mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
82ed17eb47
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95414 91177308-0d34-0410-b5e6-96231b3b80d8
570 lines
18 KiB
C++
570 lines
18 KiB
C++
//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the X86MCCodeEmitter class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-emitter"
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class X86MCCodeEmitter : public MCCodeEmitter {
|
|
X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
|
|
void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
|
|
const TargetMachine &TM;
|
|
const TargetInstrInfo &TII;
|
|
bool Is64BitMode;
|
|
public:
|
|
X86MCCodeEmitter(TargetMachine &tm)
|
|
: TM(tm), TII(*TM.getInstrInfo()) {
|
|
// FIXME: Get this from the right place.
|
|
Is64BitMode = false;
|
|
}
|
|
|
|
~X86MCCodeEmitter() {}
|
|
|
|
static unsigned GetX86RegNum(const MCOperand &MO) {
|
|
return X86RegisterInfo::getX86RegNum(MO.getReg());
|
|
}
|
|
|
|
void EmitByte(unsigned char C, raw_ostream &OS) const {
|
|
OS << (char)C;
|
|
}
|
|
|
|
void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
|
|
// Output the constant in little endian byte order.
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
EmitByte(Val & 255, OS);
|
|
Val >>= 8;
|
|
}
|
|
}
|
|
|
|
void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
|
|
int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
|
|
|
|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
|
|
unsigned RM) {
|
|
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
|
|
return RM | (RegOpcode << 3) | (Mod << 6);
|
|
}
|
|
|
|
void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
|
|
raw_ostream &OS) const {
|
|
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
|
|
}
|
|
|
|
void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
|
|
raw_ostream &OS) const {
|
|
// SIB byte is in the same format as the ModRMByte...
|
|
EmitByte(ModRMByte(SS, Index, Base), OS);
|
|
}
|
|
|
|
|
|
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
|
unsigned RegOpcodeField, intptr_t PCAdj,
|
|
raw_ostream &OS) const;
|
|
|
|
void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
|
|
TargetMachine &TM) {
|
|
return new X86MCCodeEmitter(TM);
|
|
}
|
|
|
|
|
|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
|
|
/// sign-extended field.
|
|
static bool isDisp8(int Value) {
|
|
return Value == (signed char)Value;
|
|
}
|
|
|
|
void X86MCCodeEmitter::
|
|
EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
|
|
int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
|
|
// If this is a simple integer displacement that doesn't require a relocation,
|
|
// emit it now.
|
|
if (!RelocOp) {
|
|
EmitConstant(DispVal, 4, OS);
|
|
return;
|
|
}
|
|
|
|
assert(0 && "Reloc not handled yet");
|
|
#if 0
|
|
// Otherwise, this is something that requires a relocation. Emit it as such
|
|
// now.
|
|
unsigned RelocType = Is64BitMode ?
|
|
(IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
|
if (RelocOp->isGlobal()) {
|
|
// In 64-bit static small code model, we could potentially emit absolute.
|
|
// But it's probably not beneficial. If the MCE supports using RIP directly
|
|
// do it, otherwise fallback to absolute (this is determined by IsPCRel).
|
|
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
|
|
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
|
|
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
|
|
emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
|
|
Adj, Indirect);
|
|
} else if (RelocOp->isSymbol()) {
|
|
emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
|
|
} else if (RelocOp->isCPI()) {
|
|
emitConstPoolAddress(RelocOp->getIndex(), RelocType,
|
|
RelocOp->getOffset(), Adj);
|
|
} else {
|
|
assert(RelocOp->isJTI() && "Unexpected machine operand!");
|
|
emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
|
|
unsigned RegOpcodeField,
|
|
intptr_t PCAdj,
|
|
raw_ostream &OS) const {
|
|
const MCOperand &Op3 = MI.getOperand(Op+3);
|
|
int DispVal = 0;
|
|
const MCOperand *DispForReloc = 0;
|
|
|
|
// Figure out what sort of displacement we have to handle here.
|
|
if (Op3.isImm()) {
|
|
DispVal = Op3.getImm();
|
|
} else {
|
|
assert(0 && "relocatable operand");
|
|
#if 0
|
|
if (Op3.isGlobal()) {
|
|
DispForReloc = &Op3;
|
|
} else if (Op3.isSymbol()) {
|
|
DispForReloc = &Op3;
|
|
} else if (Op3.isCPI()) {
|
|
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
|
|
DispForReloc = &Op3;
|
|
} else {
|
|
DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
|
|
DispVal += Op3.getOffset();
|
|
}
|
|
} else {
|
|
assert(Op3.isJTI());
|
|
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
|
|
DispForReloc = &Op3;
|
|
} else {
|
|
DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
const MCOperand &Base = MI.getOperand(Op);
|
|
const MCOperand &Scale = MI.getOperand(Op+1);
|
|
const MCOperand &IndexReg = MI.getOperand(Op+2);
|
|
unsigned BaseReg = Base.getReg();
|
|
|
|
// FIXME: Eliminate!
|
|
bool IsPCRel = false;
|
|
|
|
// Is a SIB byte needed?
|
|
// If no BaseReg, issue a RIP relative instruction only if the MCE can
|
|
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
|
|
// 2-7) and absolute references.
|
|
if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
|
|
IndexReg.getReg() == 0 &&
|
|
(BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
|
|
if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
|
|
// Emit special case [disp32] encoding
|
|
EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
|
|
EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
|
|
} else {
|
|
unsigned BaseRegNo = GetX86RegNum(Base);
|
|
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
|
|
// Emit simple indirect register encoding... [EAX] f.e.
|
|
EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
|
|
} else if (!DispForReloc && isDisp8(DispVal)) {
|
|
// Emit the disp8 encoding... [REG+disp8]
|
|
EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
|
|
EmitConstant(DispVal, 1, OS);
|
|
} else {
|
|
// Emit the most general non-SIB encoding: [REG+disp32]
|
|
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
|
|
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We need a SIB byte, so start by outputting the ModR/M byte first
|
|
assert(IndexReg.getReg() != X86::ESP &&
|
|
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
|
|
|
|
bool ForceDisp32 = false;
|
|
bool ForceDisp8 = false;
|
|
if (BaseReg == 0) {
|
|
// If there is no base register, we emit the special case SIB byte with
|
|
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
|
|
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
|
|
ForceDisp32 = true;
|
|
} else if (DispForReloc) {
|
|
// Emit the normal disp32 encoding.
|
|
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
|
|
ForceDisp32 = true;
|
|
} else if (DispVal == 0 && BaseReg != X86::EBP) {
|
|
// Emit no displacement ModR/M byte
|
|
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
|
|
} else if (isDisp8(DispVal)) {
|
|
// Emit the disp8 encoding.
|
|
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
|
|
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
|
} else {
|
|
// Emit the normal disp32 encoding.
|
|
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
|
|
}
|
|
|
|
// Calculate what the SS field value should be...
|
|
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
|
|
unsigned SS = SSTable[Scale.getImm()];
|
|
|
|
if (BaseReg == 0) {
|
|
// Handle the SIB byte for the case where there is no base, see Intel
|
|
// Manual 2A, table 2-7. The displacement has already been output.
|
|
unsigned IndexRegNo;
|
|
if (IndexReg.getReg())
|
|
IndexRegNo = GetX86RegNum(IndexReg);
|
|
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
|
|
IndexRegNo = 4;
|
|
EmitSIBByte(SS, IndexRegNo, 5, OS);
|
|
} else {
|
|
unsigned IndexRegNo;
|
|
if (IndexReg.getReg())
|
|
IndexRegNo = GetX86RegNum(IndexReg);
|
|
else
|
|
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
|
EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
|
|
}
|
|
|
|
// Do we need to output a displacement?
|
|
if (ForceDisp8)
|
|
EmitConstant(DispVal, 1, OS);
|
|
else if (DispVal != 0 || ForceDisp32)
|
|
EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
|
|
}
|
|
|
|
|
|
void X86MCCodeEmitter::
|
|
EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const TargetInstrDesc &Desc = TII.get(Opcode);
|
|
unsigned TSFlags = Desc.TSFlags;
|
|
|
|
// FIXME: We should emit the prefixes in exactly the same order as GAS does,
|
|
// in order to provide diffability.
|
|
|
|
// Emit the lock opcode prefix as needed.
|
|
if (TSFlags & X86II::LOCK)
|
|
EmitByte(0xF0, OS);
|
|
|
|
// Emit segment override opcode prefix as needed.
|
|
switch (TSFlags & X86II::SegOvrMask) {
|
|
default: assert(0 && "Invalid segment!");
|
|
case 0: break; // No segment override!
|
|
case X86II::FS:
|
|
EmitByte(0x64, OS);
|
|
break;
|
|
case X86II::GS:
|
|
EmitByte(0x65, OS);
|
|
break;
|
|
}
|
|
|
|
// Emit the repeat opcode prefix as needed.
|
|
if ((TSFlags & X86II::Op0Mask) == X86II::REP)
|
|
EmitByte(0xF3, OS);
|
|
|
|
// Emit the operand size opcode prefix as needed.
|
|
if (TSFlags & X86II::OpSize)
|
|
EmitByte(0x66, OS);
|
|
|
|
// Emit the address size opcode prefix as needed.
|
|
if (TSFlags & X86II::AdSize)
|
|
EmitByte(0x67, OS);
|
|
|
|
bool Need0FPrefix = false;
|
|
switch (TSFlags & X86II::Op0Mask) {
|
|
default: assert(0 && "Invalid prefix!");
|
|
case 0: break; // No prefix!
|
|
case X86II::REP: break; // already handled.
|
|
case X86II::TB: // Two-byte opcode prefix
|
|
case X86II::T8: // 0F 38
|
|
case X86II::TA: // 0F 3A
|
|
Need0FPrefix = true;
|
|
break;
|
|
case X86II::TF: // F2 0F 38
|
|
EmitByte(0xF2, OS);
|
|
Need0FPrefix = true;
|
|
break;
|
|
case X86II::XS: // F3 0F
|
|
EmitByte(0xF3, OS);
|
|
Need0FPrefix = true;
|
|
break;
|
|
case X86II::XD: // F2 0F
|
|
EmitByte(0xF2, OS);
|
|
Need0FPrefix = true;
|
|
break;
|
|
case X86II::D8: EmitByte(0xD8, OS); break;
|
|
case X86II::D9: EmitByte(0xD9, OS); break;
|
|
case X86II::DA: EmitByte(0xDA, OS); break;
|
|
case X86II::DB: EmitByte(0xDB, OS); break;
|
|
case X86II::DC: EmitByte(0xDC, OS); break;
|
|
case X86II::DD: EmitByte(0xDD, OS); break;
|
|
case X86II::DE: EmitByte(0xDE, OS); break;
|
|
case X86II::DF: EmitByte(0xDF, OS); break;
|
|
}
|
|
|
|
// Handle REX prefix.
|
|
#if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission?
|
|
if (Is64BitMode) {
|
|
if (unsigned REX = X86InstrInfo::determineREX(MI))
|
|
EmitByte(0x40 | REX, OS);
|
|
}
|
|
#endif
|
|
|
|
// 0x0F escape code must be emitted just before the opcode.
|
|
if (Need0FPrefix)
|
|
EmitByte(0x0F, OS);
|
|
|
|
// FIXME: Pull this up into previous switch if REX can be moved earlier.
|
|
switch (TSFlags & X86II::Op0Mask) {
|
|
case X86II::TF: // F2 0F 38
|
|
case X86II::T8: // 0F 38
|
|
EmitByte(0x38, OS);
|
|
break;
|
|
case X86II::TA: // 0F 3A
|
|
EmitByte(0x3A, OS);
|
|
break;
|
|
}
|
|
|
|
// If this is a two-address instruction, skip one of the register operands.
|
|
unsigned NumOps = Desc.getNumOperands();
|
|
unsigned CurOp = 0;
|
|
if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
|
|
++CurOp;
|
|
else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
|
|
// Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
|
|
--NumOps;
|
|
|
|
// FIXME: Can we kill off MRMInitReg??
|
|
|
|
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
|
|
switch (TSFlags & X86II::FormMask) {
|
|
default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
|
|
assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
|
|
case X86II::RawFrm: {
|
|
EmitByte(BaseOpcode, OS);
|
|
|
|
if (CurOp == NumOps)
|
|
break;
|
|
|
|
assert(0 && "Unimpl RawFrm expr");
|
|
break;
|
|
}
|
|
|
|
case X86II::AddRegFrm: {
|
|
EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
|
|
if (CurOp == NumOps)
|
|
break;
|
|
|
|
const MCOperand &MO1 = MI.getOperand(CurOp++);
|
|
if (MO1.isImm()) {
|
|
unsigned Size = X86II::getSizeOfImm(TSFlags);
|
|
EmitConstant(MO1.getImm(), Size, OS);
|
|
break;
|
|
}
|
|
|
|
assert(0 && "Unimpl AddRegFrm expr");
|
|
break;
|
|
}
|
|
|
|
case X86II::MRMDestReg:
|
|
EmitByte(BaseOpcode, OS);
|
|
EmitRegModRMByte(MI.getOperand(CurOp),
|
|
GetX86RegNum(MI.getOperand(CurOp+1)), OS);
|
|
CurOp += 2;
|
|
if (CurOp != NumOps)
|
|
EmitConstant(MI.getOperand(CurOp++).getImm(),
|
|
X86II::getSizeOfImm(TSFlags), OS);
|
|
break;
|
|
|
|
case X86II::MRMDestMem:
|
|
EmitByte(BaseOpcode, OS);
|
|
EmitMemModRMByte(MI, CurOp,
|
|
GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
|
|
0, OS);
|
|
CurOp += X86AddrNumOperands + 1;
|
|
if (CurOp != NumOps)
|
|
EmitConstant(MI.getOperand(CurOp++).getImm(),
|
|
X86II::getSizeOfImm(TSFlags), OS);
|
|
break;
|
|
|
|
case X86II::MRMSrcReg:
|
|
EmitByte(BaseOpcode, OS);
|
|
EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
|
|
OS);
|
|
CurOp += 2;
|
|
if (CurOp != NumOps)
|
|
EmitConstant(MI.getOperand(CurOp++).getImm(),
|
|
X86II::getSizeOfImm(TSFlags), OS);
|
|
break;
|
|
|
|
case X86II::MRMSrcMem: {
|
|
EmitByte(BaseOpcode, OS);
|
|
|
|
// FIXME: Maybe lea should have its own form? This is a horrible hack.
|
|
int AddrOperands;
|
|
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
|
|
Opcode == X86::LEA16r || Opcode == X86::LEA32r)
|
|
AddrOperands = X86AddrNumOperands - 1; // No segment register
|
|
else
|
|
AddrOperands = X86AddrNumOperands;
|
|
|
|
// FIXME: What is this actually doing?
|
|
intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
|
|
X86II::getSizeOfImm(TSFlags) : 0;
|
|
|
|
EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
|
|
PCAdj, OS);
|
|
CurOp += AddrOperands + 1;
|
|
if (CurOp != NumOps)
|
|
EmitConstant(MI.getOperand(CurOp++).getImm(),
|
|
X86II::getSizeOfImm(TSFlags), OS);
|
|
break;
|
|
}
|
|
|
|
case X86II::MRM0r: case X86II::MRM1r:
|
|
case X86II::MRM2r: case X86II::MRM3r:
|
|
case X86II::MRM4r: case X86II::MRM5r:
|
|
case X86II::MRM6r: case X86II::MRM7r: {
|
|
EmitByte(BaseOpcode, OS);
|
|
|
|
// Special handling of lfence, mfence, monitor, and mwait.
|
|
// FIXME: This is terrible, they should get proper encoding bits in TSFlags.
|
|
if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
|
|
Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
|
|
EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS);
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case X86::MONITOR: EmitByte(0xC8, OS); break;
|
|
case X86::MWAIT: EmitByte(0xC9, OS); break;
|
|
}
|
|
} else {
|
|
EmitRegModRMByte(MI.getOperand(CurOp++),
|
|
(TSFlags & X86II::FormMask)-X86II::MRM0r,
|
|
OS);
|
|
}
|
|
|
|
if (CurOp == NumOps)
|
|
break;
|
|
|
|
const MCOperand &MO1 = MI.getOperand(CurOp++);
|
|
if (MO1.isImm()) {
|
|
EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS);
|
|
break;
|
|
}
|
|
|
|
assert(0 && "relo unimpl");
|
|
#if 0
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
|
if (Opcode == X86::MOV64ri32)
|
|
rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
|
|
if (MO1.isGlobal()) {
|
|
bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
|
|
emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
|
|
Indirect);
|
|
} else if (MO1.isSymbol())
|
|
emitExternalSymbolAddress(MO1.getSymbolName(), rt);
|
|
else if (MO1.isCPI())
|
|
emitConstPoolAddress(MO1.getIndex(), rt);
|
|
else if (MO1.isJTI())
|
|
emitJumpTableAddress(MO1.getIndex(), rt);
|
|
break;
|
|
#endif
|
|
}
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
case X86II::MRM6m: case X86II::MRM7m: {
|
|
intptr_t PCAdj = 0;
|
|
if (CurOp + X86AddrNumOperands != NumOps) {
|
|
if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
|
|
PCAdj = X86II::getSizeOfImm(TSFlags);
|
|
else
|
|
PCAdj = 4;
|
|
}
|
|
|
|
EmitByte(BaseOpcode, OS);
|
|
EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
|
|
PCAdj, OS);
|
|
CurOp += X86AddrNumOperands;
|
|
|
|
if (CurOp == NumOps)
|
|
break;
|
|
|
|
const MCOperand &MO = MI.getOperand(CurOp++);
|
|
if (MO.isImm()) {
|
|
EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS);
|
|
break;
|
|
}
|
|
|
|
assert(0 && "relo not handled");
|
|
#if 0
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
|
|
if (Opcode == X86::MOV64mi32)
|
|
rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
|
|
if (MO.isGlobal()) {
|
|
bool Indirect = gvNeedsNonLazyPtr(MO, TM);
|
|
emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
|
|
Indirect);
|
|
} else if (MO.isSymbol())
|
|
emitExternalSymbolAddress(MO.getSymbolName(), rt);
|
|
else if (MO.isCPI())
|
|
emitConstPoolAddress(MO.getIndex(), rt);
|
|
else if (MO.isJTI())
|
|
emitJumpTableAddress(MO.getIndex(), rt);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case X86II::MRMInitReg:
|
|
EmitByte(BaseOpcode, OS);
|
|
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
|
|
EmitRegModRMByte(MI.getOperand(CurOp),
|
|
GetX86RegNum(MI.getOperand(CurOp)), OS);
|
|
++CurOp;
|
|
break;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// FIXME: Verify.
|
|
if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
|
|
errs() << "Cannot encode all operands of: ";
|
|
MI.dump();
|
|
errs() << '\n';
|
|
abort();
|
|
}
|
|
#endif
|
|
}
|