mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-08 04:07:07 +00:00
75046b4891
Summary: According to the ABI documentation, f128 and {f128} should both be returned in $f0 and $f2. However, this doesn't match GCC's behaviour which is to return f128 in $f0 and $f2, but {f128} in $f0 and $f1. Reviewers: vmedic Reviewed By: vmedic Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D5578 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219196 91177308-0d34-0410-b5e6-96231b3b80d8
3895 lines
150 KiB
C++
3895 lines
150 KiB
C++
//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that Mips uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "MipsISelLowering.h"
|
|
#include "InstPrinter/MipsInstPrinter.h"
|
|
#include "MCTargetDesc/MipsBaseInfo.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "MipsTargetObjectFile.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cctype>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mips-lower"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
static cl::opt<bool>
|
|
LargeGOT("mxgot", cl::Hidden,
|
|
cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
|
|
cl::desc("MIPS: Don't trap on integer division by zero."),
|
|
cl::init(false));
|
|
|
|
cl::opt<bool>
|
|
EnableMipsFastISel("mips-fast-isel", cl::Hidden,
|
|
cl::desc("Allow mips-fast-isel to be used"),
|
|
cl::init(false));
|
|
|
|
static const MCPhysReg O32IntRegs[4] = {
|
|
Mips::A0, Mips::A1, Mips::A2, Mips::A3
|
|
};
|
|
|
|
static const MCPhysReg Mips64IntRegs[8] = {
|
|
Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
|
|
Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
|
|
};
|
|
|
|
static const MCPhysReg Mips64DPRegs[8] = {
|
|
Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
|
|
Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
|
|
};
|
|
|
|
static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode);
|
|
|
|
namespace {
|
|
class MipsCCState : public CCState {
|
|
private:
|
|
/// Identify lowered values that originated from f128 arguments and record
|
|
/// this for use by RetCC_MipsN.
|
|
void
|
|
PreAnalyzeCallResultForF128(const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const TargetLowering::CallLoweringInfo &CLI) {
|
|
for (unsigned i = 0; i < Ins.size(); ++i)
|
|
OriginalArgWasF128.push_back(
|
|
originalTypeIsF128(CLI.RetTy, CLI.Callee.getNode()));
|
|
}
|
|
|
|
/// Identify lowered values that originated from f128 arguments and record
|
|
/// this for use by RetCC_MipsN.
|
|
void PreAnalyzeReturnForF128(const SmallVectorImpl<ISD::OutputArg> &Outs) {
|
|
const MachineFunction &MF = getMachineFunction();
|
|
for (unsigned i = 0; i < Outs.size(); ++i)
|
|
OriginalArgWasF128.push_back(
|
|
originalTypeIsF128(MF.getFunction()->getReturnType(), nullptr));
|
|
}
|
|
|
|
/// Records whether the value has been lowered from an f128.
|
|
SmallVector<bool, 4> OriginalArgWasF128;
|
|
|
|
public:
|
|
MipsCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
|
|
SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
|
|
: CCState(CC, isVarArg, MF, locs, C) {}
|
|
|
|
void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
CCAssignFn Fn,
|
|
const TargetLowering::CallLoweringInfo &CLI) {
|
|
PreAnalyzeCallResultForF128(Ins, CLI);
|
|
CCState::AnalyzeCallResult(Ins, Fn);
|
|
OriginalArgWasF128.clear();
|
|
}
|
|
|
|
void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
CCAssignFn Fn) {
|
|
PreAnalyzeReturnForF128(Outs);
|
|
CCState::AnalyzeReturn(Outs, Fn);
|
|
OriginalArgWasF128.clear();
|
|
}
|
|
|
|
bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
|
|
CCAssignFn Fn) {
|
|
PreAnalyzeReturnForF128(ArgsFlags);
|
|
bool Return = CCState::CheckReturn(ArgsFlags, Fn);
|
|
OriginalArgWasF128.clear();
|
|
return Return;
|
|
}
|
|
|
|
bool WasOriginalArgF128(unsigned ValNo) { return OriginalArgWasF128[ValNo]; }
|
|
};
|
|
}
|
|
|
|
// If I is a shifted mask, set the size (Size) and the first bit of the
|
|
// mask (Pos), and return true.
|
|
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
|
|
static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
|
|
if (!isShiftedMask_64(I))
|
|
return false;
|
|
|
|
Size = CountPopulation_64(I);
|
|
Pos = countTrailingZeros(I);
|
|
return true;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
|
|
MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
|
|
return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
|
|
N->getOffset(), Flag);
|
|
}
|
|
|
|
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case MipsISD::JmpLink: return "MipsISD::JmpLink";
|
|
case MipsISD::TailCall: return "MipsISD::TailCall";
|
|
case MipsISD::Hi: return "MipsISD::Hi";
|
|
case MipsISD::Lo: return "MipsISD::Lo";
|
|
case MipsISD::GPRel: return "MipsISD::GPRel";
|
|
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
|
|
case MipsISD::Ret: return "MipsISD::Ret";
|
|
case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
|
|
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
|
|
case MipsISD::FPCmp: return "MipsISD::FPCmp";
|
|
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
|
|
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
|
|
case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
|
|
case MipsISD::MFHI: return "MipsISD::MFHI";
|
|
case MipsISD::MFLO: return "MipsISD::MFLO";
|
|
case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
|
|
case MipsISD::Mult: return "MipsISD::Mult";
|
|
case MipsISD::Multu: return "MipsISD::Multu";
|
|
case MipsISD::MAdd: return "MipsISD::MAdd";
|
|
case MipsISD::MAddu: return "MipsISD::MAddu";
|
|
case MipsISD::MSub: return "MipsISD::MSub";
|
|
case MipsISD::MSubu: return "MipsISD::MSubu";
|
|
case MipsISD::DivRem: return "MipsISD::DivRem";
|
|
case MipsISD::DivRemU: return "MipsISD::DivRemU";
|
|
case MipsISD::DivRem16: return "MipsISD::DivRem16";
|
|
case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
|
|
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
|
|
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
|
|
case MipsISD::Wrapper: return "MipsISD::Wrapper";
|
|
case MipsISD::Sync: return "MipsISD::Sync";
|
|
case MipsISD::Ext: return "MipsISD::Ext";
|
|
case MipsISD::Ins: return "MipsISD::Ins";
|
|
case MipsISD::LWL: return "MipsISD::LWL";
|
|
case MipsISD::LWR: return "MipsISD::LWR";
|
|
case MipsISD::SWL: return "MipsISD::SWL";
|
|
case MipsISD::SWR: return "MipsISD::SWR";
|
|
case MipsISD::LDL: return "MipsISD::LDL";
|
|
case MipsISD::LDR: return "MipsISD::LDR";
|
|
case MipsISD::SDL: return "MipsISD::SDL";
|
|
case MipsISD::SDR: return "MipsISD::SDR";
|
|
case MipsISD::EXTP: return "MipsISD::EXTP";
|
|
case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
|
|
case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
|
|
case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
|
|
case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
|
|
case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
|
|
case MipsISD::SHILO: return "MipsISD::SHILO";
|
|
case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
|
|
case MipsISD::MULT: return "MipsISD::MULT";
|
|
case MipsISD::MULTU: return "MipsISD::MULTU";
|
|
case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
|
|
case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
|
|
case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
|
|
case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
|
|
case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
|
|
case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
|
|
case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
|
|
case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
|
|
case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
|
|
case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
|
|
case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
|
|
case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
|
|
case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
|
|
case MipsISD::VCEQ: return "MipsISD::VCEQ";
|
|
case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
|
|
case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
|
|
case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
|
|
case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
|
|
case MipsISD::VSMAX: return "MipsISD::VSMAX";
|
|
case MipsISD::VSMIN: return "MipsISD::VSMIN";
|
|
case MipsISD::VUMAX: return "MipsISD::VUMAX";
|
|
case MipsISD::VUMIN: return "MipsISD::VUMIN";
|
|
case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
|
|
case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
|
|
case MipsISD::VNOR: return "MipsISD::VNOR";
|
|
case MipsISD::VSHF: return "MipsISD::VSHF";
|
|
case MipsISD::SHF: return "MipsISD::SHF";
|
|
case MipsISD::ILVEV: return "MipsISD::ILVEV";
|
|
case MipsISD::ILVOD: return "MipsISD::ILVOD";
|
|
case MipsISD::ILVL: return "MipsISD::ILVL";
|
|
case MipsISD::ILVR: return "MipsISD::ILVR";
|
|
case MipsISD::PCKEV: return "MipsISD::PCKEV";
|
|
case MipsISD::PCKOD: return "MipsISD::PCKOD";
|
|
case MipsISD::INSVE: return "MipsISD::INSVE";
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
|
|
MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI)
|
|
: TargetLowering(TM, new MipsTargetObjectFile()), Subtarget(STI) {
|
|
// Mips does not have i1 type, so use i32 for
|
|
// setcc operations results (slt, sgt, ...).
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
// The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
|
|
// does. Integer booleans still use 0 and 1.
|
|
if (Subtarget.hasMips32r6())
|
|
setBooleanContents(ZeroOrOneBooleanContent,
|
|
ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Load extented operations for i1 types must be promoted
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// MIPS doesn't have extending float->double load/store
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// Used by legalize types to correctly generate the setcc result.
|
|
// Without this, every float setcc comes with a AND/OR with the result,
|
|
// we don't want this, since the fpcmp result goes to a flag register,
|
|
// which is used implicitly by brcond and select operations.
|
|
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
|
|
|
|
// Mips Custom Operations
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
|
|
if (Subtarget.isGP64bit()) {
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::i64, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
}
|
|
|
|
if (!Subtarget.isGP64bit()) {
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::ADD, MVT::i32, Custom);
|
|
if (Subtarget.isGP64bit())
|
|
setOperationAction(ISD::ADD, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Operations not directly supported by Mips.
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
if (Subtarget.hasCnMips()) {
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
|
|
} else {
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
|
|
}
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
|
|
|
|
if (!Subtarget.hasMips32r2())
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand);
|
|
|
|
if (!Subtarget.hasMips64r2())
|
|
setOperationAction(ISD::ROTR, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Use the default for now
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
|
|
|
|
setInsertFencesForAtomic(true);
|
|
|
|
if (!Subtarget.hasMips32r2()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
}
|
|
|
|
// MIPS16 lacks MIPS32's clz and clo instructions.
|
|
if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
if (!Subtarget.hasMips64())
|
|
setOperationAction(ISD::CTLZ, MVT::i64, Expand);
|
|
|
|
if (!Subtarget.hasMips32r2())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
if (!Subtarget.hasMips64r2())
|
|
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
|
|
|
|
if (Subtarget.isGP64bit()) {
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
|
|
setTruncStoreAction(MVT::i64, MVT::i32, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
setTargetDAGCombine(ISD::SDIVREM);
|
|
setTargetDAGCombine(ISD::UDIVREM);
|
|
setTargetDAGCombine(ISD::SELECT);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::ADD);
|
|
|
|
setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
|
|
|
|
// The arguments on the stack are defined in terms of 4-byte slots on O32
|
|
// and 8-byte slots on N32/N64.
|
|
setMinStackArgumentAlignment(
|
|
(Subtarget.isABI_N32() || Subtarget.isABI_N64()) ? 8 : 4);
|
|
|
|
setStackPointerRegisterToSaveRestore(Subtarget.isABI_N64() ? Mips::SP_64
|
|
: Mips::SP);
|
|
|
|
setExceptionPointerRegister(Subtarget.isABI_N64() ? Mips::A0_64 : Mips::A0);
|
|
setExceptionSelectorRegister(Subtarget.isABI_N64() ? Mips::A1_64 : Mips::A1);
|
|
|
|
MaxStoresPerMemcpy = 16;
|
|
|
|
isMicroMips = Subtarget.inMicroMipsMode();
|
|
}
|
|
|
|
const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI) {
|
|
if (STI.inMips16Mode())
|
|
return llvm::createMips16TargetLowering(TM, STI);
|
|
|
|
return llvm::createMipsSETargetLowering(TM, STI);
|
|
}
|
|
|
|
// Create a fast isel object.
|
|
FastISel *
|
|
MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
if (!EnableMipsFastISel)
|
|
return TargetLowering::createFastISel(funcInfo, libInfo);
|
|
return Mips::createFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector())
|
|
return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
EVT Ty = N->getValueType(0);
|
|
unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
|
|
unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
|
|
unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
|
|
MipsISD::DivRemU16;
|
|
SDLoc DL(N);
|
|
|
|
SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
|
|
N->getOperand(0), N->getOperand(1));
|
|
SDValue InChain = DAG.getEntryNode();
|
|
SDValue InGlue = DivRem;
|
|
|
|
// insert MFLO
|
|
if (N->hasAnyUseOfValue(0)) {
|
|
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
|
|
InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
|
|
InChain = CopyFromLo.getValue(1);
|
|
InGlue = CopyFromLo.getValue(2);
|
|
}
|
|
|
|
// insert MFHI
|
|
if (N->hasAnyUseOfValue(1)) {
|
|
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
|
|
HI, Ty, InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown fp condition code!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: return Mips::FCOND_OEQ;
|
|
case ISD::SETUNE: return Mips::FCOND_UNE;
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: return Mips::FCOND_OLT;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: return Mips::FCOND_OGT;
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: return Mips::FCOND_OLE;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: return Mips::FCOND_OGE;
|
|
case ISD::SETULT: return Mips::FCOND_ULT;
|
|
case ISD::SETULE: return Mips::FCOND_ULE;
|
|
case ISD::SETUGT: return Mips::FCOND_UGT;
|
|
case ISD::SETUGE: return Mips::FCOND_UGE;
|
|
case ISD::SETUO: return Mips::FCOND_UN;
|
|
case ISD::SETO: return Mips::FCOND_OR;
|
|
case ISD::SETNE:
|
|
case ISD::SETONE: return Mips::FCOND_ONE;
|
|
case ISD::SETUEQ: return Mips::FCOND_UEQ;
|
|
}
|
|
}
|
|
|
|
|
|
/// This function returns true if the floating point conditional branches and
|
|
/// conditional moves which use condition code CC should be inverted.
|
|
static bool invertFPCondCodeUser(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return false;
|
|
|
|
assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
|
|
"Illegal Condition Code");
|
|
|
|
return true;
|
|
}
|
|
|
|
// Creates and returns an FPCmp node from a setcc node.
|
|
// Returns Op if setcc is not a floating point comparison.
|
|
static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
|
|
// must be a SETCC node
|
|
if (Op.getOpcode() != ISD::SETCC)
|
|
return Op;
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
|
|
if (!LHS.getValueType().isFloatingPoint())
|
|
return Op;
|
|
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
|
|
// node if necessary.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
|
|
DAG.getConstant(condCodeToFCC(CC), MVT::i32));
|
|
}
|
|
|
|
// Creates and returns a CMovFPT/F node.
|
|
static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
|
|
SDValue False, SDLoc DL) {
|
|
ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
|
|
bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
|
|
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
|
|
|
|
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
|
|
True.getValueType(), True, FCC0, False, Cond);
|
|
}
|
|
|
|
static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue SetCC = N->getOperand(0);
|
|
|
|
if ((SetCC.getOpcode() != ISD::SETCC) ||
|
|
!SetCC.getOperand(0).getValueType().isInteger())
|
|
return SDValue();
|
|
|
|
SDValue False = N->getOperand(2);
|
|
EVT FalseTy = False.getValueType();
|
|
|
|
if (!FalseTy.isInteger())
|
|
return SDValue();
|
|
|
|
ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
|
|
|
|
// If the RHS (False) is 0, we swap the order of the operands
|
|
// of ISD::SELECT (obviously also inverting the condition) so that we can
|
|
// take advantage of conditional moves using the $0 register.
|
|
// Example:
|
|
// return (a != 0) ? x : 0;
|
|
// load $reg, x
|
|
// movz $reg, $0, a
|
|
if (!FalseC)
|
|
return SDValue();
|
|
|
|
const SDLoc DL(N);
|
|
|
|
if (!FalseC->getZExtValue()) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
|
|
SDValue True = N->getOperand(1);
|
|
|
|
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
|
|
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
|
|
|
|
return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
|
|
}
|
|
|
|
// If both operands are integer constants there's a possibility that we
|
|
// can do some interesting optimizations.
|
|
SDValue True = N->getOperand(1);
|
|
ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
|
|
|
|
if (!TrueC || !True.getValueType().isInteger())
|
|
return SDValue();
|
|
|
|
// We'll also ignore MVT::i64 operands as this optimizations proves
|
|
// to be ineffective because of the required sign extensions as the result
|
|
// of a SETCC operator is always MVT::i32 for non-vector types.
|
|
if (True.getValueType() == MVT::i64)
|
|
return SDValue();
|
|
|
|
int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
|
|
|
|
// 1) (a < x) ? y : y-1
|
|
// slti $reg1, a, x
|
|
// addiu $reg2, $reg1, y-1
|
|
if (Diff == 1)
|
|
return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
|
|
|
|
// 2) (a < x) ? y-1 : y
|
|
// slti $reg1, a, x
|
|
// xor $reg1, $reg1, 1
|
|
// addiu $reg2, $reg1, y-1
|
|
if (Diff == -1) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
|
|
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
|
|
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
|
|
return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
|
|
}
|
|
|
|
// Couldn't optimize.
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// Pattern match EXT.
|
|
// $dst = and ((sra or srl) $src , pos), (2**size - 1)
|
|
// => ext $dst, $src, size, pos
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
|
|
return SDValue();
|
|
|
|
SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
|
|
unsigned ShiftRightOpc = ShiftRight.getOpcode();
|
|
|
|
// Op's first operand must be a shift right.
|
|
if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
|
|
return SDValue();
|
|
|
|
// The second operand of the shift must be an immediate.
|
|
ConstantSDNode *CN;
|
|
if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
|
|
return SDValue();
|
|
|
|
uint64_t Pos = CN->getZExtValue();
|
|
uint64_t SMPos, SMSize;
|
|
|
|
// Op's second operand must be a shifted mask.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
|
|
!isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
|
|
return SDValue();
|
|
|
|
// Return if the shifted mask does not start at bit 0 or the sum of its size
|
|
// and Pos exceeds the word's size.
|
|
EVT ValTy = N->getValueType(0);
|
|
if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
|
|
ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
|
|
DAG.getConstant(SMSize, MVT::i32));
|
|
}
|
|
|
|
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// Pattern match INS.
|
|
// $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
|
|
// where mask1 = (2**size - 1) << pos, mask0 = ~mask1
|
|
// => ins $dst, $src, size, pos, $src1
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
|
|
return SDValue();
|
|
|
|
SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
|
|
uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
|
|
ConstantSDNode *CN;
|
|
|
|
// See if Op's first operand matches (and $src1 , mask0).
|
|
if (And0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
|
|
!isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
|
|
return SDValue();
|
|
|
|
// See if Op's second operand matches (and (shl $src, pos), mask1).
|
|
if (And1.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
|
|
!isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
|
|
return SDValue();
|
|
|
|
// The shift masks must have the same position and size.
|
|
if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
|
|
return SDValue();
|
|
|
|
SDValue Shl = And1.getOperand(0);
|
|
if (Shl.getOpcode() != ISD::SHL)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
|
|
return SDValue();
|
|
|
|
unsigned Shamt = CN->getZExtValue();
|
|
|
|
// Return if the shift amount and the first bit position of mask are not the
|
|
// same.
|
|
EVT ValTy = N->getValueType(0);
|
|
if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
|
|
DAG.getConstant(SMPos0, MVT::i32),
|
|
DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
|
|
}
|
|
|
|
static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
|
|
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue Add = N->getOperand(1);
|
|
|
|
if (Add.getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
SDValue Lo = Add.getOperand(1);
|
|
|
|
if ((Lo.getOpcode() != MipsISD::Lo) ||
|
|
(Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
|
|
return SDValue();
|
|
|
|
EVT ValTy = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
|
|
Add.getOperand(0));
|
|
return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
|
|
const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned Opc = N->getOpcode();
|
|
|
|
switch (Opc) {
|
|
default: break;
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return performDivRemCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SELECT:
|
|
return performSELECTCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::AND:
|
|
return performANDCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::OR:
|
|
return performORCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::ADD:
|
|
return performADDCombine(N, DAG, DCI, Subtarget);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
void
|
|
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
|
|
|
|
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
|
|
Results.push_back(Res.getValue(I));
|
|
}
|
|
|
|
void
|
|
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
return LowerOperationWrapper(N, Results, DAG);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerOperation(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
switch (Op.getOpcode())
|
|
{
|
|
case ISD::BR_JT: return lowerBR_JT(Op, DAG);
|
|
case ISD::BRCOND: return lowerBRCOND(Op, DAG);
|
|
case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return lowerJumpTable(Op, DAG);
|
|
case ISD::SELECT: return lowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG);
|
|
case ISD::SETCC: return lowerSETCC(Op, DAG);
|
|
case ISD::VASTART: return lowerVASTART(Op, DAG);
|
|
case ISD::VAARG: return lowerVAARG(Op, DAG);
|
|
case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
|
|
case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
|
|
case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
|
|
case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
|
|
case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
|
|
case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
|
|
case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
|
|
case ISD::LOAD: return lowerLOAD(Op, DAG);
|
|
case ISD::STORE: return lowerSTORE(Op, DAG);
|
|
case ISD::ADD: return lowerADD(Op, DAG);
|
|
case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lower helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// addLiveIn - This helper function adds the specified physical register to the
|
|
// MachineFunction as a live in value. It also creates a corresponding
|
|
// virtual register for it.
|
|
static unsigned
|
|
addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
|
|
{
|
|
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
MF.getRegInfo().addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI,
|
|
MachineBasicBlock &MBB,
|
|
const TargetInstrInfo &TII,
|
|
bool Is64Bit) {
|
|
if (NoZeroDivCheck)
|
|
return &MBB;
|
|
|
|
// Insert instruction "teq $divisor_reg, $zero, 7".
|
|
MachineBasicBlock::iterator I(MI);
|
|
MachineInstrBuilder MIB;
|
|
MachineOperand &Divisor = MI->getOperand(2);
|
|
MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
|
|
.addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
|
|
.addReg(Mips::ZERO).addImm(7);
|
|
|
|
// Use the 32-bit sub-register if this is a 64-bit division.
|
|
if (Is64Bit)
|
|
MIB->getOperand(0).setSubReg(Mips::sub_32);
|
|
|
|
// Clear Divisor's kill flag.
|
|
Divisor.setIsKill(false);
|
|
|
|
// We would normally delete the original instruction here but in this case
|
|
// we only needed to inject an additional instruction rather than replace it.
|
|
|
|
return &MBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
case Mips::ATOMIC_LOAD_ADD_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
|
|
case Mips::ATOMIC_LOAD_ADD_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
|
|
case Mips::ATOMIC_LOAD_ADD_I32:
|
|
return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
|
|
case Mips::ATOMIC_LOAD_ADD_I64:
|
|
return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
|
|
|
|
case Mips::ATOMIC_LOAD_AND_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
|
|
case Mips::ATOMIC_LOAD_AND_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
|
|
case Mips::ATOMIC_LOAD_AND_I32:
|
|
return emitAtomicBinary(MI, BB, 4, Mips::AND);
|
|
case Mips::ATOMIC_LOAD_AND_I64:
|
|
return emitAtomicBinary(MI, BB, 8, Mips::AND64);
|
|
|
|
case Mips::ATOMIC_LOAD_OR_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
|
|
case Mips::ATOMIC_LOAD_OR_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
|
|
case Mips::ATOMIC_LOAD_OR_I32:
|
|
return emitAtomicBinary(MI, BB, 4, Mips::OR);
|
|
case Mips::ATOMIC_LOAD_OR_I64:
|
|
return emitAtomicBinary(MI, BB, 8, Mips::OR64);
|
|
|
|
case Mips::ATOMIC_LOAD_XOR_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
|
|
case Mips::ATOMIC_LOAD_XOR_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
|
|
case Mips::ATOMIC_LOAD_XOR_I32:
|
|
return emitAtomicBinary(MI, BB, 4, Mips::XOR);
|
|
case Mips::ATOMIC_LOAD_XOR_I64:
|
|
return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
|
|
|
|
case Mips::ATOMIC_LOAD_NAND_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
|
|
case Mips::ATOMIC_LOAD_NAND_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
|
|
case Mips::ATOMIC_LOAD_NAND_I32:
|
|
return emitAtomicBinary(MI, BB, 4, 0, true);
|
|
case Mips::ATOMIC_LOAD_NAND_I64:
|
|
return emitAtomicBinary(MI, BB, 8, 0, true);
|
|
|
|
case Mips::ATOMIC_LOAD_SUB_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
|
|
case Mips::ATOMIC_LOAD_SUB_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
|
|
case Mips::ATOMIC_LOAD_SUB_I32:
|
|
return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
|
|
case Mips::ATOMIC_LOAD_SUB_I64:
|
|
return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
|
|
|
|
case Mips::ATOMIC_SWAP_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1, 0);
|
|
case Mips::ATOMIC_SWAP_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2, 0);
|
|
case Mips::ATOMIC_SWAP_I32:
|
|
return emitAtomicBinary(MI, BB, 4, 0);
|
|
case Mips::ATOMIC_SWAP_I64:
|
|
return emitAtomicBinary(MI, BB, 8, 0);
|
|
|
|
case Mips::ATOMIC_CMP_SWAP_I8:
|
|
return emitAtomicCmpSwapPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_CMP_SWAP_I16:
|
|
return emitAtomicCmpSwapPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_CMP_SWAP_I32:
|
|
return emitAtomicCmpSwap(MI, BB, 4);
|
|
case Mips::ATOMIC_CMP_SWAP_I64:
|
|
return emitAtomicCmpSwap(MI, BB, 8);
|
|
case Mips::PseudoSDIV:
|
|
case Mips::PseudoUDIV:
|
|
case Mips::DIV:
|
|
case Mips::DIVU:
|
|
case Mips::MOD:
|
|
case Mips::MODU:
|
|
return insertDivByZeroTrap(
|
|
MI, *BB, *getTargetMachine().getSubtargetImpl()->getInstrInfo(), false);
|
|
case Mips::PseudoDSDIV:
|
|
case Mips::PseudoDUDIV:
|
|
case Mips::DDIV:
|
|
case Mips::DDIVU:
|
|
case Mips::DMOD:
|
|
case Mips::DMODU:
|
|
return insertDivByZeroTrap(
|
|
MI, *BB, *getTargetMachine().getSubtargetImpl()->getInstrInfo(), true);
|
|
case Mips::SEL_D:
|
|
return emitSEL_D(MI, BB);
|
|
}
|
|
}
|
|
|
|
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
|
|
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned Size, unsigned BinOpcode,
|
|
bool Nand) const {
|
|
assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned LL, SC, AND, NOR, ZERO, BEQ;
|
|
|
|
if (Size == 4) {
|
|
if (isMicroMips) {
|
|
LL = Mips::LL_MM;
|
|
SC = Mips::SC_MM;
|
|
} else {
|
|
LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL;
|
|
SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC;
|
|
}
|
|
AND = Mips::AND;
|
|
NOR = Mips::NOR;
|
|
ZERO = Mips::ZERO;
|
|
BEQ = Mips::BEQ;
|
|
} else {
|
|
LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
|
|
SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
|
|
AND = Mips::AND64;
|
|
NOR = Mips::NOR64;
|
|
ZERO = Mips::ZERO_64;
|
|
BEQ = Mips::BEQ64;
|
|
}
|
|
|
|
unsigned OldVal = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned Incr = MI->getOperand(2).getReg();
|
|
|
|
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned AndRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(exitMBB);
|
|
|
|
// loopMBB:
|
|
// ll oldval, 0(ptr)
|
|
// <binop> storeval, oldval, incr
|
|
// sc success, storeval, 0(ptr)
|
|
// beq success, $0, loopMBB
|
|
BB = loopMBB;
|
|
BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
|
|
if (Nand) {
|
|
// and andres, oldval, incr
|
|
// nor storeval, $0, andres
|
|
BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
|
|
BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
|
|
} else if (BinOpcode) {
|
|
// <binop> storeval, oldval, incr
|
|
BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
|
|
} else {
|
|
StoreVal = Incr;
|
|
}
|
|
BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
|
|
BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
|
|
MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
|
|
unsigned SrcReg) const {
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
if (Subtarget.hasMips32r2() && Size == 1) {
|
|
BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
|
|
return BB;
|
|
}
|
|
|
|
if (Subtarget.hasMips32r2() && Size == 2) {
|
|
BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
|
|
return BB;
|
|
}
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
unsigned ScrReg = RegInfo.createVirtualRegister(RC);
|
|
|
|
assert(Size < 32);
|
|
int64_t ShiftImm = 32 - (Size * 8);
|
|
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
|
|
MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
|
|
bool Nand) const {
|
|
assert((Size == 1 || Size == 2) &&
|
|
"Unsupported size for EmitAtomicBinaryPartial.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned Incr = MI->getOperand(2).getReg();
|
|
|
|
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned NewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
|
|
unsigned AndRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
|
|
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
|
|
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, sinkMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(sinkMBB);
|
|
sinkMBB->addSuccessor(exitMBB);
|
|
|
|
// thisMBB:
|
|
// addiu masklsb2,$0,-4 # 0xfffffffc
|
|
// and alignedaddr,ptr,masklsb2
|
|
// andi ptrlsb2,ptr,3
|
|
// sll shiftamt,ptrlsb2,3
|
|
// ori maskupper,$0,255 # 0xff
|
|
// sll mask,maskupper,shiftamt
|
|
// nor mask2,$0,mask
|
|
// sll incr2,incr,shiftamt
|
|
|
|
int64_t MaskImm = (Size == 1) ? 255 : 65535;
|
|
BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
|
|
.addReg(Mips::ZERO).addImm(-4);
|
|
BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
|
|
.addReg(Ptr).addReg(MaskLSB2);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
|
|
if (Subtarget.isLittle()) {
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
|
|
} else {
|
|
unsigned Off = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
|
|
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
|
|
}
|
|
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
|
|
.addReg(Mips::ZERO).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
|
|
.addReg(MaskUpper).addReg(ShiftAmt);
|
|
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
|
|
|
|
// atomic.load.binop
|
|
// loopMBB:
|
|
// ll oldval,0(alignedaddr)
|
|
// binop binopres,oldval,incr2
|
|
// and newval,binopres,mask
|
|
// and maskedoldval0,oldval,mask2
|
|
// or storeval,maskedoldval0,newval
|
|
// sc success,storeval,0(alignedaddr)
|
|
// beq success,$0,loopMBB
|
|
|
|
// atomic.swap
|
|
// loopMBB:
|
|
// ll oldval,0(alignedaddr)
|
|
// and newval,incr2,mask
|
|
// and maskedoldval0,oldval,mask2
|
|
// or storeval,maskedoldval0,newval
|
|
// sc success,storeval,0(alignedaddr)
|
|
// beq success,$0,loopMBB
|
|
|
|
BB = loopMBB;
|
|
BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
|
|
if (Nand) {
|
|
// and andres, oldval, incr2
|
|
// nor binopres, $0, andres
|
|
// and newval, binopres, mask
|
|
BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
|
|
BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
|
|
.addReg(Mips::ZERO).addReg(AndRes);
|
|
BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
|
|
} else if (BinOpcode) {
|
|
// <binop> binopres, oldval, incr2
|
|
// and newval, binopres, mask
|
|
BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
|
|
BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
|
|
} else { // atomic.swap
|
|
// and newval, incr2, mask
|
|
BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
|
|
}
|
|
|
|
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
|
|
.addReg(OldVal).addReg(Mask2);
|
|
BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
|
|
.addReg(MaskedOldVal0).addReg(NewVal);
|
|
BuildMI(BB, DL, TII->get(Mips::SC), Success)
|
|
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
|
|
BuildMI(BB, DL, TII->get(Mips::BEQ))
|
|
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
|
|
|
|
// sinkMBB:
|
|
// and maskedoldval1,oldval,mask
|
|
// srl srlres,maskedoldval1,shiftamt
|
|
// sign_extend dest,srlres
|
|
BB = sinkMBB;
|
|
|
|
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
|
|
.addReg(OldVal).addReg(Mask);
|
|
BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
|
|
.addReg(MaskedOldVal1).addReg(ShiftAmt);
|
|
BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned LL, SC, ZERO, BNE, BEQ;
|
|
|
|
if (Size == 4) {
|
|
LL = isMicroMips ? Mips::LL_MM : Mips::LL;
|
|
SC = isMicroMips ? Mips::SC_MM : Mips::SC;
|
|
ZERO = Mips::ZERO;
|
|
BNE = Mips::BNE;
|
|
BEQ = Mips::BEQ;
|
|
} else {
|
|
LL = Mips::LLD;
|
|
SC = Mips::SCD;
|
|
ZERO = Mips::ZERO_64;
|
|
BNE = Mips::BNE64;
|
|
BEQ = Mips::BEQ64;
|
|
}
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned OldVal = MI->getOperand(2).getReg();
|
|
unsigned NewVal = MI->getOperand(3).getReg();
|
|
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loop1MBB
|
|
BB->addSuccessor(loop1MBB);
|
|
loop1MBB->addSuccessor(exitMBB);
|
|
loop1MBB->addSuccessor(loop2MBB);
|
|
loop2MBB->addSuccessor(loop1MBB);
|
|
loop2MBB->addSuccessor(exitMBB);
|
|
|
|
// loop1MBB:
|
|
// ll dest, 0(ptr)
|
|
// bne dest, oldval, exitMBB
|
|
BB = loop1MBB;
|
|
BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
|
|
BuildMI(BB, DL, TII->get(BNE))
|
|
.addReg(Dest).addReg(OldVal).addMBB(exitMBB);
|
|
|
|
// loop2MBB:
|
|
// sc success, newval, 0(ptr)
|
|
// beq success, $0, loop1MBB
|
|
BB = loop2MBB;
|
|
BuildMI(BB, DL, TII->get(SC), Success)
|
|
.addReg(NewVal).addReg(Ptr).addImm(0);
|
|
BuildMI(BB, DL, TII->get(BEQ))
|
|
.addReg(Success).addReg(ZERO).addMBB(loop1MBB);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
assert((Size == 1 || Size == 2) &&
|
|
"Unsupported size for EmitAtomicCmpSwapPartial.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned CmpVal = MI->getOperand(2).getReg();
|
|
unsigned NewVal = MI->getOperand(3).getReg();
|
|
|
|
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
|
|
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, sinkMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(loop1MBB);
|
|
loop1MBB->addSuccessor(sinkMBB);
|
|
loop1MBB->addSuccessor(loop2MBB);
|
|
loop2MBB->addSuccessor(loop1MBB);
|
|
loop2MBB->addSuccessor(sinkMBB);
|
|
sinkMBB->addSuccessor(exitMBB);
|
|
|
|
// FIXME: computation of newval2 can be moved to loop2MBB.
|
|
// thisMBB:
|
|
// addiu masklsb2,$0,-4 # 0xfffffffc
|
|
// and alignedaddr,ptr,masklsb2
|
|
// andi ptrlsb2,ptr,3
|
|
// sll shiftamt,ptrlsb2,3
|
|
// ori maskupper,$0,255 # 0xff
|
|
// sll mask,maskupper,shiftamt
|
|
// nor mask2,$0,mask
|
|
// andi maskedcmpval,cmpval,255
|
|
// sll shiftedcmpval,maskedcmpval,shiftamt
|
|
// andi maskednewval,newval,255
|
|
// sll shiftednewval,maskednewval,shiftamt
|
|
int64_t MaskImm = (Size == 1) ? 255 : 65535;
|
|
BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
|
|
.addReg(Mips::ZERO).addImm(-4);
|
|
BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
|
|
.addReg(Ptr).addReg(MaskLSB2);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
|
|
if (Subtarget.isLittle()) {
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
|
|
} else {
|
|
unsigned Off = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
|
|
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
|
|
}
|
|
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
|
|
.addReg(Mips::ZERO).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
|
|
.addReg(MaskUpper).addReg(ShiftAmt);
|
|
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
|
|
.addReg(CmpVal).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
|
|
.addReg(MaskedCmpVal).addReg(ShiftAmt);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
|
|
.addReg(NewVal).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
|
|
.addReg(MaskedNewVal).addReg(ShiftAmt);
|
|
|
|
// loop1MBB:
|
|
// ll oldval,0(alginedaddr)
|
|
// and maskedoldval0,oldval,mask
|
|
// bne maskedoldval0,shiftedcmpval,sinkMBB
|
|
BB = loop1MBB;
|
|
BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
|
|
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
|
|
.addReg(OldVal).addReg(Mask);
|
|
BuildMI(BB, DL, TII->get(Mips::BNE))
|
|
.addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
|
|
|
|
// loop2MBB:
|
|
// and maskedoldval1,oldval,mask2
|
|
// or storeval,maskedoldval1,shiftednewval
|
|
// sc success,storeval,0(alignedaddr)
|
|
// beq success,$0,loop1MBB
|
|
BB = loop2MBB;
|
|
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
|
|
.addReg(OldVal).addReg(Mask2);
|
|
BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
|
|
.addReg(MaskedOldVal1).addReg(ShiftedNewVal);
|
|
BuildMI(BB, DL, TII->get(Mips::SC), Success)
|
|
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
|
|
BuildMI(BB, DL, TII->get(Mips::BEQ))
|
|
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
|
|
|
|
// sinkMBB:
|
|
// srl srlres,maskedoldval0,shiftamt
|
|
// sign_extend dest,srlres
|
|
BB = sinkMBB;
|
|
|
|
BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
|
|
.addReg(MaskedOldVal0).addReg(ShiftAmt);
|
|
BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
MachineFunction *MF = BB->getParent();
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineBasicBlock::iterator II(MI);
|
|
|
|
unsigned Fc = MI->getOperand(1).getReg();
|
|
const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
|
|
|
|
unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
|
|
|
|
BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
|
|
.addImm(0)
|
|
.addReg(Fc)
|
|
.addImm(Mips::sub_lo);
|
|
|
|
// We don't erase the original instruction, we just replace the condition
|
|
// register with the 64-bit super-register.
|
|
MI->getOperand(1).setReg(Fc2);
|
|
|
|
return BB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc Lower Operation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Table = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
EVT PTy = getPointerTy();
|
|
unsigned EntrySize =
|
|
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
|
|
|
|
Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
|
|
DAG.getConstant(EntrySize, PTy));
|
|
SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
|
|
|
|
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
|
|
Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(), MemVT, false, false,
|
|
false, 0);
|
|
Chain = Addr.getValue(1);
|
|
|
|
if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) ||
|
|
Subtarget.isABI_N64()) {
|
|
// For PIC, the sequence is:
|
|
// BRIND(load(Jumptable + index) + RelocBase)
|
|
// RelocBase can be JumpTable, GOT or some sort of global base.
|
|
Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
|
|
getPICJumpTableRelocBase(Table, DAG));
|
|
}
|
|
|
|
return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
// The first operand is the chain, the second is the condition, the third is
|
|
// the block to branch to if the condition is true.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Dest = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
|
|
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
|
|
SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (CondRes.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
SDValue CCNode = CondRes.getOperand(2);
|
|
Mips::CondCode CC =
|
|
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
|
|
unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
|
|
SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
|
|
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
|
|
return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
|
|
FCC0, Dest, CondRes);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerSELECT(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
|
|
SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (Cond.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
|
|
SDLoc(Op));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getOperand(0).getValueType();
|
|
SDValue Cond = DAG.getNode(ISD::SETCC, DL,
|
|
getSetCCResultType(*DAG.getContext(), Ty),
|
|
Op.getOperand(0), Op.getOperand(1),
|
|
Op.getOperand(4));
|
|
|
|
return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
|
|
Op.getOperand(3));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
|
|
SDValue Cond = createFPCmp(DAG, Op);
|
|
|
|
assert(Cond.getOpcode() == MipsISD::FPCmp &&
|
|
"Floating point operand expected.");
|
|
|
|
SDValue True = DAG.getConstant(1, MVT::i32);
|
|
SDValue False = DAG.getConstant(0, MVT::i32);
|
|
|
|
return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME there isn't actually debug info here
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = N->getGlobal();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
|
|
!Subtarget.isABI_N64()) {
|
|
const MipsTargetObjectFile &TLOF =
|
|
(const MipsTargetObjectFile&)getObjFileLowering();
|
|
|
|
// %gp_rel relocation
|
|
if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
|
|
MipsII::MO_GPREL);
|
|
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
|
|
DAG.getVTList(MVT::i32), GA);
|
|
SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
|
|
return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
|
|
}
|
|
|
|
// %hi/%lo relocation
|
|
return getAddrNonPIC(N, Ty, DAG);
|
|
}
|
|
|
|
if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
|
|
return getAddrLocal(N, Ty, DAG,
|
|
Subtarget.isABI_N32() || Subtarget.isABI_N64());
|
|
|
|
if (LargeGOT)
|
|
return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
|
|
MipsII::MO_GOT_LO16, DAG.getEntryNode(),
|
|
MachinePointerInfo::getGOT());
|
|
|
|
return getAddrGlobal(N, Ty, DAG,
|
|
(Subtarget.isABI_N32() || Subtarget.isABI_N64())
|
|
? MipsII::MO_GOT_DISP
|
|
: MipsII::MO_GOT16,
|
|
DAG.getEntryNode(), MachinePointerInfo::getGOT());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
|
|
!Subtarget.isABI_N64())
|
|
return getAddrNonPIC(N, Ty, DAG);
|
|
|
|
return getAddrLocal(N, Ty, DAG,
|
|
Subtarget.isABI_N32() || Subtarget.isABI_N64());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
// If the relocation model is PIC, use the General Dynamic TLS Model or
|
|
// Local Dynamic TLS model, otherwise use the Initial Exec or
|
|
// Local Exec TLS Model.
|
|
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
SDLoc DL(GA);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
|
|
|
|
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
|
|
// General Dynamic and Local Dynamic TLS Model.
|
|
unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
|
|
: MipsII::MO_TLSGD;
|
|
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
|
|
SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
|
|
getGlobalReg(DAG, PtrVT), TGA);
|
|
unsigned PtrSize = PtrVT.getSizeInBits();
|
|
IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
|
|
|
|
SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = PtrTy;
|
|
Args.push_back(Entry);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
|
|
.setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0);
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
|
|
SDValue Ret = CallResult.first;
|
|
|
|
if (model != TLSModel::LocalDynamic)
|
|
return Ret;
|
|
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_DTPREL_HI);
|
|
SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_DTPREL_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
|
|
}
|
|
|
|
SDValue Offset;
|
|
if (model == TLSModel::InitialExec) {
|
|
// Initial Exec TLS Model
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_GOTTPREL);
|
|
TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
|
|
TGA);
|
|
Offset = DAG.getLoad(PtrVT, DL,
|
|
DAG.getEntryNode(), TGA, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
} else {
|
|
// Local Exec TLS Model
|
|
assert(model == TLSModel::LocalExec);
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_TPREL_HI);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_TPREL_LO);
|
|
SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
|
|
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
|
|
}
|
|
|
|
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
|
|
!Subtarget.isABI_N64())
|
|
return getAddrNonPIC(N, Ty, DAG);
|
|
|
|
return getAddrLocal(N, Ty, DAG,
|
|
Subtarget.isABI_N32() || Subtarget.isABI_N64());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
// gp_rel relocation
|
|
// FIXME: we should reference the constant pool using small data sections,
|
|
// but the asm printer currently doesn't support this feature without
|
|
// hacking it. This feature should come soon so we can uncomment the
|
|
// stuff below.
|
|
//if (IsInSmallSection(C->getType())) {
|
|
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
|
|
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
|
|
!Subtarget.isABI_N64())
|
|
return getAddrNonPIC(N, Ty, DAG);
|
|
|
|
return getAddrLocal(N, Ty, DAG,
|
|
Subtarget.isABI_N32() || Subtarget.isABI_N64());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue VAListPtr = Node->getOperand(1);
|
|
unsigned Align = Node->getConstantOperandVal(3);
|
|
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
|
|
SDLoc DL(Node);
|
|
unsigned ArgSlotSizeInBytes =
|
|
(Subtarget.isABI_N32() || Subtarget.isABI_N64()) ? 8 : 4;
|
|
|
|
SDValue VAListLoad = DAG.getLoad(getPointerTy(), DL, Chain, VAListPtr,
|
|
MachinePointerInfo(SV), false, false, false,
|
|
0);
|
|
SDValue VAList = VAListLoad;
|
|
|
|
// Re-align the pointer if necessary.
|
|
// It should only ever be necessary for 64-bit types on O32 since the minimum
|
|
// argument alignment is the same as the maximum type alignment for N32/N64.
|
|
//
|
|
// FIXME: We currently align too often. The code generator doesn't notice
|
|
// when the pointer is still aligned from the last va_arg (or pair of
|
|
// va_args for the i64 on O32 case).
|
|
if (Align > getMinStackArgumentAlignment()) {
|
|
assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
|
|
|
|
VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(Align - 1,
|
|
VAList.getValueType()));
|
|
|
|
VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(-(int64_t)Align,
|
|
VAList.getValueType()));
|
|
}
|
|
|
|
// Increment the pointer, VAList, to the next vaarg.
|
|
unsigned ArgSizeInBytes = getDataLayout()->getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
|
|
SDValue Tmp3 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(RoundUpToAlignment(ArgSizeInBytes, ArgSlotSizeInBytes),
|
|
VAList.getValueType()));
|
|
// Store the incremented VAList to the legalized pointer
|
|
Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
|
|
// In big-endian mode we must adjust the pointer when the load size is smaller
|
|
// than the argument slot size. We must also reduce the known alignment to
|
|
// match. For example in the N64 ABI, we must add 4 bytes to the offset to get
|
|
// the correct half of the slot, and reduce the alignment from 8 (slot
|
|
// alignment) down to 4 (type alignment).
|
|
if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
|
|
unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
|
|
VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
|
|
DAG.getIntPtrConstant(Adjustment));
|
|
}
|
|
// Load the actual argument out of the pointer VAList
|
|
return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false,
|
|
false, 0);
|
|
}
|
|
|
|
static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
|
|
bool HasExtractInsert) {
|
|
EVT TyX = Op.getOperand(0).getValueType();
|
|
EVT TyY = Op.getOperand(1).getValueType();
|
|
SDValue Const1 = DAG.getConstant(1, MVT::i32);
|
|
SDValue Const31 = DAG.getConstant(31, MVT::i32);
|
|
SDLoc DL(Op);
|
|
SDValue Res;
|
|
|
|
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
|
|
// to i32.
|
|
SDValue X = (TyX == MVT::f32) ?
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
|
|
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
|
|
Const1);
|
|
SDValue Y = (TyY == MVT::f32) ?
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
|
|
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
|
|
Const1);
|
|
|
|
if (HasExtractInsert) {
|
|
// ext E, Y, 31, 1 ; extract bit31 of Y
|
|
// ins X, E, 31, 1 ; insert extracted bit at bit31 of X
|
|
SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
|
|
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
|
|
} else {
|
|
// sll SllX, X, 1
|
|
// srl SrlX, SllX, 1
|
|
// srl SrlY, Y, 31
|
|
// sll SllY, SrlX, 31
|
|
// or Or, SrlX, SllY
|
|
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
|
|
SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
|
|
SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
|
|
SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
|
|
Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
|
|
}
|
|
|
|
if (TyX == MVT::f32)
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
|
|
|
|
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Op.getOperand(0), DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
|
|
}
|
|
|
|
static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
|
|
bool HasExtractInsert) {
|
|
unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
|
|
unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
|
|
EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
|
|
SDValue Const1 = DAG.getConstant(1, MVT::i32);
|
|
SDLoc DL(Op);
|
|
|
|
// Bitcast to integer nodes.
|
|
SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
|
|
SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
|
|
|
|
if (HasExtractInsert) {
|
|
// ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
|
|
// ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
|
|
SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
|
|
DAG.getConstant(WidthY - 1, MVT::i32), Const1);
|
|
|
|
if (WidthX > WidthY)
|
|
E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
|
|
else if (WidthY > WidthX)
|
|
E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
|
|
|
|
SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
|
|
DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
|
|
}
|
|
|
|
// (d)sll SllX, X, 1
|
|
// (d)srl SrlX, SllX, 1
|
|
// (d)srl SrlY, Y, width(Y)-1
|
|
// (d)sll SllY, SrlX, width(Y)-1
|
|
// or Or, SrlX, SllY
|
|
SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
|
|
SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
|
|
SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
|
|
DAG.getConstant(WidthY - 1, MVT::i32));
|
|
|
|
if (WidthX > WidthY)
|
|
SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
|
|
else if (WidthY > WidthX)
|
|
SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
|
|
|
|
SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
|
|
DAG.getConstant(WidthX - 1, MVT::i32));
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
|
|
}
|
|
|
|
SDValue
|
|
MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Subtarget.isGP64bit())
|
|
return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
|
|
|
|
return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
// check the depth
|
|
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
|
|
"Frame address can only be determined for current frame.");
|
|
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue FrameAddr =
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), DL,
|
|
Subtarget.isABI_N64() ? Mips::FP_64 : Mips::FP, VT);
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
// check the depth
|
|
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
|
|
"Return address can be determined only for current frame.");
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned RA = Subtarget.isABI_N64() ? Mips::RA_64 : Mips::RA;
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
// Return RA, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
|
|
}
|
|
|
|
// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
|
|
// generated from __builtin_eh_return (offset, handler)
|
|
// The effect of this is to adjust the stack pointer by "offset"
|
|
// and then branch to "handler".
|
|
SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setCallsEhReturn();
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Offset = Op.getOperand(1);
|
|
SDValue Handler = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32;
|
|
|
|
// Store stack offset in V1, store jump target in V0. Glue CopyToReg and
|
|
// EH_RETURN nodes, so that instructions are emitted back-to-back.
|
|
unsigned OffsetReg = Subtarget.isABI_N64() ? Mips::V1_64 : Mips::V1;
|
|
unsigned AddrReg = Subtarget.isABI_N64() ? Mips::V0_64 : Mips::V0;
|
|
Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
|
|
Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
|
|
return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
|
|
DAG.getRegister(OffsetReg, Ty),
|
|
DAG.getRegister(AddrReg, getPointerTy()),
|
|
Chain.getValue(1));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME: Need pseudo-fence for 'singlethread' fences
|
|
// FIXME: Set SType for weaker fences where supported/appropriate.
|
|
unsigned SType = 0;
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(SType, MVT::i32));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
|
|
// if shamt < 32:
|
|
// lo = (shl lo, shamt)
|
|
// hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
|
|
// else:
|
|
// lo = 0
|
|
// hi = (shl lo, shamt[4:0])
|
|
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(-1, MVT::i32));
|
|
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
|
|
Not);
|
|
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
|
|
SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
|
|
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(0x20, MVT::i32));
|
|
Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
|
|
DAG.getConstant(0, MVT::i32), ShiftLeftLo);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
|
|
|
|
SDValue Ops[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSRA) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
|
|
// if shamt < 32:
|
|
// lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
|
|
// if isSRA:
|
|
// hi = (sra hi, shamt)
|
|
// else:
|
|
// hi = (srl hi, shamt)
|
|
// else:
|
|
// if isSRA:
|
|
// lo = (sra hi, shamt[4:0])
|
|
// hi = (sra hi, 31)
|
|
// else:
|
|
// lo = (srl hi, shamt[4:0])
|
|
// hi = 0
|
|
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(-1, MVT::i32));
|
|
SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
|
|
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
|
|
SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
|
|
Hi, Shamt);
|
|
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(0x20, MVT::i32));
|
|
SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
|
|
DAG.getConstant(31, MVT::i32));
|
|
Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
|
|
IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
|
|
ShiftRightHi);
|
|
|
|
SDValue Ops[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
|
|
SDValue Chain, SDValue Src, unsigned Offset) {
|
|
SDValue Ptr = LD->getBasePtr();
|
|
EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
|
|
EVT BasePtrVT = Ptr.getValueType();
|
|
SDLoc DL(LD);
|
|
SDVTList VTList = DAG.getVTList(VT, MVT::Other);
|
|
|
|
if (Offset)
|
|
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
|
|
DAG.getConstant(Offset, BasePtrVT));
|
|
|
|
SDValue Ops[] = { Chain, Ptr, Src };
|
|
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
|
|
LD->getMemOperand());
|
|
}
|
|
|
|
// Expand an unaligned 32 or 64-bit integer load node.
|
|
SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
EVT MemVT = LD->getMemoryVT();
|
|
|
|
if (Subtarget.systemSupportsUnalignedAccess())
|
|
return Op;
|
|
|
|
// Return if load is aligned or if MemVT is neither i32 nor i64.
|
|
if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
|
|
((MemVT != MVT::i32) && (MemVT != MVT::i64)))
|
|
return SDValue();
|
|
|
|
bool IsLittle = Subtarget.isLittle();
|
|
EVT VT = Op.getValueType();
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
|
|
|
|
assert((VT == MVT::i32) || (VT == MVT::i64));
|
|
|
|
// Expand
|
|
// (set dst, (i64 (load baseptr)))
|
|
// to
|
|
// (set tmp, (ldl (add baseptr, 7), undef))
|
|
// (set dst, (ldr baseptr, tmp))
|
|
if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
|
|
SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
|
|
IsLittle ? 7 : 0);
|
|
return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
|
|
IsLittle ? 0 : 7);
|
|
}
|
|
|
|
SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
|
|
IsLittle ? 3 : 0);
|
|
SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
|
|
IsLittle ? 0 : 3);
|
|
|
|
// Expand
|
|
// (set dst, (i32 (load baseptr))) or
|
|
// (set dst, (i64 (sextload baseptr))) or
|
|
// (set dst, (i64 (extload baseptr)))
|
|
// to
|
|
// (set tmp, (lwl (add baseptr, 3), undef))
|
|
// (set dst, (lwr baseptr, tmp))
|
|
if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
|
|
(ExtType == ISD::EXTLOAD))
|
|
return LWR;
|
|
|
|
assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
|
|
|
|
// Expand
|
|
// (set dst, (i64 (zextload baseptr)))
|
|
// to
|
|
// (set tmp0, (lwl (add baseptr, 3), undef))
|
|
// (set tmp1, (lwr baseptr, tmp0))
|
|
// (set tmp2, (shl tmp1, 32))
|
|
// (set dst, (srl tmp2, 32))
|
|
SDLoc DL(LD);
|
|
SDValue Const32 = DAG.getConstant(32, MVT::i32);
|
|
SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
|
|
SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
|
|
SDValue Ops[] = { SRL, LWR.getValue(1) };
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
|
|
SDValue Chain, unsigned Offset) {
|
|
SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
|
|
EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
|
|
SDLoc DL(SD);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other);
|
|
|
|
if (Offset)
|
|
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
|
|
DAG.getConstant(Offset, BasePtrVT));
|
|
|
|
SDValue Ops[] = { Chain, Value, Ptr };
|
|
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
|
|
SD->getMemOperand());
|
|
}
|
|
|
|
// Expand an unaligned 32 or 64-bit integer store node.
|
|
static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
|
|
bool IsLittle) {
|
|
SDValue Value = SD->getValue(), Chain = SD->getChain();
|
|
EVT VT = Value.getValueType();
|
|
|
|
// Expand
|
|
// (store val, baseptr) or
|
|
// (truncstore val, baseptr)
|
|
// to
|
|
// (swl val, (add baseptr, 3))
|
|
// (swr val, baseptr)
|
|
if ((VT == MVT::i32) || SD->isTruncatingStore()) {
|
|
SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
|
|
IsLittle ? 3 : 0);
|
|
return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
|
|
}
|
|
|
|
assert(VT == MVT::i64);
|
|
|
|
// Expand
|
|
// (store val, baseptr)
|
|
// to
|
|
// (sdl val, (add baseptr, 7))
|
|
// (sdr val, baseptr)
|
|
SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
|
|
return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
|
|
}
|
|
|
|
// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
|
|
static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
|
|
SDValue Val = SD->getValue();
|
|
|
|
if (Val.getOpcode() != ISD::FP_TO_SINT)
|
|
return SDValue();
|
|
|
|
EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
|
|
SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
|
|
Val.getOperand(0));
|
|
|
|
return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
|
|
SD->getPointerInfo(), SD->isVolatile(),
|
|
SD->isNonTemporal(), SD->getAlignment());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
StoreSDNode *SD = cast<StoreSDNode>(Op);
|
|
EVT MemVT = SD->getMemoryVT();
|
|
|
|
// Lower unaligned integer stores.
|
|
if (!Subtarget.systemSupportsUnalignedAccess() &&
|
|
(SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
|
|
((MemVT == MVT::i32) || (MemVT == MVT::i64)))
|
|
return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
|
|
|
|
return lowerFP_TO_SINT_STORE(SD, DAG);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
|
|
|| cast<ConstantSDNode>
|
|
(Op->getOperand(0).getOperand(0))->getZExtValue() != 0
|
|
|| Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
|
|
return SDValue();
|
|
|
|
// The pattern
|
|
// (add (frameaddr 0), (frame_to_args_offset))
|
|
// results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
|
|
// (add FrameObject, 0)
|
|
// where FrameObject is a fixed StackObject with offset 0 which points to
|
|
// the old stack pointer.
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
EVT ValTy = Op->getValueType(0);
|
|
int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
|
|
SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
|
|
return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
|
|
DAG.getConstant(0, ValTy));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
|
|
SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
|
|
Op.getOperand(0));
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO: Implement a generic logic using tblgen that can support this.
|
|
// Mips O32 ABI rules:
|
|
// ---
|
|
// i32 - Passed in A0, A1, A2, A3 and stack
|
|
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
|
|
// an argument. Otherwise, passed in A1, A2, A3 and stack.
|
|
// f64 - Only passed in two aliased f32 registers if no int reg has been used
|
|
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
|
|
// not used, it must be shadowed. If only A3 is available, shadow it and
|
|
// go to stack.
|
|
//
|
|
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State, const MCPhysReg *F64Regs) {
|
|
|
|
static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
|
|
|
|
static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
|
|
static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
|
|
|
|
// Do not process byval args here.
|
|
if (ArgFlags.isByVal())
|
|
return true;
|
|
|
|
// Promote i8 and i16
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExt;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExt;
|
|
else
|
|
LocInfo = CCValAssign::AExt;
|
|
}
|
|
|
|
unsigned Reg;
|
|
|
|
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
|
|
// is true: function is vararg, argument is 3rd or higher, there is previous
|
|
// argument which is not f32 or f64.
|
|
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
|
|
|| State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
|
|
unsigned OrigAlign = ArgFlags.getOrigAlign();
|
|
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
|
|
|
|
if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
// If this is the first part of an i64 arg,
|
|
// the allocated register must be either A0 or A2.
|
|
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
|
|
// Allocate int register and shadow next int register. If first
|
|
// available register is Mips::A1 or Mips::A3, shadow it too.
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
if (Reg == Mips::A1 || Reg == Mips::A3)
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
|
|
// we are guaranteed to find an available float register
|
|
if (ValVT == MVT::f32) {
|
|
Reg = State.AllocateReg(F32Regs, FloatRegsSize);
|
|
// Shadow int register
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
} else {
|
|
Reg = State.AllocateReg(F64Regs, FloatRegsSize);
|
|
// Shadow int registers
|
|
unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
|
|
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
}
|
|
} else
|
|
llvm_unreachable("Cannot handle this ValVT.");
|
|
|
|
if (!Reg) {
|
|
unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
|
|
OrigAlign);
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
} else
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
|
|
|
|
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
|
|
}
|
|
|
|
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
|
|
|
|
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
|
|
}
|
|
|
|
#include "MipsGenCallingConv.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return next O32 integer argument register.
|
|
static unsigned getNextIntArgReg(unsigned Reg) {
|
|
assert((Reg == Mips::A0) || (Reg == Mips::A2));
|
|
return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
|
|
}
|
|
|
|
SDValue
|
|
MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
|
|
SDValue Chain, SDValue Arg, SDLoc DL,
|
|
bool IsTailCall, SelectionDAG &DAG) const {
|
|
if (!IsTailCall) {
|
|
SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
|
|
DAG.getIntPtrConstant(Offset));
|
|
return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
|
|
false, 0);
|
|
}
|
|
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
|
|
/*isVolatile=*/ true, false, 0);
|
|
}
|
|
|
|
void MipsTargetLowering::
|
|
getOpndList(SmallVectorImpl<SDValue> &Ops,
|
|
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
|
|
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
|
|
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
|
|
SDValue Chain) const {
|
|
// Insert node "GP copy globalreg" before call to function.
|
|
//
|
|
// R_MIPS_CALL* operators (emitted when non-internal functions are called
|
|
// in PIC mode) allow symbols to be resolved via lazy binding.
|
|
// The lazy binding stub requires GP to point to the GOT.
|
|
// Note that we don't need GP to point to the GOT for indirect calls
|
|
// (when R_MIPS_CALL* is not used for the call) because Mips linker generates
|
|
// lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
|
|
// used for the function (that is, Mips linker doesn't generate lazy binding
|
|
// stub for a function whose address is taken in the program).
|
|
if (IsPICCall && !InternalLinkage && IsCallReloc) {
|
|
unsigned GPReg = Subtarget.isABI_N64() ? Mips::GP_64 : Mips::GP;
|
|
EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32;
|
|
RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token
|
|
// chain and flag operands which copy the outgoing args into registers.
|
|
// The InFlag in necessary since all emitted instructions must be
|
|
// stuck together.
|
|
SDValue InFlag;
|
|
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
if (Subtarget.inMips16HardFloat()) {
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
|
|
llvm::StringRef Sym = G->getGlobal()->getName();
|
|
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
|
|
if (F && F->hasFnAttribute("__Mips16RetHelper")) {
|
|
Mask = MipsRegisterInfo::getMips16RetHelperMask();
|
|
}
|
|
}
|
|
}
|
|
Ops.push_back(CLI.DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
}
|
|
|
|
/// LowerCall - functions arguments are copied from virtual regs to
|
|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
|
|
SDValue
|
|
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const TargetFrameLowering *TFL = MF.getSubtarget().getFrameLowering();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
MipsCC::SpecialCallingConvType SpecialCallingConv =
|
|
getSpecialCallingConv(Callee);
|
|
MipsCC MipsCCInfo(CallConv, Subtarget, CCInfo, SpecialCallingConv);
|
|
|
|
MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
|
|
Subtarget.abiUsesSoftFloat(),
|
|
Callee.getNode(), CLI.getArgs());
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NextStackOffset = CCInfo.getNextStackOffset();
|
|
|
|
// Check if it's really possible to do a tail call.
|
|
if (IsTailCall)
|
|
IsTailCall =
|
|
isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
|
|
*MF.getInfo<MipsFunctionInfo>());
|
|
|
|
if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
if (IsTailCall)
|
|
++NumTailCalls;
|
|
|
|
// Chain is the output chain of the last Load/Store or CopyToReg node.
|
|
// ByValChain is the output chain of the last Memcpy node created for copying
|
|
// byval arguments to the stack.
|
|
unsigned StackAlignment = TFL->getStackAlignment();
|
|
NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
|
|
SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
|
|
|
|
if (!IsTailCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
|
|
|
|
SDValue StackPtr = DAG.getCopyFromReg(
|
|
Chain, DL, Subtarget.isABI_N64() ? Mips::SP_64 : Mips::SP,
|
|
getPointerTy());
|
|
|
|
// With EABI is it possible to have 16 args on registers.
|
|
std::deque< std::pair<unsigned, SDValue> > RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
CCValAssign &VA = ArgLocs[i];
|
|
MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
// ByVal Arg.
|
|
if (Flags.isByVal()) {
|
|
assert(Flags.getByValSize() &&
|
|
"ByVal args of size 0 should have been ignored by front-end.");
|
|
assert(ByValArg != MipsCCInfo.byval_end());
|
|
assert(!IsTailCall &&
|
|
"Do not tail-call optimize if there is a byval argument.");
|
|
passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
|
|
MipsCCInfo, *ByValArg, Flags, Subtarget.isLittle());
|
|
++ByValArg;
|
|
continue;
|
|
}
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (VA.isRegLoc()) {
|
|
if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
|
|
(ValVT == MVT::f64 && LocVT == MVT::i64) ||
|
|
(ValVT == MVT::i64 && LocVT == MVT::f64))
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
|
|
else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
|
|
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Arg, DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Arg, DAG.getConstant(1, MVT::i32));
|
|
if (!Subtarget.isLittle())
|
|
std::swap(Lo, Hi);
|
|
unsigned LocRegLo = VA.getLocReg();
|
|
unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
|
|
RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
|
|
RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
|
|
break;
|
|
}
|
|
|
|
// Arguments that can be passed on register must be kept at
|
|
// RegsToPass vector
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
continue;
|
|
}
|
|
|
|
// Register can't get to this point...
|
|
assert(VA.isMemLoc());
|
|
|
|
// emit ISD::STORE whichs stores the
|
|
// parameter value to a stack Location
|
|
MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
|
|
Chain, Arg, DL, IsTailCall, DAG));
|
|
}
|
|
|
|
// Transform all store nodes into one single node because all store
|
|
// nodes are independent of each other.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
bool IsPICCall =
|
|
(Subtarget.isABI_N64() || IsPIC); // true if calls are translated to
|
|
// jalr $25
|
|
bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false;
|
|
SDValue CalleeLo;
|
|
EVT Ty = Callee.getValueType();
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
if (IsPICCall) {
|
|
const GlobalValue *Val = G->getGlobal();
|
|
InternalLinkage = Val->hasInternalLinkage();
|
|
|
|
if (InternalLinkage)
|
|
Callee = getAddrLocal(G, Ty, DAG,
|
|
Subtarget.isABI_N32() || Subtarget.isABI_N64());
|
|
else if (LargeGOT) {
|
|
Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
|
|
MipsII::MO_CALL_LO16, Chain,
|
|
FuncInfo->callPtrInfo(Val));
|
|
IsCallReloc = true;
|
|
} else {
|
|
Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
|
|
FuncInfo->callPtrInfo(Val));
|
|
IsCallReloc = true;
|
|
}
|
|
} else
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
|
|
MipsII::MO_NO_FLAG);
|
|
GlobalOrExternal = true;
|
|
}
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
|
|
if (!Subtarget.isABI_N64() && !IsPIC) // !N64 && static
|
|
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
|
|
MipsII::MO_NO_FLAG);
|
|
else if (LargeGOT) {
|
|
Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
|
|
MipsII::MO_CALL_LO16, Chain,
|
|
FuncInfo->callPtrInfo(Sym));
|
|
IsCallReloc = true;
|
|
} else { // N64 || PIC
|
|
Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
|
|
FuncInfo->callPtrInfo(Sym));
|
|
IsCallReloc = true;
|
|
}
|
|
|
|
GlobalOrExternal = true;
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops(1, Chain);
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
|
|
IsCallReloc, CLI, Callee, Chain);
|
|
|
|
if (IsTailCall)
|
|
return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
|
|
|
|
Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
|
|
SDValue InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node.
|
|
Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
|
|
DAG.getIntPtrConstant(0, true), InFlag, DL);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
|
|
InVals, CLI);
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue MipsTargetLowering::LowerCallResult(
|
|
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
TargetLowering::CallLoweringInfo &CLI) const {
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
|
|
RVLocs[i].getLocVT(), InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
|
|
if (VA.isUpperBitsInLoc()) {
|
|
unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
|
|
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
|
|
unsigned Shift =
|
|
VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
|
|
Val = DAG.getNode(
|
|
Shift, DL, VA.getLocVT(), Val,
|
|
DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::AExtUpper:
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
case CCValAssign::ZExtUpper:
|
|
Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
|
|
DAG.getValueType(VA.getValVT()));
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::SExtUpper:
|
|
Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
|
|
DAG.getValueType(VA.getValVT()));
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Formal Arguments Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
/// LowerFormalArguments - transform physical registers into virtual registers
|
|
/// and generate load operations for arguments places on the stack.
|
|
SDValue
|
|
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setVarArgsFrameIndex(0);
|
|
|
|
// Used with vargs to acumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
MipsCC MipsCCInfo(CallConv, Subtarget, CCInfo);
|
|
Function::const_arg_iterator FuncArg =
|
|
DAG.getMachineFunction().getFunction()->arg_begin();
|
|
bool UseSoftFloat = Subtarget.abiUsesSoftFloat();
|
|
|
|
MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
|
|
MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
|
|
MipsCCInfo.hasByValArg());
|
|
|
|
unsigned CurArgIdx = 0;
|
|
MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
|
|
CurArgIdx = Ins[i].OrigArgIndex;
|
|
EVT ValVT = VA.getValVT();
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
bool IsRegLoc = VA.isRegLoc();
|
|
|
|
if (Flags.isByVal()) {
|
|
assert(Flags.getByValSize() &&
|
|
"ByVal args of size 0 should have been ignored by front-end.");
|
|
assert(ByValArg != MipsCCInfo.byval_end());
|
|
copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
|
|
MipsCCInfo, *ByValArg);
|
|
++ByValArg;
|
|
continue;
|
|
}
|
|
|
|
// Arguments stored on registers
|
|
if (IsRegLoc) {
|
|
MVT RegVT = VA.getLocVT();
|
|
unsigned ArgReg = VA.getLocReg();
|
|
const TargetRegisterClass *RC = getRegClassFor(RegVT);
|
|
|
|
// Transform the arguments stored on
|
|
// physical registers into virtual ones
|
|
unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
|
|
|
|
// If this is an 8 or 16-bit value, it has been passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
if (VA.getLocInfo() != CCValAssign::Full) {
|
|
unsigned Opcode = 0;
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
Opcode = ISD::AssertSext;
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
Opcode = ISD::AssertZext;
|
|
if (Opcode)
|
|
ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
|
|
DAG.getValueType(ValVT));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
|
|
}
|
|
|
|
// Handle floating point arguments passed in integer registers and
|
|
// long double arguments passed in floating point registers.
|
|
if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
|
|
(RegVT == MVT::i64 && ValVT == MVT::f64) ||
|
|
(RegVT == MVT::f64 && ValVT == MVT::i64))
|
|
ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
|
|
else if (Subtarget.isABI_O32() && RegVT == MVT::i32 &&
|
|
ValVT == MVT::f64) {
|
|
unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
|
|
getNextIntArgReg(ArgReg), RC);
|
|
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
|
|
if (!Subtarget.isLittle())
|
|
std::swap(ArgValue, ArgValue2);
|
|
ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
|
|
ArgValue, ArgValue2);
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else { // VA.isRegLoc()
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
|
|
// The stack pointer offset is relative to the caller stack frame.
|
|
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
|
|
VA.getLocMemOffset(), true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0);
|
|
InVals.push_back(Load);
|
|
OutChains.push_back(Load.getValue(1));
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. Save the argument into
|
|
// a virtual register so that we can access it from the return points.
|
|
if (Ins[i].Flags.isSRet()) {
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
if (!Reg) {
|
|
Reg = MF.getRegInfo().createVirtualRegister(
|
|
getRegClassFor(Subtarget.isABI_N64() ? MVT::i64 : MVT::i32));
|
|
MipsFI->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsVarArg)
|
|
writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens when on varg functions
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool
|
|
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC_Mips);
|
|
}
|
|
|
|
SDValue
|
|
MipsTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc DL, SelectionDAG &DAG) const {
|
|
// CCValAssign - represent the assignment of
|
|
// the return value to a location
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// CCState - Info about the registers and stack slot.
|
|
MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
|
|
MipsCC MipsCCInfo(CallConv, Subtarget, CCInfo);
|
|
|
|
// Analyze return values.
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
SDValue Val = OutVals[i];
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
bool UseUpperBits = false;
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
|
|
break;
|
|
case CCValAssign::AExtUpper:
|
|
UseUpperBits = true;
|
|
// Fallthrough
|
|
case CCValAssign::AExt:
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
|
|
break;
|
|
case CCValAssign::ZExtUpper:
|
|
UseUpperBits = true;
|
|
// Fallthrough
|
|
case CCValAssign::ZExt:
|
|
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
|
|
break;
|
|
case CCValAssign::SExtUpper:
|
|
UseUpperBits = true;
|
|
// Fallthrough
|
|
case CCValAssign::SExt:
|
|
Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
|
|
break;
|
|
}
|
|
|
|
if (UseUpperBits) {
|
|
unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
|
|
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
|
|
Val = DAG.getNode(
|
|
ISD::SHL, DL, VA.getLocVT(), Val,
|
|
DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
|
|
|
|
// Guarantee that all emitted copies are stuck together with flags.
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. We saved the argument into
|
|
// a virtual register in the entry block, so now we copy the value out
|
|
// and into $v0.
|
|
if (MF.getFunction()->hasStructRetAttr()) {
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
|
|
if (!Reg)
|
|
llvm_unreachable("sret virtual register not created in the entry block");
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
|
|
unsigned V0 = Subtarget.isABI_N64() ? Mips::V0_64 : Mips::V0;
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
// Return on Mips is always a "jr $ra"
|
|
return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
MipsTargetLowering::ConstraintType MipsTargetLowering::
|
|
getConstraintType(const std::string &Constraint) const
|
|
{
|
|
// Mips specific constraints
|
|
// GCC config/mips/constraints.md
|
|
//
|
|
// 'd' : An address register. Equivalent to r
|
|
// unless generating MIPS16 code.
|
|
// 'y' : Equivalent to r; retained for
|
|
// backwards compatibility.
|
|
// 'c' : A register suitable for use in an indirect
|
|
// jump. This will always be $25 for -mabicalls.
|
|
// 'l' : The lo register. 1 word storage.
|
|
// 'x' : The hilo register pair. Double word storage.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'd':
|
|
case 'y':
|
|
case 'f':
|
|
case 'c':
|
|
case 'l':
|
|
case 'x':
|
|
return C_RegisterClass;
|
|
case 'R':
|
|
return C_Memory;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
MipsTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'd':
|
|
case 'y':
|
|
if (type->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'f': // FPU or MSA register
|
|
if (Subtarget.hasMSA() && type->isVectorTy() &&
|
|
cast<VectorType>(type)->getBitWidth() == 128)
|
|
weight = CW_Register;
|
|
else if (type->isFloatTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'c': // $25 for indirect jumps
|
|
case 'l': // lo register
|
|
case 'x': // hilo register pair
|
|
if (type->isIntegerTy())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'I': // signed 16 bit immediate
|
|
case 'J': // integer zero
|
|
case 'K': // unsigned 16 bit immediate
|
|
case 'L': // signed 32 bit immediate where lower 16 bits are 0
|
|
case 'N': // immediate in the range of -65535 to -1 (inclusive)
|
|
case 'O': // signed 15 bit immediate (+- 16383)
|
|
case 'P': // immediate in the range of 65535 to 1 (inclusive)
|
|
if (isa<ConstantInt>(CallOperandVal))
|
|
weight = CW_Constant;
|
|
break;
|
|
case 'R':
|
|
weight = CW_Memory;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// This is a helper function to parse a physical register string and split it
|
|
/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
|
|
/// that is returned indicates whether parsing was successful. The second flag
|
|
/// is true if the numeric part exists.
|
|
static std::pair<bool, bool>
|
|
parsePhysicalReg(StringRef C, std::string &Prefix,
|
|
unsigned long long &Reg) {
|
|
if (C.front() != '{' || C.back() != '}')
|
|
return std::make_pair(false, false);
|
|
|
|
// Search for the first numeric character.
|
|
StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
|
|
I = std::find_if(B, E, std::ptr_fun(isdigit));
|
|
|
|
Prefix.assign(B, I - B);
|
|
|
|
// The second flag is set to false if no numeric characters were found.
|
|
if (I == E)
|
|
return std::make_pair(true, false);
|
|
|
|
// Parse the numeric characters.
|
|
return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
|
|
true);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
|
|
parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const TargetRegisterClass *RC;
|
|
std::string Prefix;
|
|
unsigned long long Reg;
|
|
|
|
std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
|
|
|
|
if (!R.first)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
|
|
// No numeric characters follow "hi" or "lo".
|
|
if (R.second)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
RC = TRI->getRegClass(Prefix == "hi" ?
|
|
Mips::HI32RegClassID : Mips::LO32RegClassID);
|
|
return std::make_pair(*(RC->begin()), RC);
|
|
} else if (Prefix.compare(0, 4, "$msa") == 0) {
|
|
// Parse $msa(ir|csr|access|save|modify|request|map|unmap)
|
|
|
|
// No numeric characters follow the name.
|
|
if (R.second)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
Reg = StringSwitch<unsigned long long>(Prefix)
|
|
.Case("$msair", Mips::MSAIR)
|
|
.Case("$msacsr", Mips::MSACSR)
|
|
.Case("$msaaccess", Mips::MSAAccess)
|
|
.Case("$msasave", Mips::MSASave)
|
|
.Case("$msamodify", Mips::MSAModify)
|
|
.Case("$msarequest", Mips::MSARequest)
|
|
.Case("$msamap", Mips::MSAMap)
|
|
.Case("$msaunmap", Mips::MSAUnmap)
|
|
.Default(0);
|
|
|
|
if (!Reg)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
|
|
return std::make_pair(Reg, RC);
|
|
}
|
|
|
|
if (!R.second)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
if (Prefix == "$f") { // Parse $f0-$f31.
|
|
// If the size of FP registers is 64-bit or Reg is an even number, select
|
|
// the 64-bit register class. Otherwise, select the 32-bit register class.
|
|
if (VT == MVT::Other)
|
|
VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
|
|
|
|
RC = getRegClassFor(VT);
|
|
|
|
if (RC == &Mips::AFGR64RegClass) {
|
|
assert(Reg % 2 == 0);
|
|
Reg >>= 1;
|
|
}
|
|
} else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
|
|
RC = TRI->getRegClass(Mips::FCCRegClassID);
|
|
else if (Prefix == "$w") { // Parse $w0-$w31.
|
|
RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
|
|
} else { // Parse $0-$31.
|
|
assert(Prefix == "$");
|
|
RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
|
|
}
|
|
|
|
assert(Reg < RC->getNumRegs());
|
|
return std::make_pair(*(RC->begin() + Reg), RC);
|
|
}
|
|
|
|
/// Given a register class constraint, like 'r', if this corresponds directly
|
|
/// to an LLVM register class, return a register of 0 and the register class
|
|
/// pointer.
|
|
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
|
|
getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
|
|
{
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
|
|
case 'y': // Same as 'r'. Exists for compatibility.
|
|
case 'r':
|
|
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
|
|
if (Subtarget.inMips16Mode())
|
|
return std::make_pair(0U, &Mips::CPU16RegsRegClass);
|
|
return std::make_pair(0U, &Mips::GPR32RegClass);
|
|
}
|
|
if (VT == MVT::i64 && !Subtarget.isGP64bit())
|
|
return std::make_pair(0U, &Mips::GPR32RegClass);
|
|
if (VT == MVT::i64 && Subtarget.isGP64bit())
|
|
return std::make_pair(0U, &Mips::GPR64RegClass);
|
|
// This will generate an error message
|
|
return std::make_pair(0U, nullptr);
|
|
case 'f': // FPU or MSA register
|
|
if (VT == MVT::v16i8)
|
|
return std::make_pair(0U, &Mips::MSA128BRegClass);
|
|
else if (VT == MVT::v8i16 || VT == MVT::v8f16)
|
|
return std::make_pair(0U, &Mips::MSA128HRegClass);
|
|
else if (VT == MVT::v4i32 || VT == MVT::v4f32)
|
|
return std::make_pair(0U, &Mips::MSA128WRegClass);
|
|
else if (VT == MVT::v2i64 || VT == MVT::v2f64)
|
|
return std::make_pair(0U, &Mips::MSA128DRegClass);
|
|
else if (VT == MVT::f32)
|
|
return std::make_pair(0U, &Mips::FGR32RegClass);
|
|
else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
|
|
if (Subtarget.isFP64bit())
|
|
return std::make_pair(0U, &Mips::FGR64RegClass);
|
|
return std::make_pair(0U, &Mips::AFGR64RegClass);
|
|
}
|
|
break;
|
|
case 'c': // register suitable for indirect jump
|
|
if (VT == MVT::i32)
|
|
return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
|
|
assert(VT == MVT::i64 && "Unexpected type.");
|
|
return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
|
|
case 'l': // register suitable for indirect jump
|
|
if (VT == MVT::i32)
|
|
return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
|
|
return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
|
|
case 'x': // register suitable for indirect jump
|
|
// Fixme: Not triggering the use of both hi and low
|
|
// This will generate an error message
|
|
return std::make_pair(0U, nullptr);
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *> R;
|
|
R = parseRegForInlineAsmConstraint(Constraint, VT);
|
|
|
|
if (R.second)
|
|
return R;
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Only support length 1 constraints for now.
|
|
if (Constraint.length() > 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break; // This will fall through to the generic implementation
|
|
case 'I': // Signed 16 bit constant
|
|
// If this fails, the parent routine will give an error
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if (isInt<16>(Val)) {
|
|
Result = DAG.getTargetConstant(Val, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'J': // integer zero
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getZExtValue();
|
|
if (Val == 0) {
|
|
Result = DAG.getTargetConstant(0, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'K': // unsigned 16 bit immediate
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
uint64_t Val = (uint64_t)C->getZExtValue();
|
|
if (isUInt<16>(Val)) {
|
|
Result = DAG.getTargetConstant(Val, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'L': // signed 32 bit immediate where lower 16 bits are 0
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
|
|
Result = DAG.getTargetConstant(Val, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'N': // immediate in the range of -65535 to -1 (inclusive)
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((Val >= -65535) && (Val <= -1)) {
|
|
Result = DAG.getTargetConstant(Val, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'O': // signed 15 bit immediate
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((isInt<15>(Val))) {
|
|
Result = DAG.getTargetConstant(Val, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'P': // immediate in the range of 1 to 65535 (inclusive)
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((Val <= 65535) && (Val >= 1)) {
|
|
Result = DAG.getTargetConstant(Val, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (!AM.HasBaseReg) // allow "r+i".
|
|
break;
|
|
return false; // disallow "r+r" or "r+r+i".
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The Mips target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
|
unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
if (Subtarget.hasMips64())
|
|
return MVT::i64;
|
|
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return false;
|
|
if (Imm.isNegZero())
|
|
return false;
|
|
return Imm.isZero();
|
|
}
|
|
|
|
unsigned MipsTargetLowering::getJumpTableEncoding() const {
|
|
if (Subtarget.isABI_N64())
|
|
return MachineJumpTableInfo::EK_GPRel64BlockAddress;
|
|
|
|
return TargetLowering::getJumpTableEncoding();
|
|
}
|
|
|
|
/// This function returns true if CallSym is a long double emulation routine.
|
|
static bool isF128SoftLibCall(const char *CallSym) {
|
|
const char *const LibCalls[] =
|
|
{"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
|
|
"__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
|
|
"__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
|
|
"__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
|
|
"__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
|
|
"__trunctfdf2", "__trunctfsf2", "__unordtf2",
|
|
"ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
|
|
"log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
|
|
"truncl"};
|
|
|
|
const char *const *End = LibCalls + array_lengthof(LibCalls);
|
|
|
|
// Check that LibCalls is sorted alphabetically.
|
|
MipsTargetLowering::LTStr Comp;
|
|
|
|
#ifndef NDEBUG
|
|
for (const char *const *I = LibCalls; I < End - 1; ++I)
|
|
assert(Comp(*I, *(I + 1)));
|
|
#endif
|
|
|
|
return std::binary_search(LibCalls, End, CallSym, Comp);
|
|
}
|
|
|
|
/// This function returns true if Ty is fp128, {f128} or i128 which was
|
|
/// originally a fp128.
|
|
static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
|
|
if (Ty->isFP128Ty())
|
|
return true;
|
|
|
|
if (Ty->isStructTy() && Ty->getStructNumElements() == 1 &&
|
|
Ty->getStructElementType(0)->isFP128Ty())
|
|
return true;
|
|
|
|
const ExternalSymbolSDNode *ES =
|
|
dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
|
|
|
|
// If the Ty is i128 and the function being called is a long double emulation
|
|
// routine, then the original type is f128.
|
|
return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
|
|
}
|
|
|
|
MipsTargetLowering::MipsCC::SpecialCallingConvType
|
|
MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
|
|
MipsCC::SpecialCallingConvType SpecialCallingConv =
|
|
MipsCC::NoSpecialCallingConv;
|
|
if (Subtarget.inMips16HardFloat()) {
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
llvm::StringRef Sym = G->getGlobal()->getName();
|
|
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
|
|
if (F && F->hasFnAttribute("__Mips16RetHelper")) {
|
|
SpecialCallingConv = MipsCC::Mips16RetHelperConv;
|
|
}
|
|
}
|
|
}
|
|
return SpecialCallingConv;
|
|
}
|
|
|
|
MipsTargetLowering::MipsCC::MipsCC(
|
|
CallingConv::ID CC, const MipsSubtarget &Subtarget_, CCState &Info,
|
|
MipsCC::SpecialCallingConvType SpecialCallingConv_)
|
|
: CCInfo(Info), CallConv(CC), Subtarget(Subtarget_),
|
|
SpecialCallingConv(SpecialCallingConv_) {
|
|
// Pre-allocate reserved argument area.
|
|
CCInfo.AllocateStack(reservedArgArea(), 1);
|
|
}
|
|
|
|
|
|
void MipsTargetLowering::MipsCC::
|
|
analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
|
|
bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
|
|
std::vector<ArgListEntry> &FuncArgs) {
|
|
assert((CallConv != CallingConv::Fast || !IsVarArg) &&
|
|
"CallingConv::Fast shouldn't be used for vararg functions.");
|
|
|
|
unsigned NumOpnds = Args.size();
|
|
llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
|
|
|
|
for (unsigned I = 0; I != NumOpnds; ++I) {
|
|
MVT ArgVT = Args[I].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
|
|
bool R;
|
|
|
|
if (ArgFlags.isByVal()) {
|
|
handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
|
|
continue;
|
|
}
|
|
|
|
if (IsVarArg && !Args[I].IsFixed)
|
|
R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
|
|
else {
|
|
MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
|
|
IsSoftFloat);
|
|
R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
|
|
}
|
|
|
|
if (R) {
|
|
#ifndef NDEBUG
|
|
dbgs() << "Call operand #" << I << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString();
|
|
#endif
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MipsTargetLowering::MipsCC::
|
|
analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
|
|
bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
|
|
unsigned NumArgs = Args.size();
|
|
llvm::CCAssignFn *FixedFn = fixedArgFn();
|
|
unsigned CurArgIdx = 0;
|
|
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
MVT ArgVT = Args[I].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
|
|
std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
|
|
CurArgIdx = Args[I].OrigArgIndex;
|
|
|
|
if (ArgFlags.isByVal()) {
|
|
handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
|
|
continue;
|
|
}
|
|
|
|
MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), nullptr, IsSoftFloat);
|
|
|
|
if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
dbgs() << "Formal Arg #" << I << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString();
|
|
#endif
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
|
|
void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags) {
|
|
assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
|
|
|
|
struct ByValArgInfo ByVal;
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
unsigned ByValSize =
|
|
RoundUpToAlignment(ArgFlags.getByValSize(), RegSizeInBytes);
|
|
unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSizeInBytes),
|
|
RegSizeInBytes * 2);
|
|
|
|
if (useRegsForByval())
|
|
allocateRegs(ByVal, ByValSize, Align);
|
|
|
|
// Allocate space on caller's stack.
|
|
ByVal.Address =
|
|
CCInfo.AllocateStack(ByValSize - RegSizeInBytes * ByVal.NumRegs, Align);
|
|
CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
|
|
LocInfo));
|
|
ByValArgs.push_back(ByVal);
|
|
}
|
|
|
|
unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
|
|
return (Subtarget.isABI_O32() && (CallConv != CallingConv::Fast)) ? 16 : 0;
|
|
}
|
|
|
|
const ArrayRef<MCPhysReg> MipsTargetLowering::MipsCC::intArgRegs() const {
|
|
if (Subtarget.isABI_O32())
|
|
return makeArrayRef(O32IntRegs);
|
|
return makeArrayRef(Mips64IntRegs);
|
|
}
|
|
|
|
llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
|
|
if (CallConv == CallingConv::Fast)
|
|
return CC_Mips_FastCC;
|
|
|
|
if (SpecialCallingConv == Mips16RetHelperConv)
|
|
return CC_Mips16RetHelper;
|
|
return Subtarget.isABI_O32()
|
|
? (Subtarget.isFP64bit() ? CC_MipsO32_FP64 : CC_MipsO32_FP32)
|
|
: CC_MipsN;
|
|
}
|
|
|
|
llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
|
|
return Subtarget.isABI_O32()
|
|
? (Subtarget.isFP64bit() ? CC_MipsO32_FP64 : CC_MipsO32_FP32)
|
|
: CC_MipsN_VarArg;
|
|
}
|
|
|
|
const MCPhysReg *MipsTargetLowering::MipsCC::shadowRegs() const {
|
|
return Subtarget.isABI_O32() ? O32IntRegs : Mips64DPRegs;
|
|
}
|
|
|
|
void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
|
|
unsigned ByValSize,
|
|
unsigned Align) {
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
const ArrayRef<MCPhysReg> IntArgRegs = intArgRegs();
|
|
const MCPhysReg *ShadowRegs = shadowRegs();
|
|
assert(!(ByValSize % RegSizeInBytes) && !(Align % RegSizeInBytes) &&
|
|
"Byval argument's size and alignment should be a multiple of"
|
|
"RegSizeInBytes.");
|
|
|
|
ByVal.FirstIdx =
|
|
CCInfo.getFirstUnallocated(IntArgRegs.data(), IntArgRegs.size());
|
|
|
|
// If Align > RegSizeInBytes, the first arg register must be even.
|
|
if ((Align > RegSizeInBytes) && (ByVal.FirstIdx % 2)) {
|
|
CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
|
|
++ByVal.FirstIdx;
|
|
}
|
|
|
|
// Mark the registers allocated.
|
|
for (unsigned I = ByVal.FirstIdx; ByValSize && (I < IntArgRegs.size());
|
|
ByValSize -= RegSizeInBytes, ++I, ++ByVal.NumRegs)
|
|
CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
|
|
}
|
|
|
|
MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
|
|
const SDNode *CallNode,
|
|
bool IsSoftFloat) const {
|
|
if (IsSoftFloat || Subtarget.isABI_O32())
|
|
return VT;
|
|
|
|
// Check if the original type was fp128.
|
|
if (originalTypeIsF128(OrigTy, CallNode)) {
|
|
assert(VT == MVT::i64);
|
|
return MVT::f64;
|
|
}
|
|
|
|
return VT;
|
|
}
|
|
|
|
void MipsTargetLowering::
|
|
copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
|
|
SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
|
|
SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
|
|
const MipsCC &CC, const ByValArgInfo &ByVal) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
unsigned RegAreaSize = ByVal.NumRegs * GPRSizeInBytes;
|
|
unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
|
|
int FrameObjOffset;
|
|
|
|
if (RegAreaSize)
|
|
FrameObjOffset =
|
|
(int)CC.reservedArgArea() -
|
|
(int)((CC.intArgRegs().size() - ByVal.FirstIdx) * GPRSizeInBytes);
|
|
else
|
|
FrameObjOffset = ByVal.Address;
|
|
|
|
// Create frame object.
|
|
EVT PtrTy = getPointerTy();
|
|
int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
|
|
InVals.push_back(FIN);
|
|
|
|
if (!ByVal.NumRegs)
|
|
return;
|
|
|
|
// Copy arg registers.
|
|
MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
|
|
const TargetRegisterClass *RC = getRegClassFor(RegTy);
|
|
|
|
for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
|
|
unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
|
|
unsigned VReg = addLiveIn(MF, ArgReg, RC);
|
|
unsigned Offset = I * GPRSizeInBytes;
|
|
SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
|
|
DAG.getConstant(Offset, PtrTy));
|
|
SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
|
|
StorePtr, MachinePointerInfo(FuncArg, Offset),
|
|
false, false, 0);
|
|
OutChains.push_back(Store);
|
|
}
|
|
}
|
|
|
|
// Copy byVal arg to registers and stack.
|
|
void MipsTargetLowering::
|
|
passByValArg(SDValue Chain, SDLoc DL,
|
|
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
|
|
SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
|
|
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
|
|
const MipsCC &CC, const ByValArgInfo &ByVal,
|
|
const ISD::ArgFlagsTy &Flags, bool isLittle) const {
|
|
unsigned ByValSizeInBytes = Flags.getByValSize();
|
|
unsigned OffsetInBytes = 0; // From beginning of struct
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
|
|
EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
|
|
|
|
if (ByVal.NumRegs) {
|
|
const ArrayRef<MCPhysReg> ArgRegs = CC.intArgRegs();
|
|
bool LeftoverBytes = (ByVal.NumRegs * RegSizeInBytes > ByValSizeInBytes);
|
|
unsigned I = 0;
|
|
|
|
// Copy words to registers.
|
|
for (; I < ByVal.NumRegs - LeftoverBytes;
|
|
++I, OffsetInBytes += RegSizeInBytes) {
|
|
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
|
|
DAG.getConstant(OffsetInBytes, PtrTy));
|
|
SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
|
|
MachinePointerInfo(), false, false, false,
|
|
Alignment);
|
|
MemOpChains.push_back(LoadVal.getValue(1));
|
|
unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
|
|
RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
|
|
}
|
|
|
|
// Return if the struct has been fully copied.
|
|
if (ByValSizeInBytes == OffsetInBytes)
|
|
return;
|
|
|
|
// Copy the remainder of the byval argument with sub-word loads and shifts.
|
|
if (LeftoverBytes) {
|
|
assert((ByValSizeInBytes > OffsetInBytes) &&
|
|
(ByValSizeInBytes < OffsetInBytes + RegSizeInBytes) &&
|
|
"Size of the remainder should be smaller than RegSizeInBytes.");
|
|
SDValue Val;
|
|
|
|
for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
|
|
OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
|
|
unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
|
|
|
|
if (RemainingSizeInBytes < LoadSizeInBytes)
|
|
continue;
|
|
|
|
// Load subword.
|
|
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
|
|
DAG.getConstant(OffsetInBytes, PtrTy));
|
|
SDValue LoadVal = DAG.getExtLoad(
|
|
ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
|
|
MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false,
|
|
Alignment);
|
|
MemOpChains.push_back(LoadVal.getValue(1));
|
|
|
|
// Shift the loaded value.
|
|
unsigned Shamt;
|
|
|
|
if (isLittle)
|
|
Shamt = TotalBytesLoaded * 8;
|
|
else
|
|
Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
|
|
|
|
SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
|
|
DAG.getConstant(Shamt, MVT::i32));
|
|
|
|
if (Val.getNode())
|
|
Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
|
|
else
|
|
Val = Shift;
|
|
|
|
OffsetInBytes += LoadSizeInBytes;
|
|
TotalBytesLoaded += LoadSizeInBytes;
|
|
Alignment = std::min(Alignment, LoadSizeInBytes);
|
|
}
|
|
|
|
unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
|
|
RegsToPass.push_back(std::make_pair(ArgReg, Val));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Copy remainder of byval arg to it with memcpy.
|
|
unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
|
|
SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
|
|
DAG.getConstant(OffsetInBytes, PtrTy));
|
|
SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
|
|
DAG.getIntPtrConstant(ByVal.Address));
|
|
Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
|
|
Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
MemOpChains.push_back(Chain);
|
|
}
|
|
|
|
void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
|
|
const MipsCC &CC, SDValue Chain,
|
|
SDLoc DL, SelectionDAG &DAG) const {
|
|
const ArrayRef<MCPhysReg> ArgRegs = CC.intArgRegs();
|
|
const CCState &CCInfo = CC.getCCInfo();
|
|
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs.data(), ArgRegs.size());
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
|
|
const TargetRegisterClass *RC = getRegClassFor(RegTy);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
// Offset of the first variable argument from stack pointer.
|
|
int VaArgOffset;
|
|
|
|
if (ArgRegs.size() == Idx)
|
|
VaArgOffset =
|
|
RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSizeInBytes);
|
|
else
|
|
VaArgOffset = (int)CC.reservedArgArea() -
|
|
(int)(RegSizeInBytes * (ArgRegs.size() - Idx));
|
|
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
|
|
MipsFI->setVarArgsFrameIndex(FI);
|
|
|
|
// Copy the integer registers that have not been used for argument passing
|
|
// to the argument register save area. For O32, the save area is allocated
|
|
// in the caller's stack frame, while for N32/64, it is allocated in the
|
|
// callee's stack frame.
|
|
for (unsigned I = Idx; I < ArgRegs.size();
|
|
++I, VaArgOffset += RegSizeInBytes) {
|
|
unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
|
|
FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
|
|
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
|
|
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
|
|
MachinePointerInfo(), false, false, 0);
|
|
cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
|
|
(Value *)nullptr);
|
|
OutChains.push_back(Store);
|
|
}
|
|
}
|