llvm-6502/lib/Target/XCore/XCoreISelLowering.cpp
Mon P Wang 20adc9dc46 Reapply address space patch after fixing an issue in MemCopyOptimizer.
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100304 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-04 03:10:48 +00:00

1562 lines
59 KiB
C++

//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the XCoreTargetLowering class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "xcore-lower"
#include "XCoreISelLowering.h"
#include "XCoreMachineFunctionInfo.h"
#include "XCore.h"
#include "XCoreTargetObjectFile.h"
#include "XCoreTargetMachine.h"
#include "XCoreSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/VectorExtras.h"
#include <queue>
#include <set>
using namespace llvm;
const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const
{
switch (Opcode)
{
case XCoreISD::BL : return "XCoreISD::BL";
case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
case XCoreISD::STWSP : return "XCoreISD::STWSP";
case XCoreISD::RETSP : return "XCoreISD::RETSP";
case XCoreISD::LADD : return "XCoreISD::LADD";
case XCoreISD::LSUB : return "XCoreISD::LSUB";
case XCoreISD::LMUL : return "XCoreISD::LMUL";
case XCoreISD::MACCU : return "XCoreISD::MACCU";
case XCoreISD::MACCS : return "XCoreISD::MACCS";
case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
default : return NULL;
}
}
XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
: TargetLowering(XTM, new XCoreTargetObjectFile()),
TM(XTM),
Subtarget(*XTM.getSubtargetImpl()) {
// Set up the register classes.
addRegisterClass(MVT::i32, XCore::GRRegsRegisterClass);
// Compute derived properties from the register classes
computeRegisterProperties();
// Division is expensive
setIntDivIsCheap(false);
setShiftAmountType(MVT::i32);
setStackPointerRegisterToSaveRestore(XCore::SP);
setSchedulingPreference(SchedulingForRegPressure);
// Use i32 for setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
// XCore does not have the NodeTypes below.
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::ADDC, MVT::i32, Expand);
setOperationAction(ISD::ADDE, MVT::i32, Expand);
setOperationAction(ISD::SUBC, MVT::i32, Expand);
setOperationAction(ISD::SUBE, MVT::i32, Expand);
// Stop the combiner recombining select and set_cc
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
// 64bit
setOperationAction(ISD::ADD, MVT::i64, Custom);
setOperationAction(ISD::SUB, MVT::i64, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// Bit Manipulation
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// Jump tables.
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
// Thread Local Storage
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
// Conversion of i64 -> double produces constantpool nodes
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
// Loads
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
// Custom expand misaligned loads / stores.
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
// Varargs
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
// Dynamic stack
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
maxStoresPerMemset = 4;
maxStoresPerMemmove = maxStoresPerMemcpy = 2;
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ADD);
}
SDValue XCoreTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode())
{
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
// FIXME: Remove these when LegalizeDAGTypes lands.
case ISD::ADD:
case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
default:
llvm_unreachable("unimplemented operand");
return SDValue();
}
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) {
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
return;
case ISD::ADD:
case ISD::SUB:
Results.push_back(ExpandADDSUB(N, DAG));
return;
}
}
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned XCoreTargetLowering::
getFunctionAlignment(const Function *) const {
return 1;
}
//===----------------------------------------------------------------------===//
// Misc Lower Operation implementation
//===----------------------------------------------------------------------===//
SDValue XCoreTargetLowering::
LowerSELECT_CC(SDValue Op, SelectionDAG &DAG)
{
DebugLoc dl = Op.getDebugLoc();
SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i32, Op.getOperand(2),
Op.getOperand(3), Op.getOperand(4));
return DAG.getNode(ISD::SELECT, dl, MVT::i32, Cond, Op.getOperand(0),
Op.getOperand(1));
}
SDValue XCoreTargetLowering::
getGlobalAddressWrapper(SDValue GA, GlobalValue *GV, SelectionDAG &DAG)
{
// FIXME there is no actual debug info here
DebugLoc dl = GA.getDebugLoc();
if (isa<Function>(GV)) {
return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
}
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar) {
// If GV is an alias then use the aliasee to determine constness
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
}
bool isConst = GVar && GVar->isConstant();
if (isConst) {
return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
}
return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
}
SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG)
{
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
// If it's a debug information descriptor, don't mess with it.
if (DAG.isVerifiedDebugInfoDesc(Op))
return GA;
return getGlobalAddressWrapper(GA, GV, DAG);
}
static inline SDValue BuildGetId(SelectionDAG &DAG, DebugLoc dl) {
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
DAG.getConstant(Intrinsic::xcore_getid, MVT::i32));
}
static inline bool isZeroLengthArray(const Type *Ty) {
const ArrayType *AT = dyn_cast_or_null<ArrayType>(Ty);
return AT && (AT->getNumElements() == 0);
}
SDValue XCoreTargetLowering::
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG)
{
// FIXME there isn't really debug info here
DebugLoc dl = Op.getDebugLoc();
// transform to label + getid() * size
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar) {
// If GV is an alias then use the aliasee to determine size
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
}
if (! GVar) {
llvm_unreachable("Thread local object not a GlobalVariable?");
return SDValue();
}
const Type *Ty = cast<PointerType>(GV->getType())->getElementType();
if (!Ty->isSized() || isZeroLengthArray(Ty)) {
#ifndef NDEBUG
errs() << "Size of thread local object " << GVar->getName()
<< " is unknown\n";
#endif
llvm_unreachable(0);
}
SDValue base = getGlobalAddressWrapper(GA, GV, DAG);
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(Ty);
SDValue offset = DAG.getNode(ISD::MUL, dl, MVT::i32, BuildGetId(DAG, dl),
DAG.getConstant(Size, MVT::i32));
return DAG.getNode(ISD::ADD, dl, MVT::i32, base, offset);
}
SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op, SelectionDAG &DAG)
{
DebugLoc DL = Op.getDebugLoc();
BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), /*isTarget=*/true);
return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
}
SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op, SelectionDAG &DAG)
{
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really debug info here
DebugLoc dl = CP->getDebugLoc();
EVT PtrVT = Op.getValueType();
SDValue Res;
if (CP->isMachineConstantPoolEntry()) {
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
} else {
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment());
}
return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
}
unsigned XCoreTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op, SelectionDAG &DAG)
{
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
unsigned JTI = JT->getIndex();
MachineFunction &MF = DAG.getMachineFunction();
const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
if (NumEntries <= 32) {
return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
}
assert((NumEntries >> 31) == 0);
SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
DAG.getConstant(1, MVT::i32));
return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
ScaledIndex);
}
static bool
IsWordAlignedBasePlusConstantOffset(SDValue Addr, SDValue &AlignedBase,
int64_t &Offset)
{
if (Addr.getOpcode() != ISD::ADD) {
return false;
}
ConstantSDNode *CN = 0;
if (!(CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
return false;
}
int64_t off = CN->getSExtValue();
const SDValue &Base = Addr.getOperand(0);
const SDValue *Root = &Base;
if (Base.getOpcode() == ISD::ADD &&
Base.getOperand(1).getOpcode() == ISD::SHL) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Base.getOperand(1)
.getOperand(1));
if (CN && (CN->getSExtValue() >= 2)) {
Root = &Base.getOperand(0);
}
}
if (isa<FrameIndexSDNode>(*Root)) {
// All frame indicies are word aligned
AlignedBase = Base;
Offset = off;
return true;
}
if (Root->getOpcode() == XCoreISD::DPRelativeWrapper ||
Root->getOpcode() == XCoreISD::CPRelativeWrapper) {
// All dp / cp relative addresses are word aligned
AlignedBase = Base;
Offset = off;
return true;
}
return false;
}
SDValue XCoreTargetLowering::
LowerLOAD(SDValue Op, SelectionDAG &DAG)
{
LoadSDNode *LD = cast<LoadSDNode>(Op);
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
"Unexpected extension type");
assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
if (allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
return SDValue();
}
unsigned ABIAlignment = getTargetData()->
getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
// Leave aligned load alone.
if (LD->getAlignment() >= ABIAlignment) {
return SDValue();
}
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
DebugLoc dl = Op.getDebugLoc();
SDValue Base;
int64_t Offset;
if (!LD->isVolatile() &&
IsWordAlignedBasePlusConstantOffset(BasePtr, Base, Offset)) {
if (Offset % 4 == 0) {
// We've managed to infer better alignment information than the load
// already has. Use an aligned load.
//
// FIXME: No new alignment information is actually passed here.
// Should the offset really be 4?
//
return DAG.getLoad(getPointerTy(), dl, Chain, BasePtr, NULL, 4,
false, false, 0);
}
// Lower to
// ldw low, base[offset >> 2]
// ldw high, base[(offset >> 2) + 1]
// shr low_shifted, low, (offset & 0x3) * 8
// shl high_shifted, high, 32 - (offset & 0x3) * 8
// or result, low_shifted, high_shifted
SDValue LowOffset = DAG.getConstant(Offset & ~0x3, MVT::i32);
SDValue HighOffset = DAG.getConstant((Offset & ~0x3) + 4, MVT::i32);
SDValue LowShift = DAG.getConstant((Offset & 0x3) * 8, MVT::i32);
SDValue HighShift = DAG.getConstant(32 - (Offset & 0x3) * 8, MVT::i32);
SDValue LowAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Base, LowOffset);
SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Base, HighOffset);
SDValue Low = DAG.getLoad(getPointerTy(), dl, Chain,
LowAddr, NULL, 4, false, false, 0);
SDValue High = DAG.getLoad(getPointerTy(), dl, Chain,
HighAddr, NULL, 4, false, false, 0);
SDValue LowShifted = DAG.getNode(ISD::SRL, dl, MVT::i32, Low, LowShift);
SDValue HighShifted = DAG.getNode(ISD::SHL, dl, MVT::i32, High, HighShift);
SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, LowShifted, HighShifted);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Low.getValue(1),
High.getValue(1));
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, 2, dl);
}
if (LD->getAlignment() == 2) {
int SVOffset = LD->getSrcValueOffset();
SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
BasePtr, LD->getSrcValue(), SVOffset, MVT::i16,
LD->isVolatile(), LD->isNonTemporal(), 2);
SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
DAG.getConstant(2, MVT::i32));
SDValue High = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, Chain,
HighAddr, LD->getSrcValue(), SVOffset + 2,
MVT::i16, LD->isVolatile(),
LD->isNonTemporal(), 2);
SDValue HighShifted = DAG.getNode(ISD::SHL, dl, MVT::i32, High,
DAG.getConstant(16, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, Low, HighShifted);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Low.getValue(1),
High.getValue(1));
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, 2, dl);
}
// Lower to a call to __misaligned_load(BasePtr).
const Type *IntPtrTy = getTargetData()->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = BasePtr;
Args.push_back(Entry);
std::pair<SDValue, SDValue> CallResult =
LowerCallTo(Chain, IntPtrTy, false, false,
false, false, 0, CallingConv::C, false,
/*isReturnValueUsed=*/true,
DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
Args, DAG, dl);
SDValue Ops[] =
{ CallResult.first, CallResult.second };
return DAG.getMergeValues(Ops, 2, dl);
}
SDValue XCoreTargetLowering::
LowerSTORE(SDValue Op, SelectionDAG &DAG)
{
StoreSDNode *ST = cast<StoreSDNode>(Op);
assert(!ST->isTruncatingStore() && "Unexpected store type");
assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
return SDValue();
}
unsigned ABIAlignment = getTargetData()->
getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
// Leave aligned store alone.
if (ST->getAlignment() >= ABIAlignment) {
return SDValue();
}
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
SDValue Value = ST->getValue();
DebugLoc dl = Op.getDebugLoc();
if (ST->getAlignment() == 2) {
int SVOffset = ST->getSrcValueOffset();
SDValue Low = Value;
SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
DAG.getConstant(16, MVT::i32));
SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
ST->getSrcValue(), SVOffset, MVT::i16,
ST->isVolatile(), ST->isNonTemporal(),
2);
SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
DAG.getConstant(2, MVT::i32));
SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
ST->getSrcValue(), SVOffset + 2,
MVT::i16, ST->isVolatile(),
ST->isNonTemporal(), 2);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
}
// Lower to a call to __misaligned_store(BasePtr, Value).
const Type *IntPtrTy = getTargetData()->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = BasePtr;
Args.push_back(Entry);
Entry.Node = Value;
Args.push_back(Entry);
std::pair<SDValue, SDValue> CallResult =
LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), false, false,
false, false, 0, CallingConv::C, false,
/*isReturnValueUsed=*/true,
DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
Args, DAG, dl);
return CallResult.second;
}
SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG)
{
assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
"Unexpected operand to lower!");
DebugLoc dl = Op.getDebugLoc();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
LHS, RHS);
SDValue Lo(Hi.getNode(), 1);
SDValue Ops[] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG)
{
assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
"Unexpected operand to lower!");
DebugLoc dl = Op.getDebugLoc();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
Zero, Zero);
SDValue Lo(Hi.getNode(), 1);
SDValue Ops[] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
/// isADDADDMUL - Return whether Op is in a form that is equivalent to
/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
/// each intermediate result in the calculation must also have a single use.
/// If the Op is in the correct form the constituent parts are written to Mul0,
/// Mul1, Addend0 and Addend1.
static bool
isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
SDValue &Addend1, bool requireIntermediatesHaveOneUse)
{
if (Op.getOpcode() != ISD::ADD)
return false;
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue AddOp;
SDValue OtherOp;
if (N0.getOpcode() == ISD::ADD) {
AddOp = N0;
OtherOp = N1;
} else if (N1.getOpcode() == ISD::ADD) {
AddOp = N1;
OtherOp = N0;
} else {
return false;
}
if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
return false;
if (OtherOp.getOpcode() == ISD::MUL) {
// add(add(a,b),mul(x,y))
if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
return false;
Mul0 = OtherOp.getOperand(0);
Mul1 = OtherOp.getOperand(1);
Addend0 = AddOp.getOperand(0);
Addend1 = AddOp.getOperand(1);
return true;
}
if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
// add(add(mul(x,y),a),b)
if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
return false;
Mul0 = AddOp.getOperand(0).getOperand(0);
Mul1 = AddOp.getOperand(0).getOperand(1);
Addend0 = AddOp.getOperand(1);
Addend1 = OtherOp;
return true;
}
if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
// add(add(a,mul(x,y)),b)
if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
return false;
Mul0 = AddOp.getOperand(1).getOperand(0);
Mul1 = AddOp.getOperand(1).getOperand(1);
Addend0 = AddOp.getOperand(0);
Addend1 = OtherOp;
return true;
}
return false;
}
SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG)
{
SDValue Mul;
SDValue Other;
if (N->getOperand(0).getOpcode() == ISD::MUL) {
Mul = N->getOperand(0);
Other = N->getOperand(1);
} else if (N->getOperand(1).getOpcode() == ISD::MUL) {
Mul = N->getOperand(1);
Other = N->getOperand(0);
} else {
return SDValue();
}
DebugLoc dl = N->getDebugLoc();
SDValue LL, RL, AddendL, AddendH;
LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(0), DAG.getConstant(0, MVT::i32));
RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(1), DAG.getConstant(0, MVT::i32));
AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Other, DAG.getConstant(0, MVT::i32));
AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Other, DAG.getConstant(1, MVT::i32));
APInt HighMask = APInt::getHighBitsSet(64, 32);
unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
// The inputs are both zero-extended.
SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
if (LHSSB > 32 && RHSSB > 32) {
// The inputs are both sign-extended.
SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue LH, RH;
LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(0), DAG.getConstant(1, MVT::i32));
RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(1), DAG.getConstant(1, MVT::i32));
SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode *N, SelectionDAG &DAG)
{
assert(N->getValueType(0) == MVT::i64 &&
(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Unknown operand to lower!");
if (N->getOpcode() == ISD::ADD) {
SDValue Result = TryExpandADDWithMul(N, DAG);
if (Result.getNode() != 0)
return Result;
}
DebugLoc dl = N->getDebugLoc();
// Extract components
SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(0), DAG.getConstant(0, MVT::i32));
SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(0), DAG.getConstant(1, MVT::i32));
SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(1), DAG.getConstant(0, MVT::i32));
SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(1), DAG.getConstant(1, MVT::i32));
// Expand
unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
XCoreISD::LSUB;
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue Carry = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
LHSL, RHSL, Zero);
SDValue Lo(Carry.getNode(), 1);
SDValue Ignored = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
LHSH, RHSH, Carry);
SDValue Hi(Ignored.getNode(), 1);
// Merge the pieces
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op, SelectionDAG &DAG)
{
llvm_unreachable("unimplemented");
// FIX Arguments passed by reference need a extra dereference.
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
EVT VT = Node->getValueType(0);
SDValue VAList = DAG.getLoad(getPointerTy(), dl, Node->getOperand(0),
Node->getOperand(1), V, 0, false, false, 0);
// Increment the pointer, VAList, to the next vararg
SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, getPointerTy(), VAList,
DAG.getConstant(VT.getSizeInBits(),
getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Node->getOperand(1), V, 0,
false, false, 0);
// Load the actual argument out of the pointer VAList
return DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0, false, false, 0);
}
SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op, SelectionDAG &DAG)
{
DebugLoc dl = Op.getDebugLoc();
// vastart stores the address of the VarArgsFrameIndex slot into the
// memory location argument
MachineFunction &MF = DAG.getMachineFunction();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), SV, 0,
false, false, 0);
}
SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
return DAG.getCopyFromReg(DAG.getEntryNode(), dl,
RegInfo->getFrameRegister(MF), MVT::i32);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "XCoreGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// XCore call implementation
SDValue
XCoreTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// XCore target does not yet support tail call optimization.
isTailCall = false;
// For now, only CallingConv::C implemented
switch (CallConv)
{
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, Ins, dl, DAG, InVals);
}
}
/// LowerCCCCallTo - functions arguments are copied from virtual
/// regs to (physical regs)/(stack frame), CALLSEQ_START and
/// CALLSEQ_END are emitted.
/// TODO: isTailCall, sret.
SDValue
XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
ArgLocs, *DAG.getContext());
// The ABI dictates there should be one stack slot available to the callee
// on function entry (for saving lr).
CCInfo.AllocateStack(4, 4);
CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
getPointerTy(), true));
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = Outs[i].Val;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
int Offset = VA.getLocMemOffset();
MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
Chain, Arg,
DAG.getConstant(Offset/4, MVT::i32)));
}
}
// Transform all store nodes into one single node because
// all store nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emited instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
// XCoreBranchLink = #chain, #target_address, #opt_in_flags...
// = Chain, Callee, Reg#1, Reg#2, ...
//
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, getPointerTy(), true),
DAG.getConstant(0, getPointerTy(), true),
InFlag);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue
XCoreTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// XCore formal arguments implementation
SDValue
XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
switch (CallConv)
{
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
}
/// LowerCCCArguments - transform physical registers into
/// virtual registers and generate load operations for
/// arguments places on the stack.
/// TODO: sret
SDValue
XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
unsigned StackSlotSize = XCoreFrameInfo::stackSlotSize();
unsigned LRSaveSize = StackSlotSize;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
switch (RegVT.getSimpleVT().SimpleTy) {
default:
{
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< RegVT.getSimpleVT().SimpleTy << "\n";
#endif
llvm_unreachable(0);
}
case MVT::i32:
unsigned VReg = RegInfo.createVirtualRegister(
XCore::GRRegsRegisterClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
}
} else {
// sanity check
assert(VA.isMemLoc());
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > StackSlotSize) {
errs() << "LowerFormalArguments Unhandled argument type: "
<< (unsigned)VA.getLocVT().getSimpleVT().SimpleTy
<< "\n";
}
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(ObjSize,
LRSaveSize + VA.getLocMemOffset(),
true, false);
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, NULL, 0,
false, false, 0));
}
}
if (isVarArg) {
/* Argument registers */
static const unsigned ArgRegs[] = {
XCore::R0, XCore::R1, XCore::R2, XCore::R3
};
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
array_lengthof(ArgRegs));
if (FirstVAReg < array_lengthof(ArgRegs)) {
SmallVector<SDValue, 4> MemOps;
int offset = 0;
// Save remaining registers, storing higher register numbers at a higher
// address
for (unsigned i = array_lengthof(ArgRegs) - 1; i >= FirstVAReg; --i) {
// Create a stack slot
int FI = MFI->CreateFixedObject(4, offset, true, false);
if (i == FirstVAReg) {
XFI->setVarArgsFrameIndex(FI);
}
offset -= StackSlotSize;
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
// Move argument from phys reg -> virt reg
unsigned VReg = RegInfo.createVirtualRegister(
XCore::GRRegsRegisterClass);
RegInfo.addLiveIn(ArgRegs[i], VReg);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
// Move argument from virt reg -> stack
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
false, false, 0);
MemOps.push_back(Store);
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOps[0], MemOps.size());
} else {
// This will point to the next argument passed via stack.
XFI->setVarArgsFrameIndex(
MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
true, false));
}
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<EVT> &OutTys,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
SelectionDAG &DAG) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, *DAG.getContext());
return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_XCore);
}
SDValue
XCoreTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
DebugLoc dl, SelectionDAG &DAG) {
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, *DAG.getContext());
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
Outs[i].Val, Flag);
// guarantee that all emitted copies are
// stuck together, avoiding something bad
Flag = Chain.getValue(1);
}
// Return on XCore is always a "retsp 0"
if (Flag.getNode())
return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other,
Chain, DAG.getConstant(0, MVT::i32), Flag);
else // Return Void
return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other,
Chain, DAG.getConstant(0, MVT::i32));
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB,
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((MI->getOpcode() == XCore::SELECT_CC) &&
"Unexpected instr type to insert");
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
// Also inform sdisel of the edge changes.
for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
E = BB->succ_end(); I != E; ++I) {
EM->insert(std::make_pair(*I, sinkMBB));
sinkMBB->addSuccessor(*I);
}
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while (!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, dl, TII.get(XCore::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
DebugLoc dl = N->getDebugLoc();
switch (N->getOpcode()) {
default: break;
case XCoreISD::LADD: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
// fold (ladd 0, 0, x) -> 0, x & 1
if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
SDValue Carry = DAG.getConstant(0, VT);
SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
DAG.getConstant(1, VT));
SDValue Ops [] = { Carry, Result };
return DAG.getMergeValues(Ops, 2, dl);
}
// fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
// low bit set
if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 0)) {
APInt KnownZero, KnownOne;
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
DAG.ComputeMaskedBits(N2, Mask, KnownZero, KnownOne);
if (KnownZero == Mask) {
SDValue Carry = DAG.getConstant(0, VT);
SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
SDValue Ops [] = { Carry, Result };
return DAG.getMergeValues(Ops, 2, dl);
}
}
}
break;
case XCoreISD::LSUB: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
APInt KnownZero, KnownOne;
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
DAG.ComputeMaskedBits(N2, Mask, KnownZero, KnownOne);
if (KnownZero == Mask) {
SDValue Borrow = N2;
SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
DAG.getConstant(0, VT), N2);
SDValue Ops [] = { Borrow, Result };
return DAG.getMergeValues(Ops, 2, dl);
}
}
// fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
// low bit set
if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 0)) {
APInt KnownZero, KnownOne;
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
DAG.ComputeMaskedBits(N2, Mask, KnownZero, KnownOne);
if (KnownZero == Mask) {
SDValue Borrow = DAG.getConstant(0, VT);
SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
SDValue Ops [] = { Borrow, Result };
return DAG.getMergeValues(Ops, 2, dl);
}
}
}
break;
case XCoreISD::LMUL: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// Canonicalize multiplicative constant to RHS. If both multiplicative
// operands are constant canonicalize smallest to RHS.
if ((N0C && !N1C) ||
(N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), N1, N0, N2, N3);
// lmul(x, 0, a, b)
if (N1C && N1C->isNullValue()) {
// If the high result is unused fold to add(a, b)
if (N->hasNUsesOfValue(0, 0)) {
SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
SDValue Ops [] = { Lo, Lo };
return DAG.getMergeValues(Ops, 2, dl);
}
// Otherwise fold to ladd(a, b, 0)
return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
}
}
break;
case ISD::ADD: {
// Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
// lmul(x, y, a, b). The high result of lmul will be ignored.
// This is only profitable if the intermediate results are unused
// elsewhere.
SDValue Mul0, Mul1, Addend0, Addend1;
if (N->getValueType(0) == MVT::i32 &&
isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), Mul0,
Mul1, Addend0, Addend1);
SDValue Result(Ignored.getNode(), 1);
return Result;
}
APInt HighMask = APInt::getHighBitsSet(64, 32);
// Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
// lmul(x, y, a, b) if all operands are zero-extended. We do this
// before type legalization as it is messy to match the operands after
// that.
if (N->getValueType(0) == MVT::i64 &&
isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
DAG.MaskedValueIsZero(Mul0, HighMask) &&
DAG.MaskedValueIsZero(Mul1, HighMask) &&
DAG.MaskedValueIsZero(Addend0, HighMask) &&
DAG.MaskedValueIsZero(Addend1, HighMask)) {
SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul0, DAG.getConstant(0, MVT::i32));
SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul1, DAG.getConstant(0, MVT::i32));
SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Addend0, DAG.getConstant(0, MVT::i32));
SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Addend1, DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
Addend0L, Addend1L);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
}
break;
case ISD::STORE: {
// Replace unaligned store of unaligned load with memmove.
StoreSDNode *ST = cast<StoreSDNode>(N);
if (!DCI.isBeforeLegalize() ||
allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
ST->isVolatile() || ST->isIndexed()) {
break;
}
SDValue Chain = ST->getChain();
unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
if (StoreBits % 8) {
break;
}
unsigned ABIAlignment = getTargetData()->getABITypeAlignment(
ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
unsigned Alignment = ST->getAlignment();
if (Alignment >= ABIAlignment) {
break;
}
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
LD->getAlignment() == Alignment &&
!LD->isVolatile() && !LD->isIndexed() &&
Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
LD->getBasePtr(),
DAG.getConstant(StoreBits/8, MVT::i32),
Alignment, false, ST->getSrcValue(),
ST->getSrcValueOffset(), LD->getSrcValue(),
LD->getSrcValueOffset());
}
}
break;
}
}
return SDValue();
}
void XCoreTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case XCoreISD::LADD:
case XCoreISD::LSUB:
if (Op.getResNo() == 0) {
// Top bits of carry / borrow are clear.
KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
Mask.getBitWidth() - 1);
KnownZero &= Mask;
}
break;
}
}
//===----------------------------------------------------------------------===//
// Addressing mode description hooks
//===----------------------------------------------------------------------===//
static inline bool isImmUs(int64_t val)
{
return (val >= 0 && val <= 11);
}
static inline bool isImmUs2(int64_t val)
{
return (val%2 == 0 && isImmUs(val/2));
}
static inline bool isImmUs4(int64_t val)
{
return (val%4 == 0 && isImmUs(val/4));
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool
XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
if (Ty->getTypeID() == Type::VoidTyID)
return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(Ty);
if (AM.BaseGV) {
return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
AM.BaseOffs%4 == 0;
}
switch (Size) {
case 1:
// reg + imm
if (AM.Scale == 0) {
return isImmUs(AM.BaseOffs);
}
// reg + reg
return AM.Scale == 1 && AM.BaseOffs == 0;
case 2:
case 3:
// reg + imm
if (AM.Scale == 0) {
return isImmUs2(AM.BaseOffs);
}
// reg + reg<<1
return AM.Scale == 2 && AM.BaseOffs == 0;
default:
// reg + imm
if (AM.Scale == 0) {
return isImmUs4(AM.BaseOffs);
}
// reg + reg<<2
return AM.Scale == 4 && AM.BaseOffs == 0;
}
return false;
}
//===----------------------------------------------------------------------===//
// XCore Inline Assembly Support
//===----------------------------------------------------------------------===//
std::vector<unsigned> XCoreTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const
{
if (Constraint.size() != 1)
return std::vector<unsigned>();
switch (Constraint[0]) {
default : break;
case 'r':
return make_vector<unsigned>(XCore::R0, XCore::R1, XCore::R2,
XCore::R3, XCore::R4, XCore::R5,
XCore::R6, XCore::R7, XCore::R8,
XCore::R9, XCore::R10, XCore::R11, 0);
break;
}
return std::vector<unsigned>();
}