llvm-6502/lib/Transforms/Utils/SimplifyCFG.cpp
Reid Spencer 579dca12c2 Implement review feedback for the ConstantBool->ConstantInt merge. Chris
recommended that getBoolValue be replaced with getZExtValue and that
get(bool) be replaced by get(const Type*, uint64_t). This implements
those changes.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33110 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-12 04:24:46 +00:00

1902 lines
80 KiB
C++

//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <functional>
#include <set>
#include <map>
using namespace llvm;
/// SafeToMergeTerminators - Return true if it is safe to merge these two
/// terminator instructions together.
///
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
if (SI1 == SI2) return false; // Can't merge with self!
// It is not safe to merge these two switch instructions if they have a common
// successor, and if that successor has a PHI node, and if *that* PHI node has
// conflicting incoming values from the two switch blocks.
BasicBlock *SI1BB = SI1->getParent();
BasicBlock *SI2BB = SI2->getParent();
std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
if (SI1Succs.count(*I))
for (BasicBlock::iterator BBI = (*I)->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
if (PN->getIncomingValueForBlock(SI1BB) !=
PN->getIncomingValueForBlock(SI2BB))
return false;
}
return true;
}
/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
/// now be entries in it from the 'NewPred' block. The values that will be
/// flowing into the PHI nodes will be the same as those coming in from
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
BasicBlock *ExistPred) {
assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
Value *V = PN->getIncomingValueForBlock(ExistPred);
PN->addIncoming(V, NewPred);
}
}
// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
// almost-empty BB ending in an unconditional branch to Succ, into succ.
//
// Assumption: Succ is the single successor for BB.
//
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
// Check to see if one of the predecessors of BB is already a predecessor of
// Succ. If so, we cannot do the transformation if there are any PHI nodes
// with incompatible values coming in from the two edges!
//
if (isa<PHINode>(Succ->front())) {
std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
PI != PE; ++PI)
if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
// Loop over all of the PHI nodes checking to see if there are
// incompatible values coming in.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// Loop up the entries in the PHI node for BB and for *PI if the
// values coming in are non-equal, we cannot merge these two blocks
// (instead we should insert a conditional move or something, then
// merge the blocks).
if (PN->getIncomingValueForBlock(BB) !=
PN->getIncomingValueForBlock(*PI))
return false; // Values are not equal...
}
}
}
// Finally, if BB has PHI nodes that are used by things other than the PHIs in
// Succ and Succ has predecessors that are not Succ and not Pred, we cannot
// fold these blocks, as we don't know whether BB dominates Succ or not to
// update the PHI nodes correctly.
if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
// If the predecessors of Succ are only BB and Succ itself, we can handle this.
bool IsSafe = true;
for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
if (*PI != Succ && *PI != BB) {
IsSafe = false;
break;
}
if (IsSafe) return true;
// If the PHI nodes in BB are only used by instructions in Succ, we are ok if
// BB and Succ have no common predecessors.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
++UI)
if (cast<Instruction>(*UI)->getParent() != Succ)
return false;
}
// Scan the predecessor sets of BB and Succ, making sure there are no common
// predecessors. Common predecessors would cause us to build a phi node with
// differing incoming values, which is not legal.
std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
if (BBPreds.count(*PI))
return false;
return true;
}
/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
/// branch to Succ, and contains no instructions other than PHI nodes and the
/// branch. If possible, eliminate BB.
static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
BasicBlock *Succ) {
// If our successor has PHI nodes, then we need to update them to include
// entries for BB's predecessors, not for BB itself. Be careful though,
// if this transformation fails (returns true) then we cannot do this
// transformation!
//
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
DOUT << "Killing Trivial BB: \n" << *BB;
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
// Loop over all of the PHI nodes in the successor of BB.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
Value *OldVal = PN->removeIncomingValue(BB, false);
assert(OldVal && "No entry in PHI for Pred BB!");
// If this incoming value is one of the PHI nodes in BB, the new entries
// in the PHI node are the entries from the old PHI.
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
PHINode *OldValPN = cast<PHINode>(OldVal);
for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
PN->addIncoming(OldValPN->getIncomingValue(i),
OldValPN->getIncomingBlock(i));
} else {
for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
End = BBPreds.end(); PredI != End; ++PredI) {
// Add an incoming value for each of the new incoming values...
PN->addIncoming(OldVal, *PredI);
}
}
}
}
if (isa<PHINode>(&BB->front())) {
std::vector<BasicBlock*>
OldSuccPreds(pred_begin(Succ), pred_end(Succ));
// Move all PHI nodes in BB to Succ if they are alive, otherwise
// delete them.
while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
if (PN->use_empty()) {
// Just remove the dead phi. This happens if Succ's PHIs were the only
// users of the PHI nodes.
PN->eraseFromParent();
} else {
// The instruction is alive, so this means that Succ must have
// *ONLY* had BB as a predecessor, and the PHI node is still valid
// now. Simply move it into Succ, because we know that BB
// strictly dominated Succ.
Succ->getInstList().splice(Succ->begin(),
BB->getInstList(), BB->begin());
// We need to add new entries for the PHI node to account for
// predecessors of Succ that the PHI node does not take into
// account. At this point, since we know that BB dominated succ,
// this means that we should any newly added incoming edges should
// use the PHI node as the value for these edges, because they are
// loop back edges.
for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
if (OldSuccPreds[i] != BB)
PN->addIncoming(PN, OldSuccPreds[i]);
}
}
// Everything that jumped to BB now goes to Succ.
std::string OldName = BB->getName();
BB->replaceAllUsesWith(Succ);
BB->eraseFromParent(); // Delete the old basic block.
if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
Succ->setName(OldName);
return true;
}
/// GetIfCondition - Given a basic block (BB) with two predecessors (and
/// presumably PHI nodes in it), check to see if the merge at this block is due
/// to an "if condition". If so, return the boolean condition that determines
/// which entry into BB will be taken. Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
///
///
static Value *GetIfCondition(BasicBlock *BB,
BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
"Function can only handle blocks with 2 predecessors!");
BasicBlock *Pred1 = *pred_begin(BB);
BasicBlock *Pred2 = *++pred_begin(BB);
// We can only handle branches. Other control flow will be lowered to
// branches if possible anyway.
if (!isa<BranchInst>(Pred1->getTerminator()) ||
!isa<BranchInst>(Pred2->getTerminator()))
return 0;
BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
// Eliminate code duplication by ensuring that Pred1Br is conditional if
// either are.
if (Pred2Br->isConditional()) {
// If both branches are conditional, we don't have an "if statement". In
// reality, we could transform this case, but since the condition will be
// required anyway, we stand no chance of eliminating it, so the xform is
// probably not profitable.
if (Pred1Br->isConditional())
return 0;
std::swap(Pred1, Pred2);
std::swap(Pred1Br, Pred2Br);
}
if (Pred1Br->isConditional()) {
// If we found a conditional branch predecessor, make sure that it branches
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
if (Pred1Br->getSuccessor(0) == BB &&
Pred1Br->getSuccessor(1) == Pred2) {
IfTrue = Pred1;
IfFalse = Pred2;
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
Pred1Br->getSuccessor(1) == BB) {
IfTrue = Pred2;
IfFalse = Pred1;
} else {
// We know that one arm of the conditional goes to BB, so the other must
// go somewhere unrelated, and this must not be an "if statement".
return 0;
}
// The only thing we have to watch out for here is to make sure that Pred2
// doesn't have incoming edges from other blocks. If it does, the condition
// doesn't dominate BB.
if (++pred_begin(Pred2) != pred_end(Pred2))
return 0;
return Pred1Br->getCondition();
}
// Ok, if we got here, both predecessors end with an unconditional branch to
// BB. Don't panic! If both blocks only have a single (identical)
// predecessor, and THAT is a conditional branch, then we're all ok!
if (pred_begin(Pred1) == pred_end(Pred1) ||
++pred_begin(Pred1) != pred_end(Pred1) ||
pred_begin(Pred2) == pred_end(Pred2) ||
++pred_begin(Pred2) != pred_end(Pred2) ||
*pred_begin(Pred1) != *pred_begin(Pred2))
return 0;
// Otherwise, if this is a conditional branch, then we can use it!
BasicBlock *CommonPred = *pred_begin(Pred1);
if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
assert(BI->isConditional() && "Two successors but not conditional?");
if (BI->getSuccessor(0) == Pred1) {
IfTrue = Pred1;
IfFalse = Pred2;
} else {
IfTrue = Pred2;
IfFalse = Pred1;
}
return BI->getCondition();
}
return 0;
}
// If we have a merge point of an "if condition" as accepted above, return true
// if the specified value dominates the block. We don't handle the true
// generality of domination here, just a special case which works well enough
// for us.
//
// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
// see if V (which must be an instruction) is cheap to compute and is
// non-trapping. If both are true, the instruction is inserted into the set and
// true is returned.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
std::set<Instruction*> *AggressiveInsts) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
// Non-instructions all dominate instructions, but not all constantexprs
// can be executed unconditionally.
if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
if (C->canTrap())
return false;
return true;
}
BasicBlock *PBB = I->getParent();
// We don't want to allow weird loops that might have the "if condition" in
// the bottom of this block.
if (PBB == BB) return false;
// If this instruction is defined in a block that contains an unconditional
// branch to BB, then it must be in the 'conditional' part of the "if
// statement".
if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
if (!AggressiveInsts) return false;
// Okay, it looks like the instruction IS in the "condition". Check to
// see if its a cheap instruction to unconditionally compute, and if it
// only uses stuff defined outside of the condition. If so, hoist it out.
switch (I->getOpcode()) {
default: return false; // Cannot hoist this out safely.
case Instruction::Load:
// We can hoist loads that are non-volatile and obviously cannot trap.
if (cast<LoadInst>(I)->isVolatile())
return false;
if (!isa<AllocaInst>(I->getOperand(0)) &&
!isa<Constant>(I->getOperand(0)))
return false;
// Finally, we have to check to make sure there are no instructions
// before the load in its basic block, as we are going to hoist the loop
// out to its predecessor.
if (PBB->begin() != BasicBlock::iterator(I))
return false;
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::ICmp:
case Instruction::FCmp:
break; // These are all cheap and non-trapping instructions.
}
// Okay, we can only really hoist these out if their operands are not
// defined in the conditional region.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (!DominatesMergePoint(I->getOperand(i), BB, 0))
return false;
// Okay, it's safe to do this! Remember this instruction.
AggressiveInsts->insert(I);
}
return true;
}
// GatherConstantSetEQs - Given a potentially 'or'd together collection of
// icmp_eq instructions that compare a value against a constant, return the
// value being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
if (Instruction *Inst = dyn_cast<Instruction>(V))
if (Inst->getOpcode() == Instruction::ICmp &&
cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
Values.push_back(C);
return Inst->getOperand(0);
} else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
Values.push_back(C);
return Inst->getOperand(1);
}
} else if (Inst->getOpcode() == Instruction::Or) {
if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
if (LHS == RHS)
return LHS;
}
return 0;
}
// GatherConstantSetNEs - Given a potentially 'and'd together collection of
// setne instructions that compare a value against a constant, return the value
// being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
if (Instruction *Inst = dyn_cast<Instruction>(V))
if (Inst->getOpcode() == Instruction::ICmp &&
cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
Values.push_back(C);
return Inst->getOperand(0);
} else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
Values.push_back(C);
return Inst->getOperand(1);
}
} else if (Inst->getOpcode() == Instruction::And) {
if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
if (LHS == RHS)
return LHS;
}
return 0;
}
/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
/// bunch of comparisons of one value against constants, return the value and
/// the constants being compared.
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
std::vector<ConstantInt*> &Values) {
if (Cond->getOpcode() == Instruction::Or) {
CompVal = GatherConstantSetEQs(Cond, Values);
// Return true to indicate that the condition is true if the CompVal is
// equal to one of the constants.
return true;
} else if (Cond->getOpcode() == Instruction::And) {
CompVal = GatherConstantSetNEs(Cond, Values);
// Return false to indicate that the condition is false if the CompVal is
// equal to one of the constants.
return false;
}
return false;
}
/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
/// has no side effects, nuke it. If it uses any instructions that become dead
/// because the instruction is now gone, nuke them too.
static void ErasePossiblyDeadInstructionTree(Instruction *I) {
if (!isInstructionTriviallyDead(I)) return;
std::vector<Instruction*> InstrsToInspect;
InstrsToInspect.push_back(I);
while (!InstrsToInspect.empty()) {
I = InstrsToInspect.back();
InstrsToInspect.pop_back();
if (!isInstructionTriviallyDead(I)) continue;
// If I is in the work list multiple times, remove previous instances.
for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
if (InstrsToInspect[i] == I) {
InstrsToInspect.erase(InstrsToInspect.begin()+i);
--i, --e;
}
// Add operands of dead instruction to worklist.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
InstrsToInspect.push_back(OpI);
// Remove dead instruction.
I->eraseFromParent();
}
}
// isValueEqualityComparison - Return true if the specified terminator checks to
// see if a value is equal to constant integer value.
static Value *isValueEqualityComparison(TerminatorInst *TI) {
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
// Do not permit merging of large switch instructions into their
// predecessors unless there is only one predecessor.
if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
pred_end(SI->getParent())) > 128)
return 0;
return SI->getCondition();
}
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional() && BI->getCondition()->hasOneUse())
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
ICI->getPredicate() == ICmpInst::ICMP_NE) &&
isa<ConstantInt>(ICI->getOperand(1)))
return ICI->getOperand(0);
return 0;
}
// Given a value comparison instruction, decode all of the 'cases' that it
// represents and return the 'default' block.
static BasicBlock *
GetValueEqualityComparisonCases(TerminatorInst *TI,
std::vector<std::pair<ConstantInt*,
BasicBlock*> > &Cases) {
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Cases.reserve(SI->getNumCases());
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
return SI->getDefaultDest();
}
BranchInst *BI = cast<BranchInst>(TI);
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
BI->getSuccessor(ICI->getPredicate() ==
ICmpInst::ICMP_NE)));
return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}
// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
for (unsigned i = 0, e = Cases.size(); i != e; ++i)
if (Cases[i].second == BB) {
Cases.erase(Cases.begin()+i);
--i; --e;
}
}
// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
// well.
static bool
ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
// Make V1 be smaller than V2.
if (V1->size() > V2->size())
std::swap(V1, V2);
if (V1->size() == 0) return false;
if (V1->size() == 1) {
// Just scan V2.
ConstantInt *TheVal = (*V1)[0].first;
for (unsigned i = 0, e = V2->size(); i != e; ++i)
if (TheVal == (*V2)[i].first)
return true;
}
// Otherwise, just sort both lists and compare element by element.
std::sort(V1->begin(), V1->end());
std::sort(V2->begin(), V2->end());
unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
while (i1 != e1 && i2 != e2) {
if ((*V1)[i1].first == (*V2)[i2].first)
return true;
if ((*V1)[i1].first < (*V2)[i2].first)
++i1;
else
++i2;
}
return false;
}
// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
// terminator instruction and its block is known to only have a single
// predecessor block, check to see if that predecessor is also a value
// comparison with the same value, and if that comparison determines the outcome
// of this comparison. If so, simplify TI. This does a very limited form of
// jump threading.
static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
BasicBlock *Pred) {
Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
if (!PredVal) return false; // Not a value comparison in predecessor.
Value *ThisVal = isValueEqualityComparison(TI);
assert(ThisVal && "This isn't a value comparison!!");
if (ThisVal != PredVal) return false; // Different predicates.
// Find out information about when control will move from Pred to TI's block.
std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
PredCases);
EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
// Find information about how control leaves this block.
std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
// If TI's block is the default block from Pred's comparison, potentially
// simplify TI based on this knowledge.
if (PredDef == TI->getParent()) {
// If we are here, we know that the value is none of those cases listed in
// PredCases. If there are any cases in ThisCases that are in PredCases, we
// can simplify TI.
if (ValuesOverlap(PredCases, ThisCases)) {
if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
// Okay, one of the successors of this condbr is dead. Convert it to a
// uncond br.
assert(ThisCases.size() == 1 && "Branch can only have one case!");
Value *Cond = BTI->getCondition();
// Insert the new branch.
Instruction *NI = new BranchInst(ThisDef, TI);
// Remove PHI node entries for the dead edge.
ThisCases[0].second->removePredecessor(TI->getParent());
DOUT << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
TI->eraseFromParent(); // Nuke the old one.
// If condition is now dead, nuke it.
if (Instruction *CondI = dyn_cast<Instruction>(Cond))
ErasePossiblyDeadInstructionTree(CondI);
return true;
} else {
SwitchInst *SI = cast<SwitchInst>(TI);
// Okay, TI has cases that are statically dead, prune them away.
std::set<Constant*> DeadCases;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
DeadCases.insert(PredCases[i].first);
DOUT << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI;
for (unsigned i = SI->getNumCases()-1; i != 0; --i)
if (DeadCases.count(SI->getCaseValue(i))) {
SI->getSuccessor(i)->removePredecessor(TI->getParent());
SI->removeCase(i);
}
DOUT << "Leaving: " << *TI << "\n";
return true;
}
}
} else {
// Otherwise, TI's block must correspond to some matched value. Find out
// which value (or set of values) this is.
ConstantInt *TIV = 0;
BasicBlock *TIBB = TI->getParent();
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].second == TIBB)
if (TIV == 0)
TIV = PredCases[i].first;
else
return false; // Cannot handle multiple values coming to this block.
assert(TIV && "No edge from pred to succ?");
// Okay, we found the one constant that our value can be if we get into TI's
// BB. Find out which successor will unconditionally be branched to.
BasicBlock *TheRealDest = 0;
for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
if (ThisCases[i].first == TIV) {
TheRealDest = ThisCases[i].second;
break;
}
// If not handled by any explicit cases, it is handled by the default case.
if (TheRealDest == 0) TheRealDest = ThisDef;
// Remove PHI node entries for dead edges.
BasicBlock *CheckEdge = TheRealDest;
for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
if (*SI != CheckEdge)
(*SI)->removePredecessor(TIBB);
else
CheckEdge = 0;
// Insert the new branch.
Instruction *NI = new BranchInst(TheRealDest, TI);
DOUT << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
Instruction *Cond = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
Cond = dyn_cast<Instruction>(BI->getCondition());
TI->eraseFromParent(); // Nuke the old one.
if (Cond) ErasePossiblyDeadInstructionTree(Cond);
return true;
}
return false;
}
// FoldValueComparisonIntoPredecessors - The specified terminator is a value
// equality comparison instruction (either a switch or a branch on "X == c").
// See if any of the predecessors of the terminator block are value comparisons
// on the same value. If so, and if safe to do so, fold them together.
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
BasicBlock *BB = TI->getParent();
Value *CV = isValueEqualityComparison(TI); // CondVal
assert(CV && "Not a comparison?");
bool Changed = false;
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
while (!Preds.empty()) {
BasicBlock *Pred = Preds.back();
Preds.pop_back();
// See if the predecessor is a comparison with the same value.
TerminatorInst *PTI = Pred->getTerminator();
Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
// Figure out which 'cases' to copy from SI to PSI.
std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
// Based on whether the default edge from PTI goes to BB or not, fill in
// PredCases and PredDefault with the new switch cases we would like to
// build.
std::vector<BasicBlock*> NewSuccessors;
if (PredDefault == BB) {
// If this is the default destination from PTI, only the edges in TI
// that don't occur in PTI, or that branch to BB will be activated.
std::set<ConstantInt*> PTIHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].second != BB)
PTIHandled.insert(PredCases[i].first);
else {
// The default destination is BB, we don't need explicit targets.
std::swap(PredCases[i], PredCases.back());
PredCases.pop_back();
--i; --e;
}
// Reconstruct the new switch statement we will be building.
if (PredDefault != BBDefault) {
PredDefault->removePredecessor(Pred);
PredDefault = BBDefault;
NewSuccessors.push_back(BBDefault);
}
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (!PTIHandled.count(BBCases[i].first) &&
BBCases[i].second != BBDefault) {
PredCases.push_back(BBCases[i]);
NewSuccessors.push_back(BBCases[i].second);
}
} else {
// If this is not the default destination from PSI, only the edges
// in SI that occur in PSI with a destination of BB will be
// activated.
std::set<ConstantInt*> PTIHandled;
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
if (PredCases[i].second == BB) {
PTIHandled.insert(PredCases[i].first);
std::swap(PredCases[i], PredCases.back());
PredCases.pop_back();
--i; --e;
}
// Okay, now we know which constants were sent to BB from the
// predecessor. Figure out where they will all go now.
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
if (PTIHandled.count(BBCases[i].first)) {
// If this is one we are capable of getting...
PredCases.push_back(BBCases[i]);
NewSuccessors.push_back(BBCases[i].second);
PTIHandled.erase(BBCases[i].first);// This constant is taken care of
}
// If there are any constants vectored to BB that TI doesn't handle,
// they must go to the default destination of TI.
for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
E = PTIHandled.end(); I != E; ++I) {
PredCases.push_back(std::make_pair(*I, BBDefault));
NewSuccessors.push_back(BBDefault);
}
}
// Okay, at this point, we know which new successor Pred will get. Make
// sure we update the number of entries in the PHI nodes for these
// successors.
for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
// Now that the successors are updated, create the new Switch instruction.
SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
NewSI->addCase(PredCases[i].first, PredCases[i].second);
Instruction *DeadCond = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
// If PTI is a branch, remember the condition.
DeadCond = dyn_cast<Instruction>(BI->getCondition());
Pred->getInstList().erase(PTI);
// If the condition is dead now, remove the instruction tree.
if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
// Okay, last check. If BB is still a successor of PSI, then we must
// have an infinite loop case. If so, add an infinitely looping block
// to handle the case to preserve the behavior of the code.
BasicBlock *InfLoopBlock = 0;
for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
if (NewSI->getSuccessor(i) == BB) {
if (InfLoopBlock == 0) {
// Insert it at the end of the loop, because it's either code,
// or it won't matter if it's hot. :)
InfLoopBlock = new BasicBlock("infloop", BB->getParent());
new BranchInst(InfLoopBlock, InfLoopBlock);
}
NewSI->setSuccessor(i, InfLoopBlock);
}
Changed = true;
}
}
return Changed;
}
/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block. The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI) {
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. In particular, we don't want to get into
// O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
// such, we currently just scan for obviously identical instructions in an
// identical order.
BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
return false;
// If we get here, we can hoist at least one instruction.
BasicBlock *BIParent = BI->getParent();
do {
// If we are hoisting the terminator instruction, don't move one (making a
// broken BB), instead clone it, and remove BI.
if (isa<TerminatorInst>(I1))
goto HoistTerminator;
// For a normal instruction, we just move one to right before the branch,
// then replace all uses of the other with the first. Finally, we remove
// the now redundant second instruction.
BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
BB2->getInstList().erase(I2);
I1 = BB1->begin();
I2 = BB2->begin();
} while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
return true;
HoistTerminator:
// Okay, it is safe to hoist the terminator.
Instruction *NT = I1->clone();
BIParent->getInstList().insert(BI, NT);
if (NT->getType() != Type::VoidTy) {
I1->replaceAllUsesWith(NT);
I2->replaceAllUsesWith(NT);
NT->setName(I1->getName());
}
// Hoisting one of the terminators from our successor is a great thing.
// Unfortunately, the successors of the if/else blocks may have PHI nodes in
// them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
// nodes, so we insert select instruction to compute the final result.
std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
if (BB1V != BB2V) {
// These values do not agree. Insert a select instruction before NT
// that determines the right value.
SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
if (SI == 0)
SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
BB1V->getName()+"."+BB2V->getName(), NT);
// Make the PHI node use the select for all incoming values for BB1/BB2
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
PN->setIncomingValue(i, SI);
}
}
}
// Update any PHI nodes in our new successors.
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
AddPredecessorToBlock(*SI, BIParent, BB1);
BI->eraseFromParent();
return true;
}
/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
/// across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
unsigned Size = 0;
// If this basic block contains anything other than a PHI (which controls the
// branch) and branch itself, bail out. FIXME: improve this in the future.
for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
if (Size > 10) return false; // Don't clone large BB's.
// We can only support instructions that are do not define values that are
// live outside of the current basic block.
for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
UI != E; ++UI) {
Instruction *U = cast<Instruction>(*UI);
if (U->getParent() != BB || isa<PHINode>(U)) return false;
}
// Looks ok, continue checking.
}
return true;
}
/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI) {
BasicBlock *BB = BI->getParent();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
// outside of the block.
if (!PN || PN->getParent() != BB || !PN->hasOneUse())
return false;
// Degenerate case of a single entry PHI.
if (PN->getNumIncomingValues() == 1) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
PN->eraseFromParent();
return true;
}
// Now we know that this block has multiple preds and two succs.
if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
// Okay, this is a simple enough basic block. See if any phi values are
// constants.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ConstantInt *CB;
if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
CB->getType() == Type::Int1Ty) {
// Okay, we now know that all edges from PredBB should be revectored to
// branch to RealDest.
BasicBlock *PredBB = PN->getIncomingBlock(i);
BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
if (RealDest == BB) continue; // Skip self loops.
// The dest block might have PHI nodes, other predecessors and other
// difficult cases. Instead of being smart about this, just insert a new
// block that jumps to the destination block, effectively splitting
// the edge we are about to create.
BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
RealDest->getParent(), RealDest);
new BranchInst(RealDest, EdgeBB);
PHINode *PN;
for (BasicBlock::iterator BBI = RealDest->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *V = PN->getIncomingValueForBlock(BB);
PN->addIncoming(V, EdgeBB);
}
// BB may have instructions that are being threaded over. Clone these
// instructions into EdgeBB. We know that there will be no uses of the
// cloned instructions outside of EdgeBB.
BasicBlock::iterator InsertPt = EdgeBB->begin();
std::map<Value*, Value*> TranslateMap; // Track translated values.
for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
} else {
// Clone the instruction.
Instruction *N = BBI->clone();
if (BBI->hasName()) N->setName(BBI->getName()+".c");
// Update operands due to translation.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
std::map<Value*, Value*>::iterator PI =
TranslateMap.find(N->getOperand(i));
if (PI != TranslateMap.end())
N->setOperand(i, PI->second);
}
// Check for trivial simplification.
if (Constant *C = ConstantFoldInstruction(N)) {
TranslateMap[BBI] = C;
delete N; // Constant folded away, don't need actual inst
} else {
// Insert the new instruction into its new home.
EdgeBB->getInstList().insert(InsertPt, N);
if (!BBI->use_empty())
TranslateMap[BBI] = N;
}
}
}
// Loop over all of the edges from PredBB to BB, changing them to branch
// to EdgeBB instead.
TerminatorInst *PredBBTI = PredBB->getTerminator();
for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
if (PredBBTI->getSuccessor(i) == BB) {
BB->removePredecessor(PredBB);
PredBBTI->setSuccessor(i, EdgeBB);
}
// Recurse, simplifying any other constants.
return FoldCondBranchOnPHI(BI) | true;
}
}
return false;
}
/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN) {
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
// statement", which has a very simple dominance structure. Basically, we
// are trying to find the condition that is being branched on, which
// subsequently causes this merge to happen. We really want control
// dependence information for this check, but simplifycfg can't keep it up
// to date, and this catches most of the cases we care about anyway.
//
BasicBlock *BB = PN->getParent();
BasicBlock *IfTrue, *IfFalse;
Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
if (!IfCond) return false;
// Okay, we found that we can merge this two-entry phi node into a select.
// Doing so would require us to fold *all* two entry phi nodes in this block.
// At some point this becomes non-profitable (particularly if the target
// doesn't support cmov's). Only do this transformation if there are two or
// fewer PHI nodes in this block.
unsigned NumPhis = 0;
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
if (NumPhis > 2)
return false;
DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
<< IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
// Loop over the PHI's seeing if we can promote them all to select
// instructions. While we are at it, keep track of the instructions
// that need to be moved to the dominating block.
std::set<Instruction*> AggressiveInsts;
BasicBlock::iterator AfterPHIIt = BB->begin();
while (isa<PHINode>(AfterPHIIt)) {
PHINode *PN = cast<PHINode>(AfterPHIIt++);
if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
} else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
&AggressiveInsts) ||
!DominatesMergePoint(PN->getIncomingValue(1), BB,
&AggressiveInsts)) {
return false;
}
}
// If we all PHI nodes are promotable, check to make sure that all
// instructions in the predecessor blocks can be promoted as well. If
// not, we won't be able to get rid of the control flow, so it's not
// worth promoting to select instructions.
BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
PN = cast<PHINode>(BB->begin());
BasicBlock *Pred = PN->getIncomingBlock(0);
if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
IfBlock1 = Pred;
DomBlock = *pred_begin(Pred);
for (BasicBlock::iterator I = Pred->begin();
!isa<TerminatorInst>(I); ++I)
if (!AggressiveInsts.count(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
// flow, so the xform is not worth it.
return false;
}
}
Pred = PN->getIncomingBlock(1);
if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
IfBlock2 = Pred;
DomBlock = *pred_begin(Pred);
for (BasicBlock::iterator I = Pred->begin();
!isa<TerminatorInst>(I); ++I)
if (!AggressiveInsts.count(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
// flow, so the xform is not worth it.
return false;
}
}
// If we can still promote the PHI nodes after this gauntlet of tests,
// do all of the PHI's now.
// Move all 'aggressive' instructions, which are defined in the
// conditional parts of the if's up to the dominating block.
if (IfBlock1) {
DomBlock->getInstList().splice(DomBlock->getTerminator(),
IfBlock1->getInstList(),
IfBlock1->begin(),
IfBlock1->getTerminator());
}
if (IfBlock2) {
DomBlock->getInstList().splice(DomBlock->getTerminator(),
IfBlock2->getInstList(),
IfBlock2->begin(),
IfBlock2->getTerminator());
}
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
// Change the PHI node into a select instruction.
Value *TrueVal =
PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
Value *FalseVal =
PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
std::string Name = PN->getName(); PN->setName("");
PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
Name, AfterPHIIt));
BB->getInstList().erase(PN);
}
return true;
}
namespace {
/// ConstantIntOrdering - This class implements a stable ordering of constant
/// integers that does not depend on their address. This is important for
/// applications that sort ConstantInt's to ensure uniqueness.
struct ConstantIntOrdering {
bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
return LHS->getZExtValue() < RHS->getZExtValue();
}
};
}
// SimplifyCFG - This function is used to do simplification of a CFG. For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG. It returns true if a modification was made.
//
// WARNING: The entry node of a function may not be simplified.
//
bool llvm::SimplifyCFG(BasicBlock *BB) {
bool Changed = false;
Function *M = BB->getParent();
assert(BB && BB->getParent() && "Block not embedded in function!");
assert(BB->getTerminator() && "Degenerate basic block encountered!");
assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
// Remove basic blocks that have no predecessors... which are unreachable.
if (pred_begin(BB) == pred_end(BB) ||
*pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
DOUT << "Removing BB: \n" << *BB;
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
SI->removePredecessor(BB);
while (!BB->empty()) {
Instruction &I = BB->back();
// If this instruction is used, replace uses with an arbitrary
// value. Because control flow can't get here, we don't care
// what we replace the value with. Note that since this block is
// unreachable, and all values contained within it must dominate their
// uses, that all uses will eventually be removed.
if (!I.use_empty())
// Make all users of this instruction use undef instead
I.replaceAllUsesWith(UndefValue::get(I.getType()));
// Remove the instruction from the basic block
BB->getInstList().pop_back();
}
M->getBasicBlockList().erase(BB);
return true;
}
// Check to see if we can constant propagate this terminator instruction
// away...
Changed |= ConstantFoldTerminator(BB);
// If this is a returning block with only PHI nodes in it, fold the return
// instruction into any unconditional branch predecessors.
//
// If any predecessor is a conditional branch that just selects among
// different return values, fold the replace the branch/return with a select
// and return.
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
BasicBlock::iterator BBI = BB->getTerminator();
if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
// Find predecessors that end with branches.
std::vector<BasicBlock*> UncondBranchPreds;
std::vector<BranchInst*> CondBranchPreds;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
TerminatorInst *PTI = (*PI)->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
if (BI->isUnconditional())
UncondBranchPreds.push_back(*PI);
else
CondBranchPreds.push_back(BI);
}
// If we found some, do the transformation!
if (!UncondBranchPreds.empty()) {
while (!UncondBranchPreds.empty()) {
BasicBlock *Pred = UncondBranchPreds.back();
DOUT << "FOLDING: " << *BB
<< "INTO UNCOND BRANCH PRED: " << *Pred;
UncondBranchPreds.pop_back();
Instruction *UncondBranch = Pred->getTerminator();
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
Pred->getInstList().push_back(NewRet);
// If the return instruction returns a value, and if the value was a
// PHI node in "BB", propagate the right value into the return.
if (NewRet->getNumOperands() == 1)
if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
if (PN->getParent() == BB)
NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
// Update any PHI nodes in the returning block to realize that we no
// longer branch to them.
BB->removePredecessor(Pred);
Pred->getInstList().erase(UncondBranch);
}
// If we eliminated all predecessors of the block, delete the block now.
if (pred_begin(BB) == pred_end(BB))
// We know there are no successors, so just nuke the block.
M->getBasicBlockList().erase(BB);
return true;
}
// Check out all of the conditional branches going to this return
// instruction. If any of them just select between returns, change the
// branch itself into a select/return pair.
while (!CondBranchPreds.empty()) {
BranchInst *BI = CondBranchPreds.back();
CondBranchPreds.pop_back();
BasicBlock *TrueSucc = BI->getSuccessor(0);
BasicBlock *FalseSucc = BI->getSuccessor(1);
BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
// Check to see if the non-BB successor is also a return block.
if (isa<ReturnInst>(OtherSucc->getTerminator())) {
// Check to see if there are only PHI instructions in this block.
BasicBlock::iterator OSI = OtherSucc->getTerminator();
if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
// Okay, we found a branch that is going to two return nodes. If
// there is no return value for this function, just change the
// branch into a return.
if (RI->getNumOperands() == 0) {
TrueSucc->removePredecessor(BI->getParent());
FalseSucc->removePredecessor(BI->getParent());
new ReturnInst(0, BI);
BI->getParent()->getInstList().erase(BI);
return true;
}
// Otherwise, figure out what the true and false return values are
// so we can insert a new select instruction.
Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
// Unwrap any PHI nodes in the return blocks.
if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
if (TVPN->getParent() == TrueSucc)
TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
if (FVPN->getParent() == FalseSucc)
FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
// In order for this transformation to be safe, we must be able to
// unconditionally execute both operands to the return. This is
// normally the case, but we could have a potentially-trapping
// constant expression that prevents this transformation from being
// safe.
if ((!isa<ConstantExpr>(TrueValue) ||
!cast<ConstantExpr>(TrueValue)->canTrap()) &&
(!isa<ConstantExpr>(TrueValue) ||
!cast<ConstantExpr>(TrueValue)->canTrap())) {
TrueSucc->removePredecessor(BI->getParent());
FalseSucc->removePredecessor(BI->getParent());
// Insert a new select instruction.
Value *NewRetVal;
Value *BrCond = BI->getCondition();
if (TrueValue != FalseValue)
NewRetVal = new SelectInst(BrCond, TrueValue,
FalseValue, "retval", BI);
else
NewRetVal = TrueValue;
DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
<< "\n " << *BI << "Select = " << *NewRetVal
<< "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
new ReturnInst(NewRetVal, BI);
BI->eraseFromParent();
if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
if (isInstructionTriviallyDead(BrCondI))
BrCondI->eraseFromParent();
return true;
}
}
}
}
}
} else if (isa<UnwindInst>(BB->begin())) {
// Check to see if the first instruction in this block is just an unwind.
// If so, replace any invoke instructions which use this as an exception
// destination with call instructions, and any unconditional branch
// predecessor with an unwind.
//
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
while (!Preds.empty()) {
BasicBlock *Pred = Preds.back();
if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
if (BI->isUnconditional()) {
Pred->getInstList().pop_back(); // nuke uncond branch
new UnwindInst(Pred); // Use unwind.
Changed = true;
}
} else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
if (II->getUnwindDest() == BB) {
// Insert a new branch instruction before the invoke, because this
// is now a fall through...
BranchInst *BI = new BranchInst(II->getNormalDest(), II);
Pred->getInstList().remove(II); // Take out of symbol table
// Insert the call now...
std::vector<Value*> Args(II->op_begin()+3, II->op_end());
CallInst *CI = new CallInst(II->getCalledValue(), Args,
II->getName(), BI);
CI->setCallingConv(II->getCallingConv());
// If the invoke produced a value, the Call now does instead
II->replaceAllUsesWith(CI);
delete II;
Changed = true;
}
Preds.pop_back();
}
// If this block is now dead, remove it.
if (pred_begin(BB) == pred_end(BB)) {
// We know there are no successors, so just nuke the block.
M->getBasicBlockList().erase(BB);
return true;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
if (isValueEqualityComparison(SI)) {
// If we only have one predecessor, and if it is a branch on this value,
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
return SimplifyCFG(BB) || 1;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
if (SI == &BB->front())
if (FoldValueComparisonIntoPredecessors(SI))
return SimplifyCFG(BB) || 1;
}
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
if (BI->isUnconditional()) {
BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
while (isa<PHINode>(*BBI)) ++BBI;
BasicBlock *Succ = BI->getSuccessor(0);
if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
Succ != BB) // Don't hurt infinite loops!
if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
return 1;
} else { // Conditional branch
if (isValueEqualityComparison(BI)) {
// If we only have one predecessor, and if it is a branch on this value,
// see if that predecessor totally determines the outcome of this
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
return SimplifyCFG(BB) || 1;
// This block must be empty, except for the setcond inst, if it exists.
BasicBlock::iterator I = BB->begin();
if (&*I == BI ||
(&*I == cast<Instruction>(BI->getCondition()) &&
&*++I == BI))
if (FoldValueComparisonIntoPredecessors(BI))
return SimplifyCFG(BB) | true;
}
// If this is a branch on a phi node in the current block, thread control
// through this block if any PHI node entries are constants.
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI))
return SimplifyCFG(BB) | true;
// If this basic block is ONLY a setcc and a branch, and if a predecessor
// branches to us and one of our successors, fold the setcc into the
// predecessor and use logical operations to pick the right destination.
BasicBlock *TrueDest = BI->getSuccessor(0);
BasicBlock *FalseDest = BI->getSuccessor(1);
if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
Cond->getParent() == BB && &BB->front() == Cond &&
Cond->getNext() == BI && Cond->hasOneUse() &&
TrueDest != BB && FalseDest != BB)
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
BasicBlock *PredBlock = *PI;
if (PBI->getSuccessor(0) == FalseDest ||
PBI->getSuccessor(1) == TrueDest) {
// Invert the predecessors condition test (xor it with true),
// which allows us to write this code once.
Value *NewCond =
BinaryOperator::createNot(PBI->getCondition(),
PBI->getCondition()->getName()+".not", PBI);
PBI->setCondition(NewCond);
BasicBlock *OldTrue = PBI->getSuccessor(0);
BasicBlock *OldFalse = PBI->getSuccessor(1);
PBI->setSuccessor(0, OldFalse);
PBI->setSuccessor(1, OldTrue);
}
if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
(PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
// Clone Cond into the predecessor basic block, and or/and the
// two conditions together.
Instruction *New = Cond->clone();
New->setName(Cond->getName());
Cond->setName(Cond->getName()+".old");
PredBlock->getInstList().insert(PBI, New);
Instruction::BinaryOps Opcode =
PBI->getSuccessor(0) == TrueDest ?
Instruction::Or : Instruction::And;
Value *NewCond =
BinaryOperator::create(Opcode, PBI->getCondition(),
New, "bothcond", PBI);
PBI->setCondition(NewCond);
if (PBI->getSuccessor(0) == BB) {
AddPredecessorToBlock(TrueDest, PredBlock, BB);
PBI->setSuccessor(0, TrueDest);
}
if (PBI->getSuccessor(1) == BB) {
AddPredecessorToBlock(FalseDest, PredBlock, BB);
PBI->setSuccessor(1, FalseDest);
}
return SimplifyCFG(BB) | 1;
}
}
// Scan predessor blocks for conditional branchs.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional()) {
// If this block ends with a branch instruction, and if there is a
// predecessor that ends on a branch of the same condition, make
// this conditional branch redundant.
if (PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
// Okay, the outcome of this conditional branch is statically
// knowable. If this block had a single pred, handle specially.
if (BB->getSinglePredecessor()) {
// Turn this into a branch on constant.
bool CondIsTrue = PBI->getSuccessor(0) == BB;
BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
return SimplifyCFG(BB); // Nuke the branch on constant.
}
// Otherwise, if there are multiple predecessors, insert a PHI
// that merges in the constant and simplify the block result.
if (BlockIsSimpleEnoughToThreadThrough(BB)) {
PHINode *NewPN = new PHINode(Type::Int1Ty,
BI->getCondition()->getName()+".pr",
BB->begin());
for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
PBI != BI && PBI->isConditional() &&
PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
bool CondIsTrue = PBI->getSuccessor(0) == BB;
NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
CondIsTrue), *PI);
} else {
NewPN->addIncoming(BI->getCondition(), *PI);
}
BI->setCondition(NewPN);
// This will thread the branch.
return SimplifyCFG(BB) | true;
}
}
// If this is a conditional branch in an empty block, and if any
// predecessors is a conditional branch to one of our destinations,
// fold the conditions into logical ops and one cond br.
if (&BB->front() == BI) {
int PBIOp, BIOp;
if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
PBIOp = BIOp = 0;
} else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
PBIOp = 0; BIOp = 1;
} else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
PBIOp = 1; BIOp = 0;
} else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
PBIOp = BIOp = 1;
} else {
PBIOp = BIOp = -1;
}
// Check to make sure that the other destination of this branch
// isn't BB itself. If so, this is an infinite loop that will
// keep getting unwound.
if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
PBIOp = BIOp = -1;
// Do not perform this transformation if it would require
// insertion of a large number of select instructions. For targets
// without predication/cmovs, this is a big pessimization.
if (PBIOp != -1) {
BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
unsigned NumPhis = 0;
for (BasicBlock::iterator II = CommonDest->begin();
isa<PHINode>(II); ++II, ++NumPhis) {
if (NumPhis > 2) {
// Disable this xform.
PBIOp = -1;
break;
}
}
}
// Finally, if everything is ok, fold the branches to logical ops.
if (PBIOp != -1) {
BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
// If OtherDest *is* BB, then this is a basic block with just
// a conditional branch in it, where one edge (OtherDesg) goes
// back to the block. We know that the program doesn't get
// stuck in the infinite loop, so the condition must be such
// that OtherDest isn't branched through. Forward to CommonDest,
// and avoid an infinite loop at optimizer time.
if (OtherDest == BB)
OtherDest = CommonDest;
DOUT << "FOLDING BRs:" << *PBI->getParent()
<< "AND: " << *BI->getParent();
// BI may have other predecessors. Because of this, we leave
// it alone, but modify PBI.
// Make sure we get to CommonDest on True&True directions.
Value *PBICond = PBI->getCondition();
if (PBIOp)
PBICond = BinaryOperator::createNot(PBICond,
PBICond->getName()+".not",
PBI);
Value *BICond = BI->getCondition();
if (BIOp)
BICond = BinaryOperator::createNot(BICond,
BICond->getName()+".not",
PBI);
// Merge the conditions.
Value *Cond =
BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
// Modify PBI to branch on the new condition to the new dests.
PBI->setCondition(Cond);
PBI->setSuccessor(0, CommonDest);
PBI->setSuccessor(1, OtherDest);
// OtherDest may have phi nodes. If so, add an entry from PBI's
// block that are identical to the entries for BI's block.
PHINode *PN;
for (BasicBlock::iterator II = OtherDest->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
Value *V = PN->getIncomingValueForBlock(BB);
PN->addIncoming(V, PBI->getParent());
}
// We know that the CommonDest already had an edge from PBI to
// it. If it has PHIs though, the PHIs may have different
// entries for BB and PBI's BB. If so, insert a select to make
// them agree.
for (BasicBlock::iterator II = CommonDest->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
Value * BIV = PN->getIncomingValueForBlock(BB);
unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
Value *PBIV = PN->getIncomingValue(PBBIdx);
if (BIV != PBIV) {
// Insert a select in PBI to pick the right value.
Value *NV = new SelectInst(PBICond, PBIV, BIV,
PBIV->getName()+".mux", PBI);
PN->setIncomingValue(PBBIdx, NV);
}
}
DOUT << "INTO: " << *PBI->getParent();
// This basic block is probably dead. We know it has at least
// one fewer predecessor.
return SimplifyCFG(BB) | true;
}
}
}
}
} else if (isa<UnreachableInst>(BB->getTerminator())) {
// If there are any instructions immediately before the unreachable that can
// be removed, do so.
Instruction *Unreachable = BB->getTerminator();
while (Unreachable != BB->begin()) {
BasicBlock::iterator BBI = Unreachable;
--BBI;
if (isa<CallInst>(BBI)) break;
// Delete this instruction
BB->getInstList().erase(BBI);
Changed = true;
}
// If the unreachable instruction is the first in the block, take a gander
// at all of the predecessors of this instruction, and simplify them.
if (&BB->front() == Unreachable) {
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
TerminatorInst *TI = Preds[i]->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isUnconditional()) {
if (BI->getSuccessor(0) == BB) {
new UnreachableInst(TI);
TI->eraseFromParent();
Changed = true;
}
} else {
if (BI->getSuccessor(0) == BB) {
new BranchInst(BI->getSuccessor(1), BI);
BI->eraseFromParent();
} else if (BI->getSuccessor(1) == BB) {
new BranchInst(BI->getSuccessor(0), BI);
BI->eraseFromParent();
Changed = true;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
if (SI->getSuccessor(i) == BB) {
BB->removePredecessor(SI->getParent());
SI->removeCase(i);
--i; --e;
Changed = true;
}
// If the default value is unreachable, figure out the most popular
// destination and make it the default.
if (SI->getSuccessor(0) == BB) {
std::map<BasicBlock*, unsigned> Popularity;
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
Popularity[SI->getSuccessor(i)]++;
// Find the most popular block.
unsigned MaxPop = 0;
BasicBlock *MaxBlock = 0;
for (std::map<BasicBlock*, unsigned>::iterator
I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
if (I->second > MaxPop) {
MaxPop = I->second;
MaxBlock = I->first;
}
}
if (MaxBlock) {
// Make this the new default, allowing us to delete any explicit
// edges to it.
SI->setSuccessor(0, MaxBlock);
Changed = true;
// If MaxBlock has phinodes in it, remove MaxPop-1 entries from
// it.
if (isa<PHINode>(MaxBlock->begin()))
for (unsigned i = 0; i != MaxPop-1; ++i)
MaxBlock->removePredecessor(SI->getParent());
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
if (SI->getSuccessor(i) == MaxBlock) {
SI->removeCase(i);
--i; --e;
}
}
}
} else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
if (II->getUnwindDest() == BB) {
// Convert the invoke to a call instruction. This would be a good
// place to note that the call does not throw though.
BranchInst *BI = new BranchInst(II->getNormalDest(), II);
II->removeFromParent(); // Take out of symbol table
// Insert the call now...
std::vector<Value*> Args(II->op_begin()+3, II->op_end());
CallInst *CI = new CallInst(II->getCalledValue(), Args,
II->getName(), BI);
CI->setCallingConv(II->getCallingConv());
// If the invoke produced a value, the Call does now instead.
II->replaceAllUsesWith(CI);
delete II;
Changed = true;
}
}
}
// If this block is now dead, remove it.
if (pred_begin(BB) == pred_end(BB)) {
// We know there are no successors, so just nuke the block.
M->getBasicBlockList().erase(BB);
return true;
}
}
}
// Merge basic blocks into their predecessor if there is only one distinct
// pred, and if there is only one distinct successor of the predecessor, and
// if there are no PHI nodes.
//
pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
BasicBlock *OnlyPred = *PI++;
for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
if (*PI != OnlyPred) {
OnlyPred = 0; // There are multiple different predecessors...
break;
}
BasicBlock *OnlySucc = 0;
if (OnlyPred && OnlyPred != BB && // Don't break self loops
OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
// Check to see if there is only one distinct successor...
succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
OnlySucc = BB;
for (; SI != SE; ++SI)
if (*SI != OnlySucc) {
OnlySucc = 0; // There are multiple distinct successors!
break;
}
}
if (OnlySucc) {
DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
// Resolve any PHI nodes at the start of the block. They are all
// guaranteed to have exactly one entry if they exist, unless there are
// multiple duplicate (but guaranteed to be equal) entries for the
// incoming edges. This occurs when there are multiple edges from
// OnlyPred to OnlySucc.
//
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
PN->replaceAllUsesWith(PN->getIncomingValue(0));
BB->getInstList().pop_front(); // Delete the phi node...
}
// Delete the unconditional branch from the predecessor...
OnlyPred->getInstList().pop_back();
// Move all definitions in the successor to the predecessor...
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(OnlyPred);
std::string OldName = BB->getName();
// Erase basic block from the function...
M->getBasicBlockList().erase(BB);
// Inherit predecessors name if it exists...
if (!OldName.empty() && !OnlyPred->hasName())
OnlyPred->setName(OldName);
return true;
}
// Otherwise, if this block only has a single predecessor, and if that block
// is a conditional branch, see if we can hoist any code from this block up
// into our predecessor.
if (OnlyPred)
if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
if (BI->isConditional()) {
// Get the other block.
BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
PI = pred_begin(OtherBB);
++PI;
if (PI == pred_end(OtherBB)) {
// We have a conditional branch to two blocks that are only reachable
// from the condbr. We know that the condbr dominates the two blocks,
// so see if there is any identical code in the "then" and "else"
// blocks. If so, we can hoist it up to the branching block.
Changed |= HoistThenElseCodeToIf(BI);
}
}
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
// Change br (X == 0 | X == 1), T, F into a switch instruction.
if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
Instruction *Cond = cast<Instruction>(BI->getCondition());
// If this is a bunch of seteq's or'd together, or if it's a bunch of
// 'setne's and'ed together, collect them.
Value *CompVal = 0;
std::vector<ConstantInt*> Values;
bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
if (CompVal && CompVal->getType()->isInteger()) {
// There might be duplicate constants in the list, which the switch
// instruction can't handle, remove them now.
std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
// Figure out which block is which destination.
BasicBlock *DefaultBB = BI->getSuccessor(1);
BasicBlock *EdgeBB = BI->getSuccessor(0);
if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
// Create the new switch instruction now.
SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
// Add all of the 'cases' to the switch instruction.
for (unsigned i = 0, e = Values.size(); i != e; ++i)
New->addCase(Values[i], EdgeBB);
// We added edges from PI to the EdgeBB. As such, if there were any
// PHI nodes in EdgeBB, they need entries to be added corresponding to
// the number of edges added.
for (BasicBlock::iterator BBI = EdgeBB->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
Value *InVal = PN->getIncomingValueForBlock(*PI);
for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
PN->addIncoming(InVal, *PI);
}
// Erase the old branch instruction.
(*PI)->getInstList().erase(BI);
// Erase the potentially condition tree that was used to computed the
// branch condition.
ErasePossiblyDeadInstructionTree(Cond);
return true;
}
}
// If there is a trivial two-entry PHI node in this basic block, and we can
// eliminate it, do so now.
if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
if (PN->getNumIncomingValues() == 2)
Changed |= FoldTwoEntryPHINode(PN);
return Changed;
}