llvm-6502/lib/Target/X86/X86InstrInfo.cpp
2009-01-09 02:40:34 +00:00

3095 lines
109 KiB
C++

//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86.h"
#include "X86GenInstrInfo.inc"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetAsmInfo.h"
using namespace llvm;
namespace {
cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
cl::opt<bool>
ReMatPICStubLoad("remat-pic-stub-load",
cl::desc("Re-materialize load from stub in PIC mode"),
cl::init(false), cl::Hidden);
}
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
: TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
TM(tm), RI(tm, *this) {
SmallVector<unsigned,16> AmbEntries;
static const unsigned OpTbl2Addr[][2] = {
{ X86::ADC32ri, X86::ADC32mi },
{ X86::ADC32ri8, X86::ADC32mi8 },
{ X86::ADC32rr, X86::ADC32mr },
{ X86::ADC64ri32, X86::ADC64mi32 },
{ X86::ADC64ri8, X86::ADC64mi8 },
{ X86::ADC64rr, X86::ADC64mr },
{ X86::ADD16ri, X86::ADD16mi },
{ X86::ADD16ri8, X86::ADD16mi8 },
{ X86::ADD16rr, X86::ADD16mr },
{ X86::ADD32ri, X86::ADD32mi },
{ X86::ADD32ri8, X86::ADD32mi8 },
{ X86::ADD32rr, X86::ADD32mr },
{ X86::ADD64ri32, X86::ADD64mi32 },
{ X86::ADD64ri8, X86::ADD64mi8 },
{ X86::ADD64rr, X86::ADD64mr },
{ X86::ADD8ri, X86::ADD8mi },
{ X86::ADD8rr, X86::ADD8mr },
{ X86::AND16ri, X86::AND16mi },
{ X86::AND16ri8, X86::AND16mi8 },
{ X86::AND16rr, X86::AND16mr },
{ X86::AND32ri, X86::AND32mi },
{ X86::AND32ri8, X86::AND32mi8 },
{ X86::AND32rr, X86::AND32mr },
{ X86::AND64ri32, X86::AND64mi32 },
{ X86::AND64ri8, X86::AND64mi8 },
{ X86::AND64rr, X86::AND64mr },
{ X86::AND8ri, X86::AND8mi },
{ X86::AND8rr, X86::AND8mr },
{ X86::DEC16r, X86::DEC16m },
{ X86::DEC32r, X86::DEC32m },
{ X86::DEC64_16r, X86::DEC64_16m },
{ X86::DEC64_32r, X86::DEC64_32m },
{ X86::DEC64r, X86::DEC64m },
{ X86::DEC8r, X86::DEC8m },
{ X86::INC16r, X86::INC16m },
{ X86::INC32r, X86::INC32m },
{ X86::INC64_16r, X86::INC64_16m },
{ X86::INC64_32r, X86::INC64_32m },
{ X86::INC64r, X86::INC64m },
{ X86::INC8r, X86::INC8m },
{ X86::NEG16r, X86::NEG16m },
{ X86::NEG32r, X86::NEG32m },
{ X86::NEG64r, X86::NEG64m },
{ X86::NEG8r, X86::NEG8m },
{ X86::NOT16r, X86::NOT16m },
{ X86::NOT32r, X86::NOT32m },
{ X86::NOT64r, X86::NOT64m },
{ X86::NOT8r, X86::NOT8m },
{ X86::OR16ri, X86::OR16mi },
{ X86::OR16ri8, X86::OR16mi8 },
{ X86::OR16rr, X86::OR16mr },
{ X86::OR32ri, X86::OR32mi },
{ X86::OR32ri8, X86::OR32mi8 },
{ X86::OR32rr, X86::OR32mr },
{ X86::OR64ri32, X86::OR64mi32 },
{ X86::OR64ri8, X86::OR64mi8 },
{ X86::OR64rr, X86::OR64mr },
{ X86::OR8ri, X86::OR8mi },
{ X86::OR8rr, X86::OR8mr },
{ X86::ROL16r1, X86::ROL16m1 },
{ X86::ROL16rCL, X86::ROL16mCL },
{ X86::ROL16ri, X86::ROL16mi },
{ X86::ROL32r1, X86::ROL32m1 },
{ X86::ROL32rCL, X86::ROL32mCL },
{ X86::ROL32ri, X86::ROL32mi },
{ X86::ROL64r1, X86::ROL64m1 },
{ X86::ROL64rCL, X86::ROL64mCL },
{ X86::ROL64ri, X86::ROL64mi },
{ X86::ROL8r1, X86::ROL8m1 },
{ X86::ROL8rCL, X86::ROL8mCL },
{ X86::ROL8ri, X86::ROL8mi },
{ X86::ROR16r1, X86::ROR16m1 },
{ X86::ROR16rCL, X86::ROR16mCL },
{ X86::ROR16ri, X86::ROR16mi },
{ X86::ROR32r1, X86::ROR32m1 },
{ X86::ROR32rCL, X86::ROR32mCL },
{ X86::ROR32ri, X86::ROR32mi },
{ X86::ROR64r1, X86::ROR64m1 },
{ X86::ROR64rCL, X86::ROR64mCL },
{ X86::ROR64ri, X86::ROR64mi },
{ X86::ROR8r1, X86::ROR8m1 },
{ X86::ROR8rCL, X86::ROR8mCL },
{ X86::ROR8ri, X86::ROR8mi },
{ X86::SAR16r1, X86::SAR16m1 },
{ X86::SAR16rCL, X86::SAR16mCL },
{ X86::SAR16ri, X86::SAR16mi },
{ X86::SAR32r1, X86::SAR32m1 },
{ X86::SAR32rCL, X86::SAR32mCL },
{ X86::SAR32ri, X86::SAR32mi },
{ X86::SAR64r1, X86::SAR64m1 },
{ X86::SAR64rCL, X86::SAR64mCL },
{ X86::SAR64ri, X86::SAR64mi },
{ X86::SAR8r1, X86::SAR8m1 },
{ X86::SAR8rCL, X86::SAR8mCL },
{ X86::SAR8ri, X86::SAR8mi },
{ X86::SBB32ri, X86::SBB32mi },
{ X86::SBB32ri8, X86::SBB32mi8 },
{ X86::SBB32rr, X86::SBB32mr },
{ X86::SBB64ri32, X86::SBB64mi32 },
{ X86::SBB64ri8, X86::SBB64mi8 },
{ X86::SBB64rr, X86::SBB64mr },
{ X86::SHL16rCL, X86::SHL16mCL },
{ X86::SHL16ri, X86::SHL16mi },
{ X86::SHL32rCL, X86::SHL32mCL },
{ X86::SHL32ri, X86::SHL32mi },
{ X86::SHL64rCL, X86::SHL64mCL },
{ X86::SHL64ri, X86::SHL64mi },
{ X86::SHL8rCL, X86::SHL8mCL },
{ X86::SHL8ri, X86::SHL8mi },
{ X86::SHLD16rrCL, X86::SHLD16mrCL },
{ X86::SHLD16rri8, X86::SHLD16mri8 },
{ X86::SHLD32rrCL, X86::SHLD32mrCL },
{ X86::SHLD32rri8, X86::SHLD32mri8 },
{ X86::SHLD64rrCL, X86::SHLD64mrCL },
{ X86::SHLD64rri8, X86::SHLD64mri8 },
{ X86::SHR16r1, X86::SHR16m1 },
{ X86::SHR16rCL, X86::SHR16mCL },
{ X86::SHR16ri, X86::SHR16mi },
{ X86::SHR32r1, X86::SHR32m1 },
{ X86::SHR32rCL, X86::SHR32mCL },
{ X86::SHR32ri, X86::SHR32mi },
{ X86::SHR64r1, X86::SHR64m1 },
{ X86::SHR64rCL, X86::SHR64mCL },
{ X86::SHR64ri, X86::SHR64mi },
{ X86::SHR8r1, X86::SHR8m1 },
{ X86::SHR8rCL, X86::SHR8mCL },
{ X86::SHR8ri, X86::SHR8mi },
{ X86::SHRD16rrCL, X86::SHRD16mrCL },
{ X86::SHRD16rri8, X86::SHRD16mri8 },
{ X86::SHRD32rrCL, X86::SHRD32mrCL },
{ X86::SHRD32rri8, X86::SHRD32mri8 },
{ X86::SHRD64rrCL, X86::SHRD64mrCL },
{ X86::SHRD64rri8, X86::SHRD64mri8 },
{ X86::SUB16ri, X86::SUB16mi },
{ X86::SUB16ri8, X86::SUB16mi8 },
{ X86::SUB16rr, X86::SUB16mr },
{ X86::SUB32ri, X86::SUB32mi },
{ X86::SUB32ri8, X86::SUB32mi8 },
{ X86::SUB32rr, X86::SUB32mr },
{ X86::SUB64ri32, X86::SUB64mi32 },
{ X86::SUB64ri8, X86::SUB64mi8 },
{ X86::SUB64rr, X86::SUB64mr },
{ X86::SUB8ri, X86::SUB8mi },
{ X86::SUB8rr, X86::SUB8mr },
{ X86::XOR16ri, X86::XOR16mi },
{ X86::XOR16ri8, X86::XOR16mi8 },
{ X86::XOR16rr, X86::XOR16mr },
{ X86::XOR32ri, X86::XOR32mi },
{ X86::XOR32ri8, X86::XOR32mi8 },
{ X86::XOR32rr, X86::XOR32mr },
{ X86::XOR64ri32, X86::XOR64mi32 },
{ X86::XOR64ri8, X86::XOR64mi8 },
{ X86::XOR64rr, X86::XOR64mr },
{ X86::XOR8ri, X86::XOR8mi },
{ X86::XOR8rr, X86::XOR8mr }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
unsigned RegOp = OpTbl2Addr[i][0];
unsigned MemOp = OpTbl2Addr[i][1];
if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
MemOp)).second)
assert(false && "Duplicated entries?");
unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp,
AuxInfo))).second)
AmbEntries.push_back(MemOp);
}
// If the third value is 1, then it's folding either a load or a store.
static const unsigned OpTbl0[][3] = {
{ X86::CALL32r, X86::CALL32m, 1 },
{ X86::CALL64r, X86::CALL64m, 1 },
{ X86::CMP16ri, X86::CMP16mi, 1 },
{ X86::CMP16ri8, X86::CMP16mi8, 1 },
{ X86::CMP16rr, X86::CMP16mr, 1 },
{ X86::CMP32ri, X86::CMP32mi, 1 },
{ X86::CMP32ri8, X86::CMP32mi8, 1 },
{ X86::CMP32rr, X86::CMP32mr, 1 },
{ X86::CMP64ri32, X86::CMP64mi32, 1 },
{ X86::CMP64ri8, X86::CMP64mi8, 1 },
{ X86::CMP64rr, X86::CMP64mr, 1 },
{ X86::CMP8ri, X86::CMP8mi, 1 },
{ X86::CMP8rr, X86::CMP8mr, 1 },
{ X86::DIV16r, X86::DIV16m, 1 },
{ X86::DIV32r, X86::DIV32m, 1 },
{ X86::DIV64r, X86::DIV64m, 1 },
{ X86::DIV8r, X86::DIV8m, 1 },
{ X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
{ X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
{ X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
{ X86::IDIV16r, X86::IDIV16m, 1 },
{ X86::IDIV32r, X86::IDIV32m, 1 },
{ X86::IDIV64r, X86::IDIV64m, 1 },
{ X86::IDIV8r, X86::IDIV8m, 1 },
{ X86::IMUL16r, X86::IMUL16m, 1 },
{ X86::IMUL32r, X86::IMUL32m, 1 },
{ X86::IMUL64r, X86::IMUL64m, 1 },
{ X86::IMUL8r, X86::IMUL8m, 1 },
{ X86::JMP32r, X86::JMP32m, 1 },
{ X86::JMP64r, X86::JMP64m, 1 },
{ X86::MOV16ri, X86::MOV16mi, 0 },
{ X86::MOV16rr, X86::MOV16mr, 0 },
{ X86::MOV16to16_, X86::MOV16_mr, 0 },
{ X86::MOV32ri, X86::MOV32mi, 0 },
{ X86::MOV32rr, X86::MOV32mr, 0 },
{ X86::MOV32to32_, X86::MOV32_mr, 0 },
{ X86::MOV64ri32, X86::MOV64mi32, 0 },
{ X86::MOV64rr, X86::MOV64mr, 0 },
{ X86::MOV8ri, X86::MOV8mi, 0 },
{ X86::MOV8rr, X86::MOV8mr, 0 },
{ X86::MOVAPDrr, X86::MOVAPDmr, 0 },
{ X86::MOVAPSrr, X86::MOVAPSmr, 0 },
{ X86::MOVDQArr, X86::MOVDQAmr, 0 },
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
{ X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
{ X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
{ X86::MOVSDrr, X86::MOVSDmr, 0 },
{ X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
{ X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
{ X86::MOVSSrr, X86::MOVSSmr, 0 },
{ X86::MOVUPDrr, X86::MOVUPDmr, 0 },
{ X86::MOVUPSrr, X86::MOVUPSmr, 0 },
{ X86::MUL16r, X86::MUL16m, 1 },
{ X86::MUL32r, X86::MUL32m, 1 },
{ X86::MUL64r, X86::MUL64m, 1 },
{ X86::MUL8r, X86::MUL8m, 1 },
{ X86::SETAEr, X86::SETAEm, 0 },
{ X86::SETAr, X86::SETAm, 0 },
{ X86::SETBEr, X86::SETBEm, 0 },
{ X86::SETBr, X86::SETBm, 0 },
{ X86::SETEr, X86::SETEm, 0 },
{ X86::SETGEr, X86::SETGEm, 0 },
{ X86::SETGr, X86::SETGm, 0 },
{ X86::SETLEr, X86::SETLEm, 0 },
{ X86::SETLr, X86::SETLm, 0 },
{ X86::SETNEr, X86::SETNEm, 0 },
{ X86::SETNOr, X86::SETNOm, 0 },
{ X86::SETNPr, X86::SETNPm, 0 },
{ X86::SETNSr, X86::SETNSm, 0 },
{ X86::SETOr, X86::SETOm, 0 },
{ X86::SETPr, X86::SETPm, 0 },
{ X86::SETSr, X86::SETSm, 0 },
{ X86::TAILJMPr, X86::TAILJMPm, 1 },
{ X86::TEST16ri, X86::TEST16mi, 1 },
{ X86::TEST32ri, X86::TEST32mi, 1 },
{ X86::TEST64ri32, X86::TEST64mi32, 1 },
{ X86::TEST8ri, X86::TEST8mi, 1 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
unsigned RegOp = OpTbl0[i][0];
unsigned MemOp = OpTbl0[i][1];
if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
MemOp)).second)
assert(false && "Duplicated entries?");
unsigned FoldedLoad = OpTbl0[i][2];
// Index 0, folded load or store.
unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))).second)
AmbEntries.push_back(MemOp);
}
static const unsigned OpTbl1[][2] = {
{ X86::CMP16rr, X86::CMP16rm },
{ X86::CMP32rr, X86::CMP32rm },
{ X86::CMP64rr, X86::CMP64rm },
{ X86::CMP8rr, X86::CMP8rm },
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm },
{ X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm },
{ X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm },
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm },
{ X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
{ X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
{ X86::FsMOVAPDrr, X86::MOVSDrm },
{ X86::FsMOVAPSrr, X86::MOVSSrm },
{ X86::IMUL16rri, X86::IMUL16rmi },
{ X86::IMUL16rri8, X86::IMUL16rmi8 },
{ X86::IMUL32rri, X86::IMUL32rmi },
{ X86::IMUL32rri8, X86::IMUL32rmi8 },
{ X86::IMUL64rri32, X86::IMUL64rmi32 },
{ X86::IMUL64rri8, X86::IMUL64rmi8 },
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm },
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm },
{ X86::Int_COMISDrr, X86::Int_COMISDrm },
{ X86::Int_COMISSrr, X86::Int_COMISSrm },
{ X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
{ X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
{ X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
{ X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
{ X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
{ X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
{ X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
{ X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
{ X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
{ X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
{ X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
{ X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
{ X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
{ X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
{ X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
{ X86::MOV16rr, X86::MOV16rm },
{ X86::MOV16to16_, X86::MOV16_rm },
{ X86::MOV32rr, X86::MOV32rm },
{ X86::MOV32to32_, X86::MOV32_rm },
{ X86::MOV64rr, X86::MOV64rm },
{ X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
{ X86::MOV64toSDrr, X86::MOV64toSDrm },
{ X86::MOV8rr, X86::MOV8rm },
{ X86::MOVAPDrr, X86::MOVAPDrm },
{ X86::MOVAPSrr, X86::MOVAPSrm },
{ X86::MOVDDUPrr, X86::MOVDDUPrm },
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
{ X86::MOVDI2SSrr, X86::MOVDI2SSrm },
{ X86::MOVDQArr, X86::MOVDQArm },
{ X86::MOVSD2PDrr, X86::MOVSD2PDrm },
{ X86::MOVSDrr, X86::MOVSDrm },
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm },
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm },
{ X86::MOVSS2PSrr, X86::MOVSS2PSrm },
{ X86::MOVSSrr, X86::MOVSSrm },
{ X86::MOVSX16rr8, X86::MOVSX16rm8 },
{ X86::MOVSX32rr16, X86::MOVSX32rm16 },
{ X86::MOVSX32rr8, X86::MOVSX32rm8 },
{ X86::MOVSX64rr16, X86::MOVSX64rm16 },
{ X86::MOVSX64rr32, X86::MOVSX64rm32 },
{ X86::MOVSX64rr8, X86::MOVSX64rm8 },
{ X86::MOVUPDrr, X86::MOVUPDrm },
{ X86::MOVUPSrr, X86::MOVUPSrm },
{ X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
{ X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
{ X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
{ X86::MOVZX16rr8, X86::MOVZX16rm8 },
{ X86::MOVZX32rr16, X86::MOVZX32rm16 },
{ X86::MOVZX32rr8, X86::MOVZX32rm8 },
{ X86::MOVZX64rr16, X86::MOVZX64rm16 },
{ X86::MOVZX64rr32, X86::MOVZX64rm32 },
{ X86::MOVZX64rr8, X86::MOVZX64rm8 },
{ X86::PSHUFDri, X86::PSHUFDmi },
{ X86::PSHUFHWri, X86::PSHUFHWmi },
{ X86::PSHUFLWri, X86::PSHUFLWmi },
{ X86::RCPPSr, X86::RCPPSm },
{ X86::RCPPSr_Int, X86::RCPPSm_Int },
{ X86::RSQRTPSr, X86::RSQRTPSm },
{ X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
{ X86::RSQRTSSr, X86::RSQRTSSm },
{ X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
{ X86::SQRTPDr, X86::SQRTPDm },
{ X86::SQRTPDr_Int, X86::SQRTPDm_Int },
{ X86::SQRTPSr, X86::SQRTPSm },
{ X86::SQRTPSr_Int, X86::SQRTPSm_Int },
{ X86::SQRTSDr, X86::SQRTSDm },
{ X86::SQRTSDr_Int, X86::SQRTSDm_Int },
{ X86::SQRTSSr, X86::SQRTSSm },
{ X86::SQRTSSr_Int, X86::SQRTSSm_Int },
{ X86::TEST16rr, X86::TEST16rm },
{ X86::TEST32rr, X86::TEST32rm },
{ X86::TEST64rr, X86::TEST64rm },
{ X86::TEST8rr, X86::TEST8rm },
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
{ X86::UCOMISDrr, X86::UCOMISDrm },
{ X86::UCOMISSrr, X86::UCOMISSrm }
};
for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
unsigned RegOp = OpTbl1[i][0];
unsigned MemOp = OpTbl1[i][1];
if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
MemOp)).second)
assert(false && "Duplicated entries?");
unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))).second)
AmbEntries.push_back(MemOp);
}
static const unsigned OpTbl2[][2] = {
{ X86::ADC32rr, X86::ADC32rm },
{ X86::ADC64rr, X86::ADC64rm },
{ X86::ADD16rr, X86::ADD16rm },
{ X86::ADD32rr, X86::ADD32rm },
{ X86::ADD64rr, X86::ADD64rm },
{ X86::ADD8rr, X86::ADD8rm },
{ X86::ADDPDrr, X86::ADDPDrm },
{ X86::ADDPSrr, X86::ADDPSrm },
{ X86::ADDSDrr, X86::ADDSDrm },
{ X86::ADDSSrr, X86::ADDSSrm },
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm },
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm },
{ X86::AND16rr, X86::AND16rm },
{ X86::AND32rr, X86::AND32rm },
{ X86::AND64rr, X86::AND64rm },
{ X86::AND8rr, X86::AND8rm },
{ X86::ANDNPDrr, X86::ANDNPDrm },
{ X86::ANDNPSrr, X86::ANDNPSrm },
{ X86::ANDPDrr, X86::ANDPDrm },
{ X86::ANDPSrr, X86::ANDPSrm },
{ X86::CMOVA16rr, X86::CMOVA16rm },
{ X86::CMOVA32rr, X86::CMOVA32rm },
{ X86::CMOVA64rr, X86::CMOVA64rm },
{ X86::CMOVAE16rr, X86::CMOVAE16rm },
{ X86::CMOVAE32rr, X86::CMOVAE32rm },
{ X86::CMOVAE64rr, X86::CMOVAE64rm },
{ X86::CMOVB16rr, X86::CMOVB16rm },
{ X86::CMOVB32rr, X86::CMOVB32rm },
{ X86::CMOVB64rr, X86::CMOVB64rm },
{ X86::CMOVBE16rr, X86::CMOVBE16rm },
{ X86::CMOVBE32rr, X86::CMOVBE32rm },
{ X86::CMOVBE64rr, X86::CMOVBE64rm },
{ X86::CMOVE16rr, X86::CMOVE16rm },
{ X86::CMOVE32rr, X86::CMOVE32rm },
{ X86::CMOVE64rr, X86::CMOVE64rm },
{ X86::CMOVG16rr, X86::CMOVG16rm },
{ X86::CMOVG32rr, X86::CMOVG32rm },
{ X86::CMOVG64rr, X86::CMOVG64rm },
{ X86::CMOVGE16rr, X86::CMOVGE16rm },
{ X86::CMOVGE32rr, X86::CMOVGE32rm },
{ X86::CMOVGE64rr, X86::CMOVGE64rm },
{ X86::CMOVL16rr, X86::CMOVL16rm },
{ X86::CMOVL32rr, X86::CMOVL32rm },
{ X86::CMOVL64rr, X86::CMOVL64rm },
{ X86::CMOVLE16rr, X86::CMOVLE16rm },
{ X86::CMOVLE32rr, X86::CMOVLE32rm },
{ X86::CMOVLE64rr, X86::CMOVLE64rm },
{ X86::CMOVNE16rr, X86::CMOVNE16rm },
{ X86::CMOVNE32rr, X86::CMOVNE32rm },
{ X86::CMOVNE64rr, X86::CMOVNE64rm },
{ X86::CMOVNO16rr, X86::CMOVNO16rm },
{ X86::CMOVNO32rr, X86::CMOVNO32rm },
{ X86::CMOVNO64rr, X86::CMOVNO64rm },
{ X86::CMOVNP16rr, X86::CMOVNP16rm },
{ X86::CMOVNP32rr, X86::CMOVNP32rm },
{ X86::CMOVNP64rr, X86::CMOVNP64rm },
{ X86::CMOVNS16rr, X86::CMOVNS16rm },
{ X86::CMOVNS32rr, X86::CMOVNS32rm },
{ X86::CMOVNS64rr, X86::CMOVNS64rm },
{ X86::CMOVO16rr, X86::CMOVO16rm },
{ X86::CMOVO32rr, X86::CMOVO32rm },
{ X86::CMOVO64rr, X86::CMOVO64rm },
{ X86::CMOVP16rr, X86::CMOVP16rm },
{ X86::CMOVP32rr, X86::CMOVP32rm },
{ X86::CMOVP64rr, X86::CMOVP64rm },
{ X86::CMOVS16rr, X86::CMOVS16rm },
{ X86::CMOVS32rr, X86::CMOVS32rm },
{ X86::CMOVS64rr, X86::CMOVS64rm },
{ X86::CMPPDrri, X86::CMPPDrmi },
{ X86::CMPPSrri, X86::CMPPSrmi },
{ X86::CMPSDrr, X86::CMPSDrm },
{ X86::CMPSSrr, X86::CMPSSrm },
{ X86::DIVPDrr, X86::DIVPDrm },
{ X86::DIVPSrr, X86::DIVPSrm },
{ X86::DIVSDrr, X86::DIVSDrm },
{ X86::DIVSSrr, X86::DIVSSrm },
{ X86::FsANDNPDrr, X86::FsANDNPDrm },
{ X86::FsANDNPSrr, X86::FsANDNPSrm },
{ X86::FsANDPDrr, X86::FsANDPDrm },
{ X86::FsANDPSrr, X86::FsANDPSrm },
{ X86::FsORPDrr, X86::FsORPDrm },
{ X86::FsORPSrr, X86::FsORPSrm },
{ X86::FsXORPDrr, X86::FsXORPDrm },
{ X86::FsXORPSrr, X86::FsXORPSrm },
{ X86::HADDPDrr, X86::HADDPDrm },
{ X86::HADDPSrr, X86::HADDPSrm },
{ X86::HSUBPDrr, X86::HSUBPDrm },
{ X86::HSUBPSrr, X86::HSUBPSrm },
{ X86::IMUL16rr, X86::IMUL16rm },
{ X86::IMUL32rr, X86::IMUL32rm },
{ X86::IMUL64rr, X86::IMUL64rm },
{ X86::MAXPDrr, X86::MAXPDrm },
{ X86::MAXPDrr_Int, X86::MAXPDrm_Int },
{ X86::MAXPSrr, X86::MAXPSrm },
{ X86::MAXPSrr_Int, X86::MAXPSrm_Int },
{ X86::MAXSDrr, X86::MAXSDrm },
{ X86::MAXSDrr_Int, X86::MAXSDrm_Int },
{ X86::MAXSSrr, X86::MAXSSrm },
{ X86::MAXSSrr_Int, X86::MAXSSrm_Int },
{ X86::MINPDrr, X86::MINPDrm },
{ X86::MINPDrr_Int, X86::MINPDrm_Int },
{ X86::MINPSrr, X86::MINPSrm },
{ X86::MINPSrr_Int, X86::MINPSrm_Int },
{ X86::MINSDrr, X86::MINSDrm },
{ X86::MINSDrr_Int, X86::MINSDrm_Int },
{ X86::MINSSrr, X86::MINSSrm },
{ X86::MINSSrr_Int, X86::MINSSrm_Int },
{ X86::MULPDrr, X86::MULPDrm },
{ X86::MULPSrr, X86::MULPSrm },
{ X86::MULSDrr, X86::MULSDrm },
{ X86::MULSSrr, X86::MULSSrm },
{ X86::OR16rr, X86::OR16rm },
{ X86::OR32rr, X86::OR32rm },
{ X86::OR64rr, X86::OR64rm },
{ X86::OR8rr, X86::OR8rm },
{ X86::ORPDrr, X86::ORPDrm },
{ X86::ORPSrr, X86::ORPSrm },
{ X86::PACKSSDWrr, X86::PACKSSDWrm },
{ X86::PACKSSWBrr, X86::PACKSSWBrm },
{ X86::PACKUSWBrr, X86::PACKUSWBrm },
{ X86::PADDBrr, X86::PADDBrm },
{ X86::PADDDrr, X86::PADDDrm },
{ X86::PADDQrr, X86::PADDQrm },
{ X86::PADDSBrr, X86::PADDSBrm },
{ X86::PADDSWrr, X86::PADDSWrm },
{ X86::PADDWrr, X86::PADDWrm },
{ X86::PANDNrr, X86::PANDNrm },
{ X86::PANDrr, X86::PANDrm },
{ X86::PAVGBrr, X86::PAVGBrm },
{ X86::PAVGWrr, X86::PAVGWrm },
{ X86::PCMPEQBrr, X86::PCMPEQBrm },
{ X86::PCMPEQDrr, X86::PCMPEQDrm },
{ X86::PCMPEQWrr, X86::PCMPEQWrm },
{ X86::PCMPGTBrr, X86::PCMPGTBrm },
{ X86::PCMPGTDrr, X86::PCMPGTDrm },
{ X86::PCMPGTWrr, X86::PCMPGTWrm },
{ X86::PINSRWrri, X86::PINSRWrmi },
{ X86::PMADDWDrr, X86::PMADDWDrm },
{ X86::PMAXSWrr, X86::PMAXSWrm },
{ X86::PMAXUBrr, X86::PMAXUBrm },
{ X86::PMINSWrr, X86::PMINSWrm },
{ X86::PMINUBrr, X86::PMINUBrm },
{ X86::PMULDQrr, X86::PMULDQrm },
{ X86::PMULHUWrr, X86::PMULHUWrm },
{ X86::PMULHWrr, X86::PMULHWrm },
{ X86::PMULLDrr, X86::PMULLDrm },
{ X86::PMULLDrr_int, X86::PMULLDrm_int },
{ X86::PMULLWrr, X86::PMULLWrm },
{ X86::PMULUDQrr, X86::PMULUDQrm },
{ X86::PORrr, X86::PORrm },
{ X86::PSADBWrr, X86::PSADBWrm },
{ X86::PSLLDrr, X86::PSLLDrm },
{ X86::PSLLQrr, X86::PSLLQrm },
{ X86::PSLLWrr, X86::PSLLWrm },
{ X86::PSRADrr, X86::PSRADrm },
{ X86::PSRAWrr, X86::PSRAWrm },
{ X86::PSRLDrr, X86::PSRLDrm },
{ X86::PSRLQrr, X86::PSRLQrm },
{ X86::PSRLWrr, X86::PSRLWrm },
{ X86::PSUBBrr, X86::PSUBBrm },
{ X86::PSUBDrr, X86::PSUBDrm },
{ X86::PSUBSBrr, X86::PSUBSBrm },
{ X86::PSUBSWrr, X86::PSUBSWrm },
{ X86::PSUBWrr, X86::PSUBWrm },
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
{ X86::PXORrr, X86::PXORrm },
{ X86::SBB32rr, X86::SBB32rm },
{ X86::SBB64rr, X86::SBB64rm },
{ X86::SHUFPDrri, X86::SHUFPDrmi },
{ X86::SHUFPSrri, X86::SHUFPSrmi },
{ X86::SUB16rr, X86::SUB16rm },
{ X86::SUB32rr, X86::SUB32rm },
{ X86::SUB64rr, X86::SUB64rm },
{ X86::SUB8rr, X86::SUB8rm },
{ X86::SUBPDrr, X86::SUBPDrm },
{ X86::SUBPSrr, X86::SUBPSrm },
{ X86::SUBSDrr, X86::SUBSDrm },
{ X86::SUBSSrr, X86::SUBSSrm },
// FIXME: TEST*rr -> swapped operand of TEST*mr.
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm },
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm },
{ X86::XOR16rr, X86::XOR16rm },
{ X86::XOR32rr, X86::XOR32rm },
{ X86::XOR64rr, X86::XOR64rm },
{ X86::XOR8rr, X86::XOR8rm },
{ X86::XORPDrr, X86::XORPDrm },
{ X86::XORPSrr, X86::XORPSrm }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
unsigned RegOp = OpTbl2[i][0];
unsigned MemOp = OpTbl2[i][1];
if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
MemOp)).second)
assert(false && "Duplicated entries?");
unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))).second)
AmbEntries.push_back(MemOp);
}
// Remove ambiguous entries.
assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
}
bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
unsigned& sourceReg,
unsigned& destReg) const {
switch (MI.getOpcode()) {
default:
return false;
case X86::MOV8rr:
case X86::MOV16rr:
case X86::MOV32rr:
case X86::MOV64rr:
case X86::MOV16to16_:
case X86::MOV32to32_:
case X86::MOVSSrr:
case X86::MOVSDrr:
// FP Stack register class copies
case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
case X86::MOV_Fp3264: case X86::MOV_Fp3280:
case X86::MOV_Fp6432: case X86::MOV_Fp8032:
case X86::FsMOVAPSrr:
case X86::FsMOVAPDrr:
case X86::MOVAPSrr:
case X86::MOVAPDrr:
case X86::MOVDQArr:
case X86::MOVSS2PSrr:
case X86::MOVSD2PDrr:
case X86::MOVPS2SSrr:
case X86::MOVPD2SDrr:
case X86::MMX_MOVD64rr:
case X86::MMX_MOVQ64rr:
assert(MI.getNumOperands() >= 2 &&
MI.getOperand(0).isReg() &&
MI.getOperand(1).isReg() &&
"invalid register-register move instruction");
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
}
}
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV16_rm:
case X86::MOV32rm:
case X86::MOV32_rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
MI->getOperand(2).getImm() == 1 &&
MI->getOperand(3).getReg() == 0 &&
MI->getOperand(4).getImm() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8mr:
case X86::MOV16mr:
case X86::MOV16_mr:
case X86::MOV32mr:
case X86::MOV32_mr:
case X86::MOV64mr:
case X86::ST_FpP64m:
case X86::MOVSSmr:
case X86::MOVSDmr:
case X86::MOVAPSmr:
case X86::MOVAPDmr:
case X86::MOVDQAmr:
case X86::MMX_MOVD64mr:
case X86::MMX_MOVQ64mr:
case X86::MMX_MOVNTQmr:
if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
MI->getOperand(1).getImm() == 1 &&
MI->getOperand(2).getReg() == 0 &&
MI->getOperand(3).getImm() == 0) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(4).getReg();
}
break;
}
return 0;
}
/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
/// X86::MOVPC32r.
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
bool isPICBase = false;
for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
E = MRI.def_end(); I != E; ++I) {
MachineInstr *DefMI = I.getOperand().getParent();
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
/// isGVStub - Return true if the GV requires an extra load to get the
/// real address.
static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
}
bool
X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV16_rm:
case X86::MOV32rm:
case X86::MOV32_rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm: {
// Loads from constant pools are trivially rematerializable.
if (MI->getOperand(1).isReg() &&
MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
(MI->getOperand(4).isCPI() ||
(MI->getOperand(4).isGlobal() &&
isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == 0)
return true;
// Allow re-materialization of PIC load.
if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
return false;
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
bool isPICBase = false;
for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
E = MRI.def_end(); I != E; ++I) {
MachineInstr *DefMI = I.getOperand().getParent();
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
return false;
}
case X86::LEA32r:
case X86::LEA64r: {
if (MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
!MI->getOperand(4).isReg()) {
// lea fi#, lea GV, etc. are all rematerializable.
if (!MI->getOperand(1).isReg())
return true;
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == 0)
return true;
// Allow re-materialization of lea PICBase + x.
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
}
// All other instructions marked M_REMATERIALIZABLE are always trivially
// rematerializable.
return true;
}
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
/// would clobber the EFLAGS condition register. Note the result may be
/// conservative. If it cannot definitely determine the safety after visiting
/// two instructions it assumes it's not safe.
static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
// It's always safe to clobber EFLAGS at the end of a block.
if (I == MBB.end())
return true;
// For compile time consideration, if we are not able to determine the
// safety after visiting 2 instructions, we will assume it's not safe.
for (unsigned i = 0; i < 2; ++i) {
bool SeenDef = false;
for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
MachineOperand &MO = I->getOperand(j);
if (!MO.isReg())
continue;
if (MO.getReg() == X86::EFLAGS) {
if (MO.isUse())
return false;
SeenDef = true;
}
}
if (SeenDef)
// This instruction defines EFLAGS, no need to look any further.
return true;
++I;
// If we make it to the end of the block, it's safe to clobber EFLAGS.
if (I == MBB.end())
return true;
}
// Conservative answer.
return false;
}
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg,
const MachineInstr *Orig) const {
unsigned SubIdx = Orig->getOperand(0).isReg()
? Orig->getOperand(0).getSubReg() : 0;
bool ChangeSubIdx = SubIdx != 0;
if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
DestReg = RI.getSubReg(DestReg, SubIdx);
SubIdx = 0;
}
// MOV32r0 etc. are implemented with xor which clobbers condition code.
// Re-materialize them as movri instructions to avoid side effects.
bool Emitted = false;
switch (Orig->getOpcode()) {
default: break;
case X86::MOV8r0:
case X86::MOV16r0:
case X86::MOV32r0:
case X86::MOV64r0: {
if (!isSafeToClobberEFLAGS(MBB, I)) {
unsigned Opc = 0;
switch (Orig->getOpcode()) {
default: break;
case X86::MOV8r0: Opc = X86::MOV8ri; break;
case X86::MOV16r0: Opc = X86::MOV16ri; break;
case X86::MOV32r0: Opc = X86::MOV32ri; break;
case X86::MOV64r0: Opc = X86::MOV64ri32; break;
}
BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
Emitted = true;
}
break;
}
}
if (!Emitted) {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
MI->getOperand(0).setReg(DestReg);
MBB.insert(I, MI);
}
if (ChangeSubIdx) {
MachineInstr *NewMI = prior(I);
NewMI->getOperand(0).setSubReg(SubIdx);
}
}
/// isInvariantLoad - Return true if the specified instruction (which is marked
/// mayLoad) is loading from a location whose value is invariant across the
/// function. For example, loading a value from the constant pool or from
/// from the argument area of a function if it does not change. This should
/// only return true of *all* loads the instruction does are invariant (if it
/// does multiple loads).
bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
// This code cares about loads from three cases: constant pool entries,
// invariant argument slots, and global stubs. In order to handle these cases
// for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
// operand and base our analysis on it. This is safe because the address of
// none of these three cases is ever used as anything other than a load base
// and X86 doesn't have any instructions that load from multiple places.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
// Loads from constant pools are trivially invariant.
if (MO.isCPI())
return true;
if (MO.isGlobal())
return isGVStub(MO.getGlobal(), TM);
// If this is a load from an invariant stack slot, the load is a constant.
if (MO.isFI()) {
const MachineFrameInfo &MFI =
*MI->getParent()->getParent()->getFrameInfo();
int Idx = MO.getIndex();
return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
}
}
// All other instances of these instructions are presumed to have other
// issues.
return false;
}
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
/// is not marked dead.
static bool hasLiveCondCodeDef(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
return true;
}
}
return false;
}
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
MachineInstr *MI = MBBI;
MachineFunction &MF = *MI->getParent()->getParent();
// All instructions input are two-addr instructions. Get the known operands.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
bool isDead = MI->getOperand(0).isDead();
bool isKill = MI->getOperand(1).isKill();
MachineInstr *NewMI = NULL;
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
// we have better subtarget support, enable the 16-bit LEA generation here.
bool DisableLEA16 = true;
unsigned MIOpc = MI->getOpcode();
switch (MIOpc) {
case X86::SHUFPSrri: {
assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
unsigned B = MI->getOperand(1).getReg();
unsigned C = MI->getOperand(2).getReg();
if (B != C) return 0;
unsigned A = MI->getOperand(0).getReg();
unsigned M = MI->getOperand(3).getImm();
NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
.addReg(B, false, false, isKill).addImm(M);
break;
}
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
.addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
break;
}
case X86::SHL32ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
X86::LEA64_32r : X86::LEA32r;
NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
.addReg(0).addImm(1 << ShAmt)
.addReg(Src, false, false, isKill).addImm(0);
break;
}
case X86::SHL16ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
if (DisableLEA16) {
// If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
? X86::LEA64_32r : X86::LEA32r;
unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
.addReg(leaInReg).addReg(Src, false, false, isKill)
.addImm(X86::SUBREG_16BIT);
NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
.addReg(leaInReg, false, false, true).addImm(0);
MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
.addReg(Dest, true, false, false, isDead)
.addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
if (LV) {
// Update live variables
LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
if (isKill)
LV->replaceKillInstruction(Src, MI, InsMI);
if (isDead)
LV->replaceKillInstruction(Dest, MI, ExtMI);
}
return ExtMI;
} else {
NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
.addReg(0).addImm(1 << ShAmt)
.addReg(Src, false, false, isKill).addImm(0);
}
break;
}
default: {
// The following opcodes also sets the condition code register(s). Only
// convert them to equivalent lea if the condition code register def's
// are dead!
if (hasLiveCondCodeDef(MI))
return 0;
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
switch (MIOpc) {
default: return 0;
case X86::INC64r:
case X86::INC32r:
case X86::INC64_32r: {
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
NewMI = addRegOffset(BuildMI(MF, get(Opc))
.addReg(Dest, true, false, false, isDead),
Src, isKill, 1);
break;
}
case X86::INC16r:
case X86::INC64_16r:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
.addReg(Dest, true, false, false, isDead),
Src, isKill, 1);
break;
case X86::DEC64r:
case X86::DEC32r:
case X86::DEC64_32r: {
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
NewMI = addRegOffset(BuildMI(MF, get(Opc))
.addReg(Dest, true, false, false, isDead),
Src, isKill, -1);
break;
}
case X86::DEC16r:
case X86::DEC64_16r:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
.addReg(Dest, true, false, false, isDead),
Src, isKill, -1);
break;
case X86::ADD64rr:
case X86::ADD32rr: {
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
NewMI = addRegReg(BuildMI(MF, get(Opc))
.addReg(Dest, true, false, false, isDead),
Src, isKill, Src2, isKill2);
if (LV && isKill2)
LV->replaceKillInstruction(Src2, MI, NewMI);
break;
}
case X86::ADD16rr: {
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
.addReg(Dest, true, false, false, isDead),
Src, isKill, Src2, isKill2);
if (LV && isKill2)
LV->replaceKillInstruction(Src2, MI, NewMI);
break;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
if (MI->getOperand(2).isImm())
NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
.addReg(Dest, true, false, false, isDead),
Src, isKill, MI->getOperand(2).getImm());
break;
case X86::ADD32ri:
case X86::ADD32ri8:
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
if (MI->getOperand(2).isImm()) {
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
NewMI = addRegOffset(BuildMI(MF, get(Opc))
.addReg(Dest, true, false, false, isDead),
Src, isKill, MI->getOperand(2).getImm());
}
break;
case X86::ADD16ri:
case X86::ADD16ri8:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
if (MI->getOperand(2).isImm())
NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
.addReg(Dest, true, false, false, isDead),
Src, isKill, MI->getOperand(2).getImm());
break;
case X86::SHL16ri:
if (DisableLEA16) return 0;
case X86::SHL32ri:
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
"Unknown shl instruction!");
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
X86AddressMode AM;
AM.Scale = 1 << ShAmt;
AM.IndexReg = Src;
unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
: (MIOpc == X86::SHL32ri
? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
NewMI = addFullAddress(BuildMI(MF, get(Opc))
.addReg(Dest, true, false, false, isDead), AM);
if (isKill)
NewMI->getOperand(3).setIsKill(true);
}
break;
}
}
}
}
if (!NewMI) return 0;
if (LV) { // Update live variables
if (isKill)
LV->replaceKillInstruction(Src, MI, NewMI);
if (isDead)
LV->replaceKillInstruction(Dest, MI, NewMI);
}
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
MachineInstr *
X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
switch (MI->getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
unsigned Opc;
unsigned Size;
switch (MI->getOpcode()) {
default: assert(0 && "Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
}
unsigned Amt = MI->getOperand(3).getImm();
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->setDesc(get(Opc));
MI->getOperand(3).setImm(Size-Amt);
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
}
case X86::CMOVB16rr:
case X86::CMOVB32rr:
case X86::CMOVB64rr:
case X86::CMOVAE16rr:
case X86::CMOVAE32rr:
case X86::CMOVAE64rr:
case X86::CMOVE16rr:
case X86::CMOVE32rr:
case X86::CMOVE64rr:
case X86::CMOVNE16rr:
case X86::CMOVNE32rr:
case X86::CMOVNE64rr:
case X86::CMOVBE16rr:
case X86::CMOVBE32rr:
case X86::CMOVBE64rr:
case X86::CMOVA16rr:
case X86::CMOVA32rr:
case X86::CMOVA64rr:
case X86::CMOVL16rr:
case X86::CMOVL32rr:
case X86::CMOVL64rr:
case X86::CMOVGE16rr:
case X86::CMOVGE32rr:
case X86::CMOVGE64rr:
case X86::CMOVLE16rr:
case X86::CMOVLE32rr:
case X86::CMOVLE64rr:
case X86::CMOVG16rr:
case X86::CMOVG32rr:
case X86::CMOVG64rr:
case X86::CMOVS16rr:
case X86::CMOVS32rr:
case X86::CMOVS64rr:
case X86::CMOVNS16rr:
case X86::CMOVNS32rr:
case X86::CMOVNS64rr:
case X86::CMOVP16rr:
case X86::CMOVP32rr:
case X86::CMOVP64rr:
case X86::CMOVNP16rr:
case X86::CMOVNP32rr:
case X86::CMOVNP64rr:
case X86::CMOVO16rr:
case X86::CMOVO32rr:
case X86::CMOVO64rr:
case X86::CMOVNO16rr:
case X86::CMOVNO32rr:
case X86::CMOVNO64rr: {
unsigned Opc = 0;
switch (MI->getOpcode()) {
default: break;
case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
}
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->setDesc(get(Opc));
// Fallthrough intended.
}
default:
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
}
}
static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
case X86::JE: return X86::COND_E;
case X86::JNE: return X86::COND_NE;
case X86::JL: return X86::COND_L;
case X86::JLE: return X86::COND_LE;
case X86::JG: return X86::COND_G;
case X86::JGE: return X86::COND_GE;
case X86::JB: return X86::COND_B;
case X86::JBE: return X86::COND_BE;
case X86::JA: return X86::COND_A;
case X86::JAE: return X86::COND_AE;
case X86::JS: return X86::COND_S;
case X86::JNS: return X86::COND_NS;
case X86::JP: return X86::COND_P;
case X86::JNP: return X86::COND_NP;
case X86::JO: return X86::COND_O;
case X86::JNO: return X86::COND_NO;
}
}
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
default: assert(0 && "Illegal condition code!");
case X86::COND_E: return X86::JE;
case X86::COND_NE: return X86::JNE;
case X86::COND_L: return X86::JL;
case X86::COND_LE: return X86::JLE;
case X86::COND_G: return X86::JG;
case X86::COND_GE: return X86::JGE;
case X86::COND_B: return X86::JB;
case X86::COND_BE: return X86::JBE;
case X86::COND_A: return X86::JA;
case X86::COND_AE: return X86::JAE;
case X86::COND_S: return X86::JS;
case X86::COND_NS: return X86::JNS;
case X86::COND_P: return X86::JP;
case X86::COND_NP: return X86::JNP;
case X86::COND_O: return X86::JO;
case X86::COND_NO: return X86::JNO;
}
}
/// GetOppositeBranchCondition - Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
default: assert(0 && "Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
case X86::COND_LE: return X86::COND_G;
case X86::COND_G: return X86::COND_LE;
case X86::COND_GE: return X86::COND_L;
case X86::COND_B: return X86::COND_AE;
case X86::COND_BE: return X86::COND_A;
case X86::COND_A: return X86::COND_BE;
case X86::COND_AE: return X86::COND_B;
case X86::COND_S: return X86::COND_NS;
case X86::COND_NS: return X86::COND_S;
case X86::COND_P: return X86::COND_NP;
case X86::COND_NP: return X86::COND_P;
case X86::COND_O: return X86::COND_NO;
case X86::COND_NO: return X86::COND_O;
}
}
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.isTerminator()) return false;
// Conditional branch is a special case.
if (TID.isBranch() && !TID.isBarrier())
return true;
if (!TID.isPredicable())
return true;
return !isPredicated(MI);
}
// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
const X86InstrInfo &TII) {
if (MI->getOpcode() == X86::FP_REG_KILL)
return false;
return TII.isUnpredicatedTerminator(MI);
}
bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isBrAnalysisUnpredicatedTerminator(I, *this))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!I->getDesc().isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == X86::JMP) {
// If the block has any instructions after a JMP, delete them.
while (next(I) != MBB.end())
next(I)->eraseFromParent();
Cond.clear();
FBB = 0;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = 0;
I->eraseFromParent();
I = MBB.end();
continue;
}
// TBB is used to indicate the unconditinal destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case
// where all conditional branches branch to the same destination
// and their condition opcodes fit one of the special
// multi-branch idioms.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to
// the same destination.
if (TBB != I->getOperand(0).getMBB())
return true;
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
// If the conditions are the same, we can leave them alone.
if (OldBranchCode == BranchCode)
continue;
// If they differ, see if they fit one of the known patterns.
// Theoretically we could handle more patterns here, but
// we shouldn't expect to see them if instruction selection
// has done a reasonable job.
if ((OldBranchCode == X86::COND_NP &&
BranchCode == X86::COND_E) ||
(OldBranchCode == X86::COND_E &&
BranchCode == X86::COND_NP))
BranchCode = X86::COND_NP_OR_E;
else if ((OldBranchCode == X86::COND_P &&
BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_NE &&
BranchCode == X86::COND_P))
BranchCode = X86::COND_NE_OR_P;
else
return true;
// Update the MachineOperand.
Cond[0].setImm(BranchCode);
}
return false;
}
unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->getOpcode() != X86::JMP &&
GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
const MachineOperand &MO) {
if (MO.isReg())
MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
MO.isKill(), MO.isDead(), MO.getSubReg());
else if (MO.isImm())
MIB = MIB.addImm(MO.getImm());
else if (MO.isFI())
MIB = MIB.addFrameIndex(MO.getIndex());
else if (MO.isGlobal())
MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
else if (MO.isCPI())
MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
else if (MO.isJTI())
MIB = MIB.addJumpTableIndex(MO.getIndex());
else if (MO.isSymbol())
MIB = MIB.addExternalSymbol(MO.getSymbolName());
else
assert(0 && "Unknown operand for X86InstrAddOperand!");
return MIB;
}
unsigned
X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"X86 branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
switch (CC) {
case X86::COND_NP_OR_E:
// Synthesize NP_OR_E with two branches.
BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
++Count;
BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
++Count;
break;
case X86::COND_NE_OR_P:
// Synthesize NE_OR_P with two branches.
BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
++Count;
BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
++Count;
break;
default: {
unsigned Opc = GetCondBranchFromCond(CC);
BuildMI(&MBB, get(Opc)).addMBB(TBB);
++Count;
}
}
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
++Count;
}
return Count;
}
bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC) const {
if (DestRC == SrcRC) {
unsigned Opc;
if (DestRC == &X86::GR64RegClass) {
Opc = X86::MOV64rr;
} else if (DestRC == &X86::GR32RegClass) {
Opc = X86::MOV32rr;
} else if (DestRC == &X86::GR16RegClass) {
Opc = X86::MOV16rr;
} else if (DestRC == &X86::GR8RegClass) {
Opc = X86::MOV8rr;
} else if (DestRC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rr;
} else if (DestRC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rr;
} else if (DestRC == &X86::RFP32RegClass) {
Opc = X86::MOV_Fp3232;
} else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
Opc = X86::MOV_Fp6464;
} else if (DestRC == &X86::RFP80RegClass) {
Opc = X86::MOV_Fp8080;
} else if (DestRC == &X86::FR32RegClass) {
Opc = X86::FsMOVAPSrr;
} else if (DestRC == &X86::FR64RegClass) {
Opc = X86::FsMOVAPDrr;
} else if (DestRC == &X86::VR128RegClass) {
Opc = X86::MOVAPSrr;
} else if (DestRC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rr;
} else {
return false;
}
BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
return true;
}
// Moving EFLAGS to / from another register requires a push and a pop.
if (SrcRC == &X86::CCRRegClass) {
if (SrcReg != X86::EFLAGS)
return false;
if (DestRC == &X86::GR64RegClass) {
BuildMI(MBB, MI, get(X86::PUSHFQ));
BuildMI(MBB, MI, get(X86::POP64r), DestReg);
return true;
} else if (DestRC == &X86::GR32RegClass) {
BuildMI(MBB, MI, get(X86::PUSHFD));
BuildMI(MBB, MI, get(X86::POP32r), DestReg);
return true;
}
} else if (DestRC == &X86::CCRRegClass) {
if (DestReg != X86::EFLAGS)
return false;
if (SrcRC == &X86::GR64RegClass) {
BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
BuildMI(MBB, MI, get(X86::POPFQ));
return true;
} else if (SrcRC == &X86::GR32RegClass) {
BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
BuildMI(MBB, MI, get(X86::POPFD));
return true;
}
}
// Moving from ST(0) turns into FpGET_ST0_32 etc.
if (SrcRC == &X86::RSTRegClass) {
// Copying from ST(0)/ST(1).
if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
// Can only copy from ST(0)/ST(1) right now
return false;
bool isST0 = SrcReg == X86::ST0;
unsigned Opc;
if (DestRC == &X86::RFP32RegClass)
Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
else if (DestRC == &X86::RFP64RegClass)
Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
else {
if (DestRC != &X86::RFP80RegClass)
return false;
Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
}
BuildMI(MBB, MI, get(Opc), DestReg);
return true;
}
// Moving to ST(0) turns into FpSET_ST0_32 etc.
if (DestRC == &X86::RSTRegClass) {
// Copying to ST(0). FIXME: handle ST(1) also
if (DestReg != X86::ST0)
// Can only copy to TOS right now
return false;
unsigned Opc;
if (SrcRC == &X86::RFP32RegClass)
Opc = X86::FpSET_ST0_32;
else if (SrcRC == &X86::RFP64RegClass)
Opc = X86::FpSET_ST0_64;
else {
if (SrcRC != &X86::RFP80RegClass)
return false;
Opc = X86::FpSET_ST0_80;
}
BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
return true;
}
// Not yet supported!
return false;
}
static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
bool isStackAligned) {
unsigned Opc = 0;
if (RC == &X86::GR64RegClass) {
Opc = X86::MOV64mr;
} else if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32mr;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16mr;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8mr;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_mr;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_mr;
} else if (RC == &X86::RFP80RegClass) {
Opc = X86::ST_FpP80m; // pops
} else if (RC == &X86::RFP64RegClass) {
Opc = X86::ST_Fp64m;
} else if (RC == &X86::RFP32RegClass) {
Opc = X86::ST_Fp32m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSmr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDmr;
} else if (RC == &X86::VR128RegClass) {
// If stack is realigned we can use aligned stores.
Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64mr;
} else {
assert(0 && "Unknown regclass");
abort();
}
return Opc;
}
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC) const {
const MachineFunction &MF = *MBB.getParent();
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
unsigned Opc = getStoreRegOpcode(RC, isAligned);
addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
.addReg(SrcReg, false, false, isKill);
}
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
unsigned Opc = getStoreRegOpcode(RC, isAligned);
MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, Addr[i]);
MIB.addReg(SrcReg, false, false, isKill);
NewMIs.push_back(MIB);
}
static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
bool isStackAligned) {
unsigned Opc = 0;
if (RC == &X86::GR64RegClass) {
Opc = X86::MOV64rm;
} else if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32rm;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16rm;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8rm;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rm;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rm;
} else if (RC == &X86::RFP80RegClass) {
Opc = X86::LD_Fp80m;
} else if (RC == &X86::RFP64RegClass) {
Opc = X86::LD_Fp64m;
} else if (RC == &X86::RFP32RegClass) {
Opc = X86::LD_Fp32m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSrm;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDrm;
} else if (RC == &X86::VR128RegClass) {
// If stack is realigned we can use aligned loads.
Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rm;
} else {
assert(0 && "Unknown regclass");
abort();
}
return Opc;
}
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC) const{
const MachineFunction &MF = *MBB.getParent();
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
unsigned Opc = getLoadRegOpcode(RC, isAligned);
addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
}
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
unsigned Opc = getLoadRegOpcode(RC, isAligned);
MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, Addr[i]);
NewMIs.push_back(MIB);
}
bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
if (CSI.empty())
return false;
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
unsigned SlotSize = is64Bit ? 8 : 4;
MachineFunction &MF = *MBB.getParent();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
BuildMI(MBB, MI, get(Opc))
.addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
}
return true;
}
bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
if (CSI.empty())
return false;
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
BuildMI(MBB, MI, get(Opc), Reg);
}
return true;
}
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
const SmallVectorImpl<MachineOperand> &MOs,
MachineInstr *MI, const TargetInstrInfo &TII) {
// Create the base instruction with the memory operand as the first part.
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
MachineInstrBuilder MIB(NewMI);
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB = X86InstrAddOperand(MIB, MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
MIB.addImm(1).addReg(0).addImm(0);
// Loop over the rest of the ri operands, converting them over.
unsigned NumOps = MI->getDesc().getNumOperands()-2;
for (unsigned i = 0; i != NumOps; ++i) {
MachineOperand &MO = MI->getOperand(i+2);
MIB = X86InstrAddOperand(MIB, MO);
}
for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
MIB = X86InstrAddOperand(MIB, MO);
}
return MIB;
}
static MachineInstr *FuseInst(MachineFunction &MF,
unsigned Opcode, unsigned OpNo,
const SmallVectorImpl<MachineOperand> &MOs,
MachineInstr *MI, const TargetInstrInfo &TII) {
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
MachineInstrBuilder MIB(NewMI);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (i == OpNo) {
assert(MO.isReg() && "Expected to fold into reg operand!");
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB = X86InstrAddOperand(MIB, MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
MIB.addImm(1).addReg(0).addImm(0);
} else {
MIB = X86InstrAddOperand(MIB, MO);
}
}
return MIB;
}
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
const SmallVectorImpl<MachineOperand> &MOs,
MachineInstr *MI) {
MachineFunction &MF = *MI->getParent()->getParent();
MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB = X86InstrAddOperand(MIB, MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
MIB.addImm(1).addReg(0).addImm(0);
return MIB.addImm(0);
}
MachineInstr*
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI, unsigned i,
const SmallVectorImpl<MachineOperand> &MOs) const{
const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
bool isTwoAddrFold = false;
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
MachineInstr *NewMI = NULL;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && i < 2 &&
MI->getOperand(0).isReg() &&
MI->getOperand(1).isReg() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
isTwoAddrFold = true;
} else if (i == 0) { // If operand 0
if (MI->getOpcode() == X86::MOV16r0)
NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV32r0)
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV64r0)
NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
else if (MI->getOpcode() == X86::MOV8r0)
NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
if (NewMI)
return NewMI;
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (i == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (i == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
// If table selected...
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned*, unsigned>::iterator I =
OpcodeTablePtr->find((unsigned*)MI->getOpcode());
if (I != OpcodeTablePtr->end()) {
if (isTwoAddrFold)
NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
else
NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
return NewMI;
}
}
// No fusion
if (PrintFailedFusing)
cerr << "We failed to fuse operand " << i << " in " << *MI;
return NULL;
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
// Check switch flag
if (NoFusing) return NULL;
const MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
// FIXME: Move alignment requirement into tables?
if (Alignment < 16) {
switch (MI->getOpcode()) {
default: break;
// Not always safe to fold movsd into these instructions since their load
// folding variants expects the address to be 16 byte aligned.
case X86::FsANDNPDrr:
case X86::FsANDNPSrr:
case X86::FsANDPDrr:
case X86::FsANDPSrr:
case X86::FsORPDrr:
case X86::FsORPSrr:
case X86::FsXORPDrr:
case X86::FsXORPSrr:
return NULL;
}
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
default: return NULL;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
}
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return NULL;
SmallVector<MachineOperand,4> MOs;
MOs.push_back(MachineOperand::CreateFI(FrameIndex));
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const {
// Check switch flag
if (NoFusing) return NULL;
// Determine the alignment of the load.
unsigned Alignment = 0;
if (LoadMI->hasOneMemOperand())
Alignment = LoadMI->memoperands_begin()->getAlignment();
// FIXME: Move alignment requirement into tables?
if (Alignment < 16) {
switch (MI->getOpcode()) {
default: break;
// Not always safe to fold movsd into these instructions since their load
// folding variants expects the address to be 16 byte aligned.
case X86::FsANDNPDrr:
case X86::FsANDNPSrr:
case X86::FsANDPDrr:
case X86::FsANDPSrr:
case X86::FsORPDrr:
case X86::FsORPSrr:
case X86::FsXORPDrr:
case X86::FsXORPSrr:
return NULL;
}
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
default: return NULL;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
}
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return NULL;
SmallVector<MachineOperand,4> MOs;
if (LoadMI->getOpcode() == X86::V_SET0 ||
LoadMI->getOpcode() == X86::V_SETALLONES) {
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
if (TM.getRelocationModel() == Reloc::PIC_ &&
!TM.getSubtarget<X86Subtarget>().is64Bit())
// FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
// This doesn't work for several reasons.
// 1. GlobalBaseReg may have been spilled.
// 2. It may not be live at MI.
return false;
// Create a v4i32 constant-pool entry.
MachineConstantPool &MCP = *MF.getConstantPool();
const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
ConstantVector::getNullValue(Ty) :
ConstantVector::getAllOnesValue(Ty);
unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
// Create operands to load from the constant pool entry.
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
MOs.push_back(MachineOperand::CreateImm(1));
MOs.push_back(MachineOperand::CreateReg(0, false));
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
} else {
// Folding a normal load. Just copy the load's address operands.
unsigned NumOps = LoadMI->getDesc().getNumOperands();
for (unsigned i = NumOps - 4; i != NumOps; ++i)
MOs.push_back(LoadMI->getOperand(i));
}
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
}
bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const {
// Check switch flag
if (NoFusing) return 0;
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
switch (MI->getOpcode()) {
default: return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
return true;
}
}
if (Ops.size() != 1)
return false;
unsigned OpNum = Ops[0];
unsigned Opc = MI->getOpcode();
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
} else if (OpNum == 0) { // If operand 0
switch (Opc) {
case X86::MOV16r0:
case X86::MOV32r0:
case X86::MOV64r0:
case X86::MOV8r0:
return true;
default: break;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned*, unsigned>::iterator I =
OpcodeTablePtr->find((unsigned*)Opc);
if (I != OpcodeTablePtr->end())
return true;
}
return false;
}
bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const TargetInstrDesc &TID = get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
SmallVector<MachineOperand,4> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (i >= Index && i < Index+4)
AddrOps.push_back(Op);
else if (Op.isReg() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load instruction.
if (UnfoldLoad) {
loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 5; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isReg())
MO.setIsKill(false);
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
MachineInstrBuilder MIB(DataMI);
if (FoldedStore)
MIB.addReg(Reg, true);
for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
if (FoldedLoad)
MIB.addReg(Reg);
for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, AfterOps[i]);
for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
MachineOperand &MO = ImpOps[i];
MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
}
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
unsigned NewOpc = 0;
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP32ri:
case X86::CMP16ri:
case X86::CMP8ri: {
MachineOperand &MO0 = DataMI->getOperand(0);
MachineOperand &MO1 = DataMI->getOperand(1);
if (MO1.getImm() == 0) {
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
}
DataMI->setDesc(get(NewOpc));
MO1.ChangeToRegister(MO0.getReg(), false);
}
}
}
NewMIs.push_back(DataMI);
// Emit the store instruction.
if (UnfoldStore) {
const TargetOperandInfo &DstTOI = TID.OpInfo[0];
const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
}
return true;
}
bool
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isMachineOpcode())
return false;
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
const TargetInstrDesc &TID = get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
std::vector<SDValue> AddrOps;
std::vector<SDValue> BeforeOps;
std::vector<SDValue> AfterOps;
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDValue Op = N->getOperand(i);
if (i >= Index && i < Index+4)
AddrOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
SDValue Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = 0;
const MachineFunction &MF = DAG.getMachineFunction();
if (FoldedLoad) {
MVT VT = *RC->vt_begin();
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
VT, MVT::Other,
&AddrOps[0], AddrOps.size());
NewNodes.push_back(Load);
}
// Emit the data processing instruction.
std::vector<MVT> VTs;
const TargetRegisterClass *DstRC = 0;
if (TID.getNumDefs() > 0) {
const TargetOperandInfo &DstTOI = TID.OpInfo[0];
DstRC = DstTOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDValue(Load, 0));
std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDValue(NewNode, 0));
AddrOps.push_back(Chain);
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
MVT::Other, &AddrOps[0], AddrOps.size());
NewNodes.push_back(Store);
}
return true;
}
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore) const {
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)Opc);
if (I == MemOp2RegOpTable.end())
return 0;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
return I->second.first;
}
bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
if (MBB.empty()) return false;
switch (MBB.back().getOpcode()) {
case X86::TCRETURNri:
case X86::TCRETURNdi:
case X86::RET: // Return.
case X86::RETI:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm:
case X86::JMP: // Uncond branch.
case X86::JMP32r: // Indirect branch.
case X86::JMP64r: // Indirect branch (64-bit).
case X86::JMP32m: // Indirect branch through mem.
case X86::JMP64m: // Indirect branch through mem (64-bit).
return true;
default: return false;
}
}
bool X86InstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
return true;
Cond[0].setImm(GetOppositeBranchCondition(CC));
return false;
}
bool X86InstrInfo::
IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
// FIXME: Ignore bariers of x87 stack registers for now. We can't
// allow any loads of these registers before FpGet_ST0_80.
return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
}
const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
if (Subtarget->is64Bit())
return &X86::GR64RegClass;
else
return &X86::GR32RegClass;
}
unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
switch (Desc->TSFlags & X86II::ImmMask) {
case X86II::Imm8: return 1;
case X86II::Imm16: return 2;
case X86II::Imm32: return 4;
case X86II::Imm64: return 8;
default: assert(0 && "Immediate size not set!");
return 0;
}
}
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
/// e.g. r8, xmm8, etc.
bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
if (!MO.isReg()) return false;
switch (MO.getReg()) {
default: break;
case X86::R8: case X86::R9: case X86::R10: case X86::R11:
case X86::R12: case X86::R13: case X86::R14: case X86::R15:
case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
return true;
}
return false;
}
/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
unsigned REX = 0;
const TargetInstrDesc &Desc = MI.getDesc();
// Pseudo instructions do not need REX prefix byte.
if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
return 0;
if (Desc.TSFlags & X86II::REX_W)
REX |= 1 << 3;
unsigned NumOps = Desc.getNumOperands();
if (NumOps) {
bool isTwoAddr = NumOps > 1 &&
Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
unsigned i = isTwoAddr ? 1 : 0;
for (unsigned e = NumOps; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isReg()) {
unsigned Reg = MO.getReg();
if (isX86_64NonExtLowByteReg(Reg))
REX |= 0x40;
}
}
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::MRMInitReg:
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= (1 << 0) | (1 << 2);
break;
case X86II::MRMSrcReg: {
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= 1 << 2;
i = isTwoAddr ? 2 : 1;
for (unsigned e = NumOps; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (isX86_64ExtendedReg(MO))
REX |= 1 << 0;
}
break;
}
case X86II::MRMSrcMem: {
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= 1 << 2;
unsigned Bit = 0;
i = isTwoAddr ? 2 : 1;
for (; i != NumOps; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isReg()) {
if (isX86_64ExtendedReg(MO))
REX |= 1 << Bit;
Bit++;
}
}
break;
}
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m:
case X86II::MRMDestMem: {
unsigned e = isTwoAddr ? 5 : 4;
i = isTwoAddr ? 1 : 0;
if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
REX |= 1 << 2;
unsigned Bit = 0;
for (; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isReg()) {
if (isX86_64ExtendedReg(MO))
REX |= 1 << Bit;
Bit++;
}
}
break;
}
default: {
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= 1 << 0;
i = isTwoAddr ? 2 : 1;
for (unsigned e = NumOps; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (isX86_64ExtendedReg(MO))
REX |= 1 << 2;
}
break;
}
}
}
return REX;
}
/// sizePCRelativeBlockAddress - This method returns the size of a PC
/// relative block address instruction
///
static unsigned sizePCRelativeBlockAddress() {
return 4;
}
/// sizeGlobalAddress - Give the size of the emission of this global address
///
static unsigned sizeGlobalAddress(bool dword) {
return dword ? 8 : 4;
}
/// sizeConstPoolAddress - Give the size of the emission of this constant
/// pool address
///
static unsigned sizeConstPoolAddress(bool dword) {
return dword ? 8 : 4;
}
/// sizeExternalSymbolAddress - Give the size of the emission of this external
/// symbol
///
static unsigned sizeExternalSymbolAddress(bool dword) {
return dword ? 8 : 4;
}
/// sizeJumpTableAddress - Give the size of the emission of this jump
/// table address
///
static unsigned sizeJumpTableAddress(bool dword) {
return dword ? 8 : 4;
}
static unsigned sizeConstant(unsigned Size) {
return Size;
}
static unsigned sizeRegModRMByte(){
return 1;
}
static unsigned sizeSIBByte(){
return 1;
}
static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
unsigned FinalSize = 0;
// If this is a simple integer displacement that doesn't require a relocation.
if (!RelocOp) {
FinalSize += sizeConstant(4);
return FinalSize;
}
// Otherwise, this is something that requires a relocation.
if (RelocOp->isGlobal()) {
FinalSize += sizeGlobalAddress(false);
} else if (RelocOp->isCPI()) {
FinalSize += sizeConstPoolAddress(false);
} else if (RelocOp->isJTI()) {
FinalSize += sizeJumpTableAddress(false);
} else {
assert(0 && "Unknown value to relocate!");
}
return FinalSize;
}
static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
bool IsPIC, bool Is64BitMode) {
const MachineOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MachineOperand *DispForReloc = 0;
unsigned FinalSize = 0;
// Figure out what sort of displacement we have to handle here.
if (Op3.isGlobal()) {
DispForReloc = &Op3;
} else if (Op3.isCPI()) {
if (Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal = 1;
}
} else if (Op3.isJTI()) {
if (Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal = 1;
}
} else {
DispVal = 1;
}
const MachineOperand &Base = MI.getOperand(Op);
const MachineOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
// Is a SIB byte needed?
if (IndexReg.getReg() == 0 &&
(BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
if (BaseReg == 0) { // Just a displacement?
// Emit special case [disp32] encoding
++FinalSize;
FinalSize += getDisplacementFieldSize(DispForReloc);
} else {
unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
++FinalSize;
// Be pessimistic and assume it's a disp32, not a disp8
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
++FinalSize;
FinalSize += getDisplacementFieldSize(DispForReloc);
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
if (BaseReg == 0 || DispForReloc) {
// Emit the normal disp32 encoding.
++FinalSize;
ForceDisp32 = true;
} else {
++FinalSize;
}
FinalSize += sizeSIBByte();
// Do we need to output a displacement?
if (DispVal != 0 || ForceDisp32) {
FinalSize += getDisplacementFieldSize(DispForReloc);
}
}
return FinalSize;
}
static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
const TargetInstrDesc *Desc,
bool IsPIC, bool Is64BitMode) {
unsigned Opcode = Desc->Opcode;
unsigned FinalSize = 0;
// Emit the lock opcode prefix as needed.
if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
// Emit segment overrid opcode prefix as needed.
switch (Desc->TSFlags & X86II::SegOvrMask) {
case X86II::FS:
case X86II::GS:
++FinalSize;
break;
default: assert(0 && "Invalid segment!");
case 0: break; // No segment override!
}
// Emit the repeat opcode prefix as needed.
if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
// Emit the operand size opcode prefix as needed.
if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
// Emit the address size opcode prefix as needed.
if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
bool Need0FPrefix = false;
switch (Desc->TSFlags & X86II::Op0Mask) {
case X86II::TB: // Two-byte opcode prefix
case X86II::T8: // 0F 38
case X86II::TA: // 0F 3A
Need0FPrefix = true;
break;
case X86II::REP: break; // already handled.
case X86II::XS: // F3 0F
++FinalSize;
Need0FPrefix = true;
break;
case X86II::XD: // F2 0F
++FinalSize;
Need0FPrefix = true;
break;
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
++FinalSize;
break; // Two-byte opcode prefix
default: assert(0 && "Invalid prefix!");
case 0: break; // No prefix!
}
if (Is64BitMode) {
// REX prefix
unsigned REX = X86InstrInfo::determineREX(MI);
if (REX)
++FinalSize;
}
// 0x0F escape code must be emitted just before the opcode.
if (Need0FPrefix)
++FinalSize;
switch (Desc->TSFlags & X86II::Op0Mask) {
case X86II::T8: // 0F 38
++FinalSize;
break;
case X86II::TA: // 0F 3A
++FinalSize;
break;
}
// If this is a two-address instruction, skip one of the register operands.
unsigned NumOps = Desc->getNumOperands();
unsigned CurOp = 0;
if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
CurOp++;
switch (Desc->TSFlags & X86II::FormMask) {
default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
case X86II::Pseudo:
// Remember the current PC offset, this is the PIC relocation
// base address.
switch (Opcode) {
default:
break;
case TargetInstrInfo::INLINEASM: {
const MachineFunction *MF = MI.getParent()->getParent();
const char *AsmStr = MI.getOperand(0).getSymbolName();
const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
FinalSize += AI->getInlineAsmLength(AsmStr);
break;
}
case TargetInstrInfo::DBG_LABEL:
case TargetInstrInfo::EH_LABEL:
break;
case TargetInstrInfo::IMPLICIT_DEF:
case TargetInstrInfo::DECLARE:
case X86::DWARF_LOC:
case X86::FP_REG_KILL:
break;
case X86::MOVPC32r: {
// This emits the "call" portion of this pseudo instruction.
++FinalSize;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
break;
}
case X86::TLS_tp:
case X86::TLS_gs_ri:
FinalSize += 2;
FinalSize += sizeGlobalAddress(false);
break;
}
CurOp = NumOps;
break;
case X86II::RawFrm:
++FinalSize;
if (CurOp != NumOps) {
const MachineOperand &MO = MI.getOperand(CurOp++);
if (MO.isMBB()) {
FinalSize += sizePCRelativeBlockAddress();
} else if (MO.isGlobal()) {
FinalSize += sizeGlobalAddress(false);
} else if (MO.isSymbol()) {
FinalSize += sizeExternalSymbolAddress(false);
} else if (MO.isImm()) {
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
} else {
assert(0 && "Unknown RawFrm operand!");
}
}
break;
case X86II::AddRegFrm:
++FinalSize;
++CurOp;
if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImm())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64ri)
dword = true;
if (MO1.isGlobal()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO1.isSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO1.isCPI())
FinalSize += sizeConstPoolAddress(dword);
else if (MO1.isJTI())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
case X86II::MRMDestReg: {
++FinalSize;
FinalSize += sizeRegModRMByte();
CurOp += 2;
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
}
break;
}
case X86II::MRMDestMem: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
CurOp += 5;
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
}
break;
}
case X86II::MRMSrcReg:
++FinalSize;
FinalSize += sizeRegModRMByte();
CurOp += 2;
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
}
break;
case X86II::MRMSrcMem: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
CurOp += 5;
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
}
break;
}
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
++FinalSize;
++CurOp;
FinalSize += sizeRegModRMByte();
if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImm())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64ri32)
dword = true;
if (MO1.isGlobal()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO1.isSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO1.isCPI())
FinalSize += sizeConstPoolAddress(dword);
else if (MO1.isJTI())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
CurOp += 4;
if (CurOp != NumOps) {
const MachineOperand &MO = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO.isImm())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64mi32)
dword = true;
if (MO.isGlobal()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO.isSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO.isCPI())
FinalSize += sizeConstPoolAddress(dword);
else if (MO.isJTI())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
}
case X86II::MRMInitReg:
++FinalSize;
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
FinalSize += sizeRegModRMByte();
++CurOp;
break;
}
if (!Desc->isVariadic() && CurOp != NumOps) {
cerr << "Cannot determine size: ";
MI.dump();
cerr << '\n';
abort();
}
return FinalSize;
}
unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const TargetInstrDesc &Desc = MI->getDesc();
bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
if (Desc.getOpcode() == X86::MOVPC32r) {
Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
}
return Size;
}
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
const TargetInstrInfo *TII = TM.getInstrInfo();
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
if (TM.getRelocationModel() == Reloc::PIC_ &&
TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
GlobalBaseReg =
RegInfo.createVirtualRegister(X86::GR32RegisterClass);
BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
} else {
GlobalBaseReg = PC;
}
X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}