
|
movl (%rcx), %eax
|
|
addq $200, %rsp
|
|
ret
|
|
.LBB1_3: # bb
|
|
movl %eax, %ecx
|
|
addl $8, %eax
|
|
addq 192(%rsp), %rcx
|
|
movl %eax, 176(%rsp)
|
|
jmp .LBB1_2 # bb4
|
|
|
|
gcc 4.3 generates:
|
|
subq $96, %rsp
|
|
.LCFI0:
|
|
leaq 104(%rsp), %rax
|
|
movq %rsi, -80(%rsp)
|
|
movl $8, -120(%rsp)
|
|
movq %rax, -112(%rsp)
|
|
leaq -88(%rsp), %rax
|
|
movq %rax, -104(%rsp)
|
|
movl $8, %eax
|
|
cmpl $48, %eax
|
|
jb .L6
|
|
movq -112(%rsp), %rdx
|
|
movl (%rdx), %eax
|
|
addq $96, %rsp
|
|
ret
|
|
.p2align 4,,10
|
|
.p2align 3
|
|
.L6:
|
|
mov %eax, %edx
|
|
addq -104(%rsp), %rdx
|
|
addl $8, %eax
|
|
movl %eax, -120(%rsp)
|
|
movl (%rdx), %eax
|
|
addq $96, %rsp
|
|
ret
|
|
|
|
and it gets compiled into this on x86:
|
|
pushl %ebp
|
|
movl %esp, %ebp
|
|
subl $4, %esp
|
|
leal 12(%ebp), %eax
|
|
movl %eax, -4(%ebp)
|
|
leal 16(%ebp), %eax
|
|
movl %eax, -4(%ebp)
|
|
movl 12(%ebp), %eax
|
|
addl $4, %esp
|
|
popl %ebp
|
|
ret
|
|
|
|
gcc 4.3 generates:
|
|
pushl %ebp
|
|
movl %esp, %ebp
|
|
movl 12(%ebp), %eax
|
|
popl %ebp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach tblgen not to check bitconvert source type in some cases. This allows us
|
|
to consolidate the following patterns in X86InstrMMX.td:
|
|
|
|
def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
|
|
(iPTR 0))))),
|
|
(v2i32 (MMX_MOVDQ2Qrr VR128:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
|
|
(iPTR 0))))),
|
|
(v4i16 (MMX_MOVDQ2Qrr VR128:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
|
|
(iPTR 0))))),
|
|
(v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;
|
|
|
|
There are other cases in various td files.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take something like the following on x86-32:
|
|
unsigned a(unsigned long long x, unsigned y) {return x % y;}
|
|
|
|
We currently generate a libcall, but we really shouldn't: the expansion is
|
|
shorter and likely faster than the libcall. The expected code is something
|
|
like the following:
|
|
|
|
movl 12(%ebp), %eax
|
|
movl 16(%ebp), %ecx
|
|
xorl %edx, %edx
|
|
divl %ecx
|
|
movl 8(%ebp), %eax
|
|
divl %ecx
|
|
movl %edx, %eax
|
|
ret
|
|
|
|
A similar code sequence works for division.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These should compile to the same code, but the later codegen's to useless
|
|
instructions on X86. This may be a trivial dag combine (GCC PR7061):
|
|
|
|
struct s1 { unsigned char a, b; };
|
|
unsigned long f1(struct s1 x) {
|
|
return x.a + x.b;
|
|
}
|
|
struct s2 { unsigned a: 8, b: 8; };
|
|
unsigned long f2(struct s2 x) {
|
|
return x.a + x.b;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We currently compile this:
|
|
|
|
define i32 @func1(i32 %v1, i32 %v2) nounwind {
|
|
entry:
|
|
%t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
|
|
%sum = extractvalue {i32, i1} %t, 0
|
|
%obit = extractvalue {i32, i1} %t, 1
|
|
br i1 %obit, label %overflow, label %normal
|
|
normal:
|
|
ret i32 %sum
|
|
overflow:
|
|
call void @llvm.trap()
|
|
unreachable
|
|
}
|
|
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
|
|
declare void @llvm.trap()
|
|
|
|
to:
|
|
|
|
_func1:
|
|
movl 4(%esp), %eax
|
|
addl 8(%esp), %eax
|
|
jo LBB1_2 ## overflow
|
|
LBB1_1: ## normal
|
|
ret
|
|
LBB1_2: ## overflow
|
|
ud2
|
|
|
|
it would be nice to produce "into" someday.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
void vec_mpys1(int y[], const int x[], int scaler) {
|
|
int i;
|
|
for (i = 0; i < 150; i++)
|
|
y[i] += (((long long)scaler * (long long)x[i]) >> 31);
|
|
}
|
|
|
|
Compiles to this loop with GCC 3.x:
|
|
|
|
.L5:
|
|
movl %ebx, %eax
|
|
imull (%edi,%ecx,4)
|
|
shrdl $31, %edx, %eax
|
|
addl %eax, (%esi,%ecx,4)
|
|
incl %ecx
|
|
cmpl $149, %ecx
|
|
jle .L5
|
|
|
|
llvm-gcc compiles it to the much uglier:
|
|
|
|
LBB1_1: ## bb1
|
|
movl 24(%esp), %eax
|
|
movl (%eax,%edi,4), %ebx
|
|
movl %ebx, %ebp
|
|
imull %esi, %ebp
|
|
movl %ebx, %eax
|
|
mull %ecx
|
|
addl %ebp, %edx
|
|
sarl $31, %ebx
|
|
imull %ecx, %ebx
|
|
addl %edx, %ebx
|
|
shldl $1, %eax, %ebx
|
|
movl 20(%esp), %eax
|
|
addl %ebx, (%eax,%edi,4)
|
|
incl %edi
|
|
cmpl $150, %edi
|
|
jne LBB1_1 ## bb1
|
|
|
|
The issue is that we hoist the cast of "scaler" to long long outside of the
|
|
loop, the value comes into the loop as two values, and
|
|
RegsForValue::getCopyFromRegs doesn't know how to put an AssertSext on the
|
|
constructed BUILD_PAIR which represents the cast value.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Test instructions can be eliminated by using EFLAGS values from arithmetic
|
|
instructions. This is currently not done for mul, and, or, xor, neg, shl,
|
|
sra, srl, shld, shrd, atomic ops, and others. It is also currently not done
|
|
for read-modify-write instructions. It is also current not done if the
|
|
OF or CF flags are needed.
|
|
|
|
The shift operators have the complication that when the shift count is
|
|
zero, EFLAGS is not set, so they can only subsume a test instruction if
|
|
the shift count is known to be non-zero. Also, using the EFLAGS value
|
|
from a shift is apparently very slow on some x86 implementations.
|
|
|
|
In read-modify-write instructions, the root node in the isel match is
|
|
the store, and isel has no way for the use of the EFLAGS result of the
|
|
arithmetic to be remapped to the new node.
|
|
|
|
Add and subtract instructions set OF on signed overflow and CF on unsiged
|
|
overflow, while test instructions always clear OF and CF. In order to
|
|
replace a test with an add or subtract in a situation where OF or CF is
|
|
needed, codegen must be able to prove that the operation cannot see
|
|
signed or unsigned overflow, respectively.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
memcpy/memmove do not lower to SSE copies when possible. A silly example is:
|
|
define <16 x float> @foo(<16 x float> %A) nounwind {
|
|
%tmp = alloca <16 x float>, align 16
|
|
%tmp2 = alloca <16 x float>, align 16
|
|
store <16 x float> %A, <16 x float>* %tmp
|
|
%s = bitcast <16 x float>* %tmp to i8*
|
|
%s2 = bitcast <16 x float>* %tmp2 to i8*
|
|
call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16)
|
|
%R = load <16 x float>* %tmp2
|
|
ret <16 x float> %R
|
|
}
|
|
|
|
declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind
|
|
|
|
which compiles to:
|
|
|
|
_foo:
|
|
subl $140, %esp
|
|
movaps %xmm3, 112(%esp)
|
|
movaps %xmm2, 96(%esp)
|
|
movaps %xmm1, 80(%esp)
|
|
movaps %xmm0, 64(%esp)
|
|
movl 60(%esp), %eax
|
|
movl %eax, 124(%esp)
|
|
movl 56(%esp), %eax
|
|
movl %eax, 120(%esp)
|
|
movl 52(%esp), %eax
|
|
<many many more 32-bit copies>
|
|
movaps (%esp), %xmm0
|
|
movaps 16(%esp), %xmm1
|
|
movaps 32(%esp), %xmm2
|
|
movaps 48(%esp), %xmm3
|
|
addl $140, %esp
|
|
ret
|
|
|
|
On Nehalem, it may even be cheaper to just use movups when unaligned than to
|
|
fall back to lower-granularity chunks.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Implement processor-specific optimizations for parity with GCC on these
|
|
processors. GCC does two optimizations:
|
|
|
|
1. ix86_pad_returns inserts a noop before ret instructions if immediately
|
|
preceeded by a conditional branch or is the target of a jump.
|
|
2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of
|
|
code contains more than 3 branches.
|
|
|
|
The first one is done for all AMDs, Core2, and "Generic"
|
|
The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
|
|
Core 2, and "Generic"
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Testcase:
|
|
int a(int x) { return (x & 127) > 31; }
|
|
|
|
Current output:
|
|
movl 4(%esp), %eax
|
|
andl $127, %eax
|
|
cmpl $31, %eax
|
|
seta %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
Ideal output:
|
|
xorl %eax, %eax
|
|
testl $96, 4(%esp)
|
|
setne %al
|
|
ret
|
|
|
|
This should definitely be done in instcombine, canonicalizing the range
|
|
condition into a != condition. We get this IR:
|
|
|
|
define i32 @a(i32 %x) nounwind readnone {
|
|
entry:
|
|
%0 = and i32 %x, 127 ; <i32> [#uses=1]
|
|
%1 = icmp ugt i32 %0, 31 ; <i1> [#uses=1]
|
|
%2 = zext i1 %1 to i32 ; <i32> [#uses=1]
|
|
ret i32 %2
|
|
}
|
|
|
|
Instcombine prefers to strength reduce relational comparisons to equality
|
|
comparisons when possible, this should be another case of that. This could
|
|
be handled pretty easily in InstCombiner::visitICmpInstWithInstAndIntCst, but it
|
|
looks like InstCombiner::visitICmpInstWithInstAndIntCst should really already
|
|
be redesigned to use ComputeMaskedBits and friends.
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
Testcase:
|
|
int x(int a) { return (a&0xf0)>>4; }
|
|
|
|
Current output:
|
|
movl 4(%esp), %eax
|
|
shrl $4, %eax
|
|
andl $15, %eax
|
|
ret
|
|
|
|
Ideal output:
|
|
movzbl 4(%esp), %eax
|
|
shrl $4, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Testcase:
|
|
int x(int a) { return (a & 0x80) ? 0x100 : 0; }
|
|
int y(int a) { return (a & 0x80) *2; }
|
|
|
|
Current:
|
|
testl $128, 4(%esp)
|
|
setne %al
|
|
movzbl %al, %eax
|
|
shll $8, %eax
|
|
ret
|
|
|
|
Better:
|
|
movl 4(%esp), %eax
|
|
addl %eax, %eax
|
|
andl $256, %eax
|
|
ret
|
|
|
|
This is another general instcombine transformation that is profitable on all
|
|
targets. In LLVM IR, these functions look like this:
|
|
|
|
define i32 @x(i32 %a) nounwind readnone {
|
|
entry:
|
|
%0 = and i32 %a, 128
|
|
%1 = icmp eq i32 %0, 0
|
|
%iftmp.0.0 = select i1 %1, i32 0, i32 256
|
|
ret i32 %iftmp.0.0
|
|
}
|
|
|
|
define i32 @y(i32 %a) nounwind readnone {
|
|
entry:
|
|
%0 = shl i32 %a, 1
|
|
%1 = and i32 %0, 256
|
|
ret i32 %1
|
|
}
|
|
|
|
Replacing an icmp+select with a shift should always be considered profitable in
|
|
instcombine.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
|
|
properly.
|
|
|
|
When the return value is not used (i.e. only care about the value in the
|
|
memory), x86 does not have to use add to implement these. Instead, it can use
|
|
add, sub, inc, dec instructions with the "lock" prefix.
|
|
|
|
This is currently implemented using a bit of instruction selection trick. The
|
|
issue is the target independent pattern produces one output and a chain and we
|
|
want to map it into one that just output a chain. The current trick is to select
|
|
it into a MERGE_VALUES with the first definition being an implicit_def. The
|
|
proper solution is to add new ISD opcodes for the no-output variant. DAG
|
|
combiner can then transform the node before it gets to target node selection.
|
|
|
|
Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
|
|
fact these instructions are identical to the non-lock versions. We need a way to
|
|
add target specific information to target nodes and have this information
|
|
carried over to machine instructions. Asm printer (or JIT) can use this
|
|
information to add the "lock" prefix.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
_Bool bar(int *x) { return *x & 1; }
|
|
|
|
define zeroext i1 @bar(i32* nocapture %x) nounwind readonly {
|
|
entry:
|
|
%tmp1 = load i32* %x ; <i32> [#uses=1]
|
|
%and = and i32 %tmp1, 1 ; <i32> [#uses=1]
|
|
%tobool = icmp ne i32 %and, 0 ; <i1> [#uses=1]
|
|
ret i1 %tobool
|
|
}
|
|
|
|
bar: # @bar
|
|
# BB#0: # %entry
|
|
movl 4(%esp), %eax
|
|
movb (%eax), %al
|
|
andb $1, %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
Missed optimization: should be movl+andl.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider the following two functions compiled with clang:
|
|
_Bool foo(int *x) { return !(*x & 4); }
|
|
unsigned bar(int *x) { return !(*x & 4); }
|
|
|
|
foo:
|
|
movl 4(%esp), %eax
|
|
testb $4, (%eax)
|
|
sete %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
bar:
|
|
movl 4(%esp), %eax
|
|
movl (%eax), %eax
|
|
shrl $2, %eax
|
|
andl $1, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
The second function generates more code even though the two functions are
|
|
are functionally identical.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take the following C code:
|
|
int x(int y) { return (y & 63) << 14; }
|
|
|
|
Code produced by gcc:
|
|
andl $63, %edi
|
|
sall $14, %edi
|
|
movl %edi, %eax
|
|
ret
|
|
|
|
Code produced by clang:
|
|
shll $14, %edi
|
|
movl %edi, %eax
|
|
andl $1032192, %eax
|
|
ret
|
|
|
|
The code produced by gcc is 3 bytes shorter. This sort of construct often
|
|
shows up with bitfields.
|
|
|
|
//===---------------------------------------------------------------------===//
|