1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2024-12-24 22:32:47 +00:00
llvm-6502/test/CodeGen/CellSPU/shift_ops.ll
Scott Michel c9c8b2a804 CellSPU:
- Rename fcmp.ll test to fcmp32.ll, start adding new double tests to fcmp64.ll
- Fix select_bits.ll test
- Capitulate to the DAGCombiner and move i64 constant loads to instruction
  selection (SPUISelDAGtoDAG.cpp).

  <rant>DAGCombiner will insert all kinds of 64-bit optimizations after
  operation legalization occurs and now we have to do most of the work that
  instruction selection should be doing twice (once to determine if v2i64
  build_vector can be handled by SelectCode(), which then runs all of the
  predicates a second time to select the necessary instructions.) But,
  CellSPU is a good citizen.</rant>


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62990 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-26 03:31:40 +00:00

284 lines
6.5 KiB
LLVM

; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep {shlh } %t1.s | count 9
; RUN: grep {shlhi } %t1.s | count 3
; RUN: grep {shl } %t1.s | count 9
; RUN: grep {shli } %t1.s | count 3
; RUN: grep {xshw } %t1.s | count 5
; RUN: grep {and } %t1.s | count 5
; RUN: grep {andi } %t1.s | count 2
; RUN: grep {rotmi } %t1.s | count 2
; RUN: grep {rotqmbyi } %t1.s | count 1
; RUN: grep {rotqmbii } %t1.s | count 2
; RUN: grep {rotqmby } %t1.s | count 1
; RUN: grep {rotqmbi } %t1.s | count 1
; RUN: grep {rotqbyi } %t1.s | count 1
; RUN: grep {rotqbii } %t1.s | count 2
; RUN: grep {rotqbybi } %t1.s | count 1
; RUN: grep {sfi } %t1.s | count 3
target datalayout = "E-p:32:32:128-f64:64:128-f32:32:128-i64:32:128-i32:32:128-i16:16:128-i8:8:128-i1:8:128-a0:0:128-v128:128:128-s0:128:128"
target triple = "spu"
; Vector shifts are not currently supported in gcc or llvm assembly. These are
; not tested.
; Shift left i16 via register, note that the second operand to shl is promoted
; to a 32-bit type:
define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) {
%A = shl i16 %arg1, %arg2
ret i16 %A
}
define i16 @shlh_i16_2(i16 %arg1, i16 %arg2) {
%A = shl i16 %arg2, %arg1
ret i16 %A
}
define i16 @shlh_i16_3(i16 signext %arg1, i16 signext %arg2) signext {
%A = shl i16 %arg1, %arg2
ret i16 %A
}
define i16 @shlh_i16_4(i16 signext %arg1, i16 signext %arg2) signext {
%A = shl i16 %arg2, %arg1
ret i16 %A
}
define i16 @shlh_i16_5(i16 zeroext %arg1, i16 zeroext %arg2) zeroext {
%A = shl i16 %arg1, %arg2
ret i16 %A
}
define i16 @shlh_i16_6(i16 zeroext %arg1, i16 zeroext %arg2) zeroext {
%A = shl i16 %arg2, %arg1
ret i16 %A
}
; Shift left i16 with immediate:
define i16 @shlhi_i16_1(i16 %arg1) {
%A = shl i16 %arg1, 12
ret i16 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i16 @shlhi_i16_2(i16 %arg1) {
%A = shl i16 %arg1, 0
ret i16 %A
}
define i16 @shlhi_i16_3(i16 %arg1) {
%A = shl i16 16383, %arg1
ret i16 %A
}
; Should generate 0, 0 << arg1 = 0
define i16 @shlhi_i16_4(i16 %arg1) {
%A = shl i16 0, %arg1
ret i16 %A
}
define i16 @shlhi_i16_5(i16 signext %arg1) signext {
%A = shl i16 %arg1, 12
ret i16 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i16 @shlhi_i16_6(i16 signext %arg1) signext {
%A = shl i16 %arg1, 0
ret i16 %A
}
define i16 @shlhi_i16_7(i16 signext %arg1) signext {
%A = shl i16 16383, %arg1
ret i16 %A
}
; Should generate 0, 0 << arg1 = 0
define i16 @shlhi_i16_8(i16 signext %arg1) signext {
%A = shl i16 0, %arg1
ret i16 %A
}
define i16 @shlhi_i16_9(i16 zeroext %arg1) zeroext {
%A = shl i16 %arg1, 12
ret i16 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i16 @shlhi_i16_10(i16 zeroext %arg1) zeroext {
%A = shl i16 %arg1, 0
ret i16 %A
}
define i16 @shlhi_i16_11(i16 zeroext %arg1) zeroext {
%A = shl i16 16383, %arg1
ret i16 %A
}
; Should generate 0, 0 << arg1 = 0
define i16 @shlhi_i16_12(i16 zeroext %arg1) zeroext {
%A = shl i16 0, %arg1
ret i16 %A
}
; Shift left i32 via register, note that the second operand to shl is promoted
; to a 32-bit type:
define i32 @shl_i32_1(i32 %arg1, i32 %arg2) {
%A = shl i32 %arg1, %arg2
ret i32 %A
}
define i32 @shl_i32_2(i32 %arg1, i32 %arg2) {
%A = shl i32 %arg2, %arg1
ret i32 %A
}
define i32 @shl_i32_3(i32 signext %arg1, i32 signext %arg2) signext {
%A = shl i32 %arg1, %arg2
ret i32 %A
}
define i32 @shl_i32_4(i32 signext %arg1, i32 signext %arg2) signext {
%A = shl i32 %arg2, %arg1
ret i32 %A
}
define i32 @shl_i32_5(i32 zeroext %arg1, i32 zeroext %arg2) zeroext {
%A = shl i32 %arg1, %arg2
ret i32 %A
}
define i32 @shl_i32_6(i32 zeroext %arg1, i32 zeroext %arg2) zeroext {
%A = shl i32 %arg2, %arg1
ret i32 %A
}
; Shift left i32 with immediate:
define i32 @shli_i32_1(i32 %arg1) {
%A = shl i32 %arg1, 12
ret i32 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i32 @shli_i32_2(i32 %arg1) {
%A = shl i32 %arg1, 0
ret i32 %A
}
define i32 @shli_i32_3(i32 %arg1) {
%A = shl i32 16383, %arg1
ret i32 %A
}
; Should generate 0, 0 << arg1 = 0
define i32 @shli_i32_4(i32 %arg1) {
%A = shl i32 0, %arg1
ret i32 %A
}
define i32 @shli_i32_5(i32 signext %arg1) signext {
%A = shl i32 %arg1, 12
ret i32 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i32 @shli_i32_6(i32 signext %arg1) signext {
%A = shl i32 %arg1, 0
ret i32 %A
}
define i32 @shli_i32_7(i32 signext %arg1) signext {
%A = shl i32 16383, %arg1
ret i32 %A
}
; Should generate 0, 0 << arg1 = 0
define i32 @shli_i32_8(i32 signext %arg1) signext {
%A = shl i32 0, %arg1
ret i32 %A
}
define i32 @shli_i32_9(i32 zeroext %arg1) zeroext {
%A = shl i32 %arg1, 12
ret i32 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i32 @shli_i32_10(i32 zeroext %arg1) zeroext {
%A = shl i32 %arg1, 0
ret i32 %A
}
define i32 @shli_i32_11(i32 zeroext %arg1) zeroext {
%A = shl i32 16383, %arg1
ret i32 %A
}
; Should generate 0, 0 << arg1 = 0
define i32 @shli_i32_12(i32 zeroext %arg1) zeroext {
%A = shl i32 0, %arg1
ret i32 %A
}
;; i64 shift left
define i64 @shl_i64_1(i64 %arg1) {
%A = shl i64 %arg1, 9
ret i64 %A
}
define i64 @shl_i64_2(i64 %arg1) {
%A = shl i64 %arg1, 3
ret i64 %A
}
define i64 @shl_i64_3(i64 %arg1, i32 %shift) {
%1 = zext i32 %shift to i64
%2 = shl i64 %arg1, %1
ret i64 %2
}
;; i64 shift right logical (shift 0s from the right)
define i64 @lshr_i64_1(i64 %arg1) {
%1 = lshr i64 %arg1, 9
ret i64 %1
}
define i64 @lshr_i64_2(i64 %arg1) {
%1 = lshr i64 %arg1, 3
ret i64 %1
}
define i64 @lshr_i64_3(i64 %arg1, i32 %shift) {
%1 = zext i32 %shift to i64
%2 = lshr i64 %arg1, %1
ret i64 %2
}
;; i64 shift right arithmetic (shift 1s from the right)
define i64 @ashr_i64_1(i64 %arg) {
%1 = ashr i64 %arg, 9
ret i64 %1
}
define i64 @ashr_i64_2(i64 %arg) {
%1 = ashr i64 %arg, 3
ret i64 %1
}
define i64 @ashr_i64_3(i64 %arg1, i32 %shift) {
%1 = zext i32 %shift to i64
%2 = ashr i64 %arg1, %1
ret i64 %2
}
define i32 @hi32_i64(i64 %arg) {
%1 = lshr i64 %arg, 32
%2 = trunc i64 %1 to i32
ret i32 %2
}