llvm-6502/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
Adrian Prantl 2a39c993eb Debug info: Infrastructure to support debug locations for fragmented
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.

http://reviews.llvm.org/D3373
rdar://problem/15928306

What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
  that change SROA and SelectionDAG's type legalizer to actually create
  such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
  will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
  to facilitate the merging of multi-piece entries.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214576 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-01 22:11:58 +00:00

2300 lines
82 KiB
C++

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "DwarfDebug.h"
#include "DwarfException.h"
#include "WinCodeViewLineTables.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/JumpInstrTableInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
static const char *const DWARFGroupName = "DWARF Emission";
static const char *const DbgTimerName = "Debug Info Emission";
static const char *const EHTimerName = "DWARF Exception Writer";
static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
STATISTIC(EmittedInsts, "Number of machine instrs printed");
char AsmPrinter::ID = 0;
typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
static gcp_map_type &getGCMap(void *&P) {
if (!P)
P = new gcp_map_type();
return *(gcp_map_type*)P;
}
/// getGVAlignmentLog2 - Return the alignment to use for the specified global
/// value in log2 form. This rounds up to the preferred alignment if possible
/// and legal.
static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
unsigned InBits = 0) {
unsigned NumBits = 0;
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
NumBits = TD.getPreferredAlignmentLog(GVar);
// If InBits is specified, round it to it.
if (InBits > NumBits)
NumBits = InBits;
// If the GV has a specified alignment, take it into account.
if (GV->getAlignment() == 0)
return NumBits;
unsigned GVAlign = Log2_32(GV->getAlignment());
// If the GVAlign is larger than NumBits, or if we are required to obey
// NumBits because the GV has an assigned section, obey it.
if (GVAlign > NumBits || GV->hasSection())
NumBits = GVAlign;
return NumBits;
}
AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
: MachineFunctionPass(ID),
TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
OutContext(Streamer.getContext()),
OutStreamer(Streamer),
LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) {
DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr;
CurrentFnSym = CurrentFnSymForSize = nullptr;
GCMetadataPrinters = nullptr;
VerboseAsm = Streamer.isVerboseAsm();
}
AsmPrinter::~AsmPrinter() {
assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
if (GCMetadataPrinters) {
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
delete &GCMap;
GCMetadataPrinters = nullptr;
}
delete &OutStreamer;
}
/// getFunctionNumber - Return a unique ID for the current function.
///
unsigned AsmPrinter::getFunctionNumber() const {
return MF->getFunctionNumber();
}
const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
return TM.getTargetLowering()->getObjFileLowering();
}
/// getDataLayout - Return information about data layout.
const DataLayout &AsmPrinter::getDataLayout() const {
return *TM.getDataLayout();
}
const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
return TM.getSubtarget<MCSubtargetInfo>();
}
void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
S.EmitInstruction(Inst, getSubtargetInfo());
}
StringRef AsmPrinter::getTargetTriple() const {
return TM.getTargetTriple();
}
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
return OutStreamer.getCurrentSection().first;
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineModuleInfo>();
AU.addRequired<GCModuleInfo>();
if (isVerbose())
AU.addRequired<MachineLoopInfo>();
}
bool AsmPrinter::doInitialization(Module &M) {
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MMI->AnalyzeModule(M);
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
OutStreamer.InitSections();
Mang = new Mangler(TM.getDataLayout());
// Emit the version-min deplyment target directive if needed.
//
// FIXME: If we end up with a collection of these sorts of Darwin-specific
// or ELF-specific things, it may make sense to have a platform helper class
// that will work with the target helper class. For now keep it here, as the
// alternative is duplicated code in each of the target asm printers that
// use the directive, where it would need the same conditionalization
// anyway.
Triple TT(getTargetTriple());
if (TT.isOSDarwin()) {
unsigned Major, Minor, Update;
TT.getOSVersion(Major, Minor, Update);
// If there is a version specified, Major will be non-zero.
if (Major)
OutStreamer.EmitVersionMin((TT.isMacOSX() ?
MCVM_OSXVersionMin : MCVM_IOSVersionMin),
Major, Minor, Update);
}
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
// Very minimal debug info. It is ignored if we emit actual debug info. If we
// don't, this at least helps the user find where a global came from.
if (MAI->hasSingleParameterDotFile()) {
// .file "foo.c"
OutStreamer.EmitFileDirective(M.getModuleIdentifier());
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (auto &I : *MI)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
MP->beginAssembly(*this);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
OutStreamer.AddComment("Start of file scope inline assembly");
OutStreamer.AddBlankLine();
EmitInlineAsm(M.getModuleInlineAsm()+"\n");
OutStreamer.AddComment("End of file scope inline assembly");
OutStreamer.AddBlankLine();
}
if (MAI->doesSupportDebugInformation()) {
if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
DbgTimerName,
CodeViewLineTablesGroupName));
} else {
DD = new DwarfDebug(this, &M);
Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
}
}
EHStreamer *ES = nullptr;
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::None:
break;
case ExceptionHandling::SjLj:
case ExceptionHandling::DwarfCFI:
ES = new DwarfCFIException(this);
break;
case ExceptionHandling::ARM:
ES = new ARMException(this);
break;
case ExceptionHandling::WinEH:
ES = new Win64Exception(this);
break;
}
if (ES)
Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
return false;
}
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
if (!MAI.hasWeakDefCanBeHiddenDirective())
return false;
return canBeOmittedFromSymbolTable(GV);
}
void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
switch (Linkage) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (MAI->hasWeakDefDirective()) {
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
if (!canBeHidden(GV, *MAI))
// .weak_definition _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
else
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
} else if (MAI->hasLinkOnceDirective()) {
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
//NOTE: linkonce is handled by the section the symbol was assigned to.
} else {
// .weak _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
}
return;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol.
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
return;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
return;
case GlobalValue::AvailableExternallyLinkage:
llvm_unreachable("Should never emit this");
case GlobalValue::ExternalWeakLinkage:
llvm_unreachable("Don't know how to emit these");
}
llvm_unreachable("Unknown linkage type!");
}
void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
const GlobalValue *GV) const {
TM.getNameWithPrefix(Name, GV, *Mang);
}
MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
return TM.getSymbol(GV, *Mang);
}
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (GV->hasInitializer()) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GV))
return;
if (isVerbose()) {
GV->printAsOperand(OutStreamer.GetCommentOS(),
/*PrintType=*/false, GV->getParent());
OutStreamer.GetCommentOS() << '\n';
}
}
MCSymbol *GVSym = getSymbol(GV);
EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
if (!GV->hasInitializer()) // External globals require no extra code.
return;
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
const DataLayout *DL = TM.getDataLayout();
uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
// If the alignment is specified, we *must* obey it. Overaligning a global
// with a specified alignment is a prompt way to break globals emitted to
// sections and expected to be contiguous (e.g. ObjC metadata).
unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
HI.Handler->setSymbolSize(GVSym, Size);
}
// Handle common and BSS local symbols (.lcomm).
if (GVKind.isCommon() || GVKind.isBSSLocal()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
unsigned Align = 1 << AlignLog;
// Handle common symbols.
if (GVKind.isCommon()) {
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
Align = 0;
// .comm _foo, 42, 4
OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
return;
}
// Handle local BSS symbols.
if (MAI->hasMachoZeroFillDirective()) {
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
// .zerofill __DATA, __bss, _foo, 400, 5
OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
return;
}
// Use .lcomm only if it supports user-specified alignment.
// Otherwise, while it would still be correct to use .lcomm in some
// cases (e.g. when Align == 1), the external assembler might enfore
// some -unknown- default alignment behavior, which could cause
// spurious differences between external and integrated assembler.
// Prefer to simply fall back to .local / .comm in this case.
if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
// .lcomm _foo, 42
OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
return;
}
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
Align = 0;
// .local _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
// .comm _foo, 42, 4
OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
return;
}
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
// Handle the zerofill directive on darwin, which is a special form of BSS
// emission.
if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
// .globl _foo
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
// .zerofill __DATA, __common, _foo, 400, 5
OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
return;
}
// Handle thread local data for mach-o which requires us to output an
// additional structure of data and mangle the original symbol so that we
// can reference it later.
//
// TODO: This should become an "emit thread local global" method on TLOF.
// All of this macho specific stuff should be sunk down into TLOFMachO and
// stuff like "TLSExtraDataSection" should no longer be part of the parent
// TLOF class. This will also make it more obvious that stuff like
// MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
// specific code.
if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
// Emit the .tbss symbol
MCSymbol *MangSym =
OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
if (GVKind.isThreadBSS()) {
TheSection = getObjFileLowering().getTLSBSSSection();
OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
} else if (GVKind.isThreadData()) {
OutStreamer.SwitchSection(TheSection);
EmitAlignment(AlignLog, GV);
OutStreamer.EmitLabel(MangSym);
EmitGlobalConstant(GV->getInitializer());
}
OutStreamer.AddBlankLine();
// Emit the variable struct for the runtime.
const MCSection *TLVSect
= getObjFileLowering().getTLSExtraDataSection();
OutStreamer.SwitchSection(TLVSect);
// Emit the linkage here.
EmitLinkage(GV, GVSym);
OutStreamer.EmitLabel(GVSym);
// Three pointers in size:
// - __tlv_bootstrap - used to make sure support exists
// - spare pointer, used when mapped by the runtime
// - pointer to mangled symbol above with initializer
unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
PtrSize);
OutStreamer.EmitIntValue(0, PtrSize);
OutStreamer.EmitSymbolValue(MangSym, PtrSize);
OutStreamer.AddBlankLine();
return;
}
OutStreamer.SwitchSection(TheSection);
EmitLinkage(GV, GVSym);
EmitAlignment(AlignLog, GV);
OutStreamer.EmitLabel(GVSym);
EmitGlobalConstant(GV->getInitializer());
if (MAI->hasDotTypeDotSizeDirective())
// .size foo, 42
OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
OutStreamer.AddBlankLine();
}
/// EmitFunctionHeader - This method emits the header for the current
/// function.
void AsmPrinter::EmitFunctionHeader() {
// Print out constants referenced by the function
EmitConstantPool();
// Print the 'header' of function.
const Function *F = MF->getFunction();
OutStreamer.SwitchSection(
getObjFileLowering().SectionForGlobal(F, *Mang, TM));
EmitVisibility(CurrentFnSym, F->getVisibility());
EmitLinkage(F, CurrentFnSym);
EmitAlignment(MF->getAlignment(), F);
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
if (isVerbose()) {
F->printAsOperand(OutStreamer.GetCommentOS(),
/*PrintType=*/false, F->getParent());
OutStreamer.GetCommentOS() << '\n';
}
// Emit the CurrentFnSym. This is a virtual function to allow targets to
// do their wild and crazy things as required.
EmitFunctionEntryLabel();
// If the function had address-taken blocks that got deleted, then we have
// references to the dangling symbols. Emit them at the start of the function
// so that we don't get references to undefined symbols.
std::vector<MCSymbol*> DeadBlockSyms;
MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
OutStreamer.AddComment("Address taken block that was later removed");
OutStreamer.EmitLabel(DeadBlockSyms[i]);
}
// Emit pre-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
HI.Handler->beginFunction(MF);
}
// Emit the prefix data.
if (F->hasPrefixData())
EmitGlobalConstant(F->getPrefixData());
}
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
/// function. This can be overridden by targets as required to do custom stuff.
void AsmPrinter::EmitFunctionEntryLabel() {
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
if (CurrentFnSym->isUndefined())
return OutStreamer.EmitLabel(CurrentFnSym);
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' label emitted multiple times to assembly file");
}
/// emitComments - Pretty-print comments for instructions.
static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
const MachineFunction *MF = MI.getParent()->getParent();
const TargetMachine &TM = MF->getTarget();
// Check for spills and reloads
int FI;
const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
// We assume a single instruction only has a spill or reload, not
// both.
const MachineMemOperand *MMO;
if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Reload\n";
}
} else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Reload\n";
} else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Spill\n";
}
} else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Spill\n";
}
// Check for spill-induced copies
if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
CommentOS << " Reload Reuse\n";
}
/// emitImplicitDef - This method emits the specified machine instruction
/// that is an implicit def.
void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
OutStreamer.AddComment(Twine("implicit-def: ") +
TM.getRegisterInfo()->getName(RegNo));
OutStreamer.AddBlankLine();
}
static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
std::string Str = "kill:";
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &Op = MI->getOperand(i);
assert(Op.isReg() && "KILL instruction must have only register operands");
Str += ' ';
Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
Str += (Op.isDef() ? "<def>" : "<kill>");
}
AP.OutStreamer.AddComment(Str);
AP.OutStreamer.AddBlankLine();
}
/// emitDebugValueComment - This method handles the target-independent form
/// of DBG_VALUE, returning true if it was able to do so. A false return
/// means the target will need to handle MI in EmitInstruction.
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
// This code handles only the 3-operand target-independent form.
if (MI->getNumOperands() != 3)
return false;
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "DEBUG_VALUE: ";
DIVariable V(MI->getOperand(2).getMetadata());
if (V.getContext().isSubprogram()) {
StringRef Name = DISubprogram(V.getContext()).getDisplayName();
if (!Name.empty())
OS << Name << ":";
}
OS << V.getName();
if (V.isVariablePiece())
OS << " [piece offset=" << V.getPieceOffset()
<< " size="<<V.getPieceSize()<<"]";
OS << " <- ";
// The second operand is only an offset if it's an immediate.
bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
// Register or immediate value. Register 0 means undef.
if (MI->getOperand(0).isFPImm()) {
APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
OS << (double)APF.convertToFloat();
} else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
OS << APF.convertToDouble();
} else {
// There is no good way to print long double. Convert a copy to
// double. Ah well, it's only a comment.
bool ignored;
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
OS << "(long double) " << APF.convertToDouble();
}
} else if (MI->getOperand(0).isImm()) {
OS << MI->getOperand(0).getImm();
} else if (MI->getOperand(0).isCImm()) {
MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
} else {
unsigned Reg;
if (MI->getOperand(0).isReg()) {
Reg = MI->getOperand(0).getReg();
} else {
assert(MI->getOperand(0).isFI() && "Unknown operand type");
const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
Offset += TFI->getFrameIndexReference(*AP.MF,
MI->getOperand(0).getIndex(), Reg);
Deref = true;
}
if (Reg == 0) {
// Suppress offset, it is not meaningful here.
OS << "undef";
// NOTE: Want this comment at start of line, don't emit with AddComment.
AP.OutStreamer.emitRawComment(OS.str());
return true;
}
if (Deref)
OS << '[';
OS << AP.TM.getRegisterInfo()->getName(Reg);
}
if (Deref)
OS << '+' << Offset << ']';
// NOTE: Want this comment at start of line, don't emit with AddComment.
AP.OutStreamer.emitRawComment(OS.str());
return true;
}
AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
MF->getFunction()->needsUnwindTableEntry())
return CFI_M_EH;
if (MMI->hasDebugInfo())
return CFI_M_Debug;
return CFI_M_None;
}
bool AsmPrinter::needsSEHMoves() {
return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH &&
MF->getFunction()->needsUnwindTableEntry();
}
void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
ExceptionHandlingType != ExceptionHandling::ARM)
return;
if (needsCFIMoves() == CFI_M_None)
return;
if (MMI->getCompactUnwindEncoding() != 0)
OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
const MachineModuleInfo &MMI = MF->getMMI();
const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
const MCCFIInstruction &CFI = Instrs[CFIIndex];
emitCFIInstruction(CFI);
}
/// EmitFunctionBody - This method emits the body and trailer for a
/// function.
void AsmPrinter::EmitFunctionBody() {
// Emit target-specific gunk before the function body.
EmitFunctionBodyStart();
bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
// Print out code for the function.
bool HasAnyRealCode = false;
const MachineInstr *LastMI = nullptr;
for (auto &MBB : *MF) {
// Print a label for the basic block.
EmitBasicBlockStart(MBB);
for (auto &MI : MBB) {
LastMI = &MI;
// Print the assembly for the instruction.
if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
!MI.isDebugValue()) {
HasAnyRealCode = true;
++EmittedInsts;
}
if (ShouldPrintDebugScopes) {
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
TimePassesIsEnabled);
HI.Handler->beginInstruction(&MI);
}
}
if (isVerbose())
emitComments(MI, OutStreamer.GetCommentOS());
switch (MI.getOpcode()) {
case TargetOpcode::CFI_INSTRUCTION:
emitCFIInstruction(MI);
break;
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
break;
case TargetOpcode::INLINEASM:
EmitInlineAsm(&MI);
break;
case TargetOpcode::DBG_VALUE:
if (isVerbose()) {
if (!emitDebugValueComment(&MI, *this))
EmitInstruction(&MI);
}
break;
case TargetOpcode::IMPLICIT_DEF:
if (isVerbose()) emitImplicitDef(&MI);
break;
case TargetOpcode::KILL:
if (isVerbose()) emitKill(&MI, *this);
break;
default:
EmitInstruction(&MI);
break;
}
if (ShouldPrintDebugScopes) {
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
TimePassesIsEnabled);
HI.Handler->endInstruction();
}
}
}
EmitBasicBlockEnd(MBB);
}
// If the last instruction was a prolog label, then we have a situation where
// we emitted a prolog but no function body. This results in the ending prolog
// label equaling the end of function label and an invalid "row" in the
// FDE. We need to emit a noop in this situation so that the FDE's rows are
// valid.
bool RequiresNoop = LastMI && LastMI->isCFIInstruction();
// If the function is empty and the object file uses .subsections_via_symbols,
// then we need to emit *something* to the function body to prevent the
// labels from collapsing together. Just emit a noop.
if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
MCInst Noop;
TM.getInstrInfo()->getNoopForMachoTarget(Noop);
if (Noop.getOpcode()) {
OutStreamer.AddComment("avoids zero-length function");
OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
} else // Target not mc-ized yet.
OutStreamer.EmitRawText(StringRef("\tnop\n"));
}
const Function *F = MF->getFunction();
for (const auto &BB : *F) {
if (!BB.hasAddressTaken())
continue;
MCSymbol *Sym = GetBlockAddressSymbol(&BB);
if (Sym->isDefined())
continue;
OutStreamer.AddComment("Address of block that was removed by CodeGen");
OutStreamer.EmitLabel(Sym);
}
// Emit target-specific gunk after the function body.
EmitFunctionBodyEnd();
// If the target wants a .size directive for the size of the function, emit
// it.
if (MAI->hasDotTypeDotSizeDirective()) {
// Create a symbol for the end of function, so we can get the size as
// difference between the function label and the temp label.
MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
OutStreamer.EmitLabel(FnEndLabel);
const MCExpr *SizeExp =
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
MCSymbolRefExpr::Create(CurrentFnSymForSize,
OutContext),
OutContext);
OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
}
// Emit post-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
HI.Handler->endFunction(MF);
}
MMI->EndFunction();
// Print out jump tables referenced by the function.
EmitJumpTableInfo();
OutStreamer.AddBlankLine();
}
static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP);
bool AsmPrinter::doFinalization(Module &M) {
// Emit global variables.
for (const auto &G : M.globals())
EmitGlobalVariable(&G);
// Emit visibility info for declarations
for (const Function &F : M) {
if (!F.isDeclaration())
continue;
GlobalValue::VisibilityTypes V = F.getVisibility();
if (V == GlobalValue::DefaultVisibility)
continue;
MCSymbol *Name = getSymbol(&F);
EmitVisibility(Name, V, false);
}
// Get information about jump-instruction tables to print.
JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>();
if (JITI && !JITI->getTables().empty()) {
unsigned Arch = Triple(getTargetTriple()).getArch();
bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb);
MCInst TrapInst;
TM.getInstrInfo()->getTrap(TrapInst);
for (const auto &KV : JITI->getTables()) {
uint64_t Count = 0;
for (const auto &FunPair : KV.second) {
// Emit the function labels to make this be a function entry point.
MCSymbol *FunSym =
OutContext.GetOrCreateSymbol(FunPair.second->getName());
OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global);
// FIXME: JumpTableInstrInfo should store information about the required
// alignment of table entries and the size of the padding instruction.
EmitAlignment(3);
if (IsThumb)
OutStreamer.EmitThumbFunc(FunSym);
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction);
OutStreamer.EmitLabel(FunSym);
// Emit the jump instruction to transfer control to the original
// function.
MCInst JumpToFun;
MCSymbol *TargetSymbol =
OutContext.GetOrCreateSymbol(FunPair.first->getName());
const MCSymbolRefExpr *TargetSymRef =
MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT,
OutContext);
TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef);
OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo());
++Count;
}
// Emit enough padding instructions to fill up to the next power of two.
// This assumes that the trap instruction takes 8 bytes or fewer.
uint64_t Remaining = NextPowerOf2(Count) - Count;
for (uint64_t C = 0; C < Remaining; ++C) {
EmitAlignment(3);
OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo());
}
}
}
// Emit module flags.
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
M.getModuleFlagsMetadata(ModuleFlags);
if (!ModuleFlags.empty())
getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
// Make sure we wrote out everything we need.
OutStreamer.Flush();
// Finalize debug and EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
TimePassesIsEnabled);
HI.Handler->endModule();
delete HI.Handler;
}
Handlers.clear();
DD = nullptr;
// If the target wants to know about weak references, print them all.
if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
// Print out module-level global variables here.
for (const auto &G : M.globals()) {
if (!G.hasExternalWeakLinkage())
continue;
OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
}
for (const auto &F : M) {
if (!F.hasExternalWeakLinkage())
continue;
OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
}
}
if (MAI->hasSetDirective()) {
OutStreamer.AddBlankLine();
for (const auto &Alias : M.aliases()) {
MCSymbol *Name = getSymbol(&Alias);
if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
else
assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
EmitVisibility(Name, Alias.getVisibility());
// Emit the directives as assignments aka .set:
OutStreamer.EmitAssignment(Name,
lowerConstant(Alias.getAliasee(), *this));
}
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
MP->finishAssembly(*this);
// Emit llvm.ident metadata in an '.ident' directive.
EmitModuleIdents(M);
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
OutStreamer.SwitchSection(S);
// Allow the target to emit any magic that it wants at the end of the file,
// after everything else has gone out.
EmitEndOfAsmFile(M);
delete Mang; Mang = nullptr;
MMI = nullptr;
OutStreamer.Finish();
OutStreamer.reset();
return false;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
this->MF = &MF;
// Get the function symbol.
CurrentFnSym = getSymbol(MF.getFunction());
CurrentFnSymForSize = CurrentFnSym;
if (isVerbose())
LI = &getAnalysis<MachineLoopInfo>();
}
namespace {
// SectionCPs - Keep track the alignment, constpool entries per Section.
struct SectionCPs {
const MCSection *S;
unsigned Alignment;
SmallVector<unsigned, 4> CPEs;
SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
};
}
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool() {
const MachineConstantPool *MCP = MF->getConstantPool();
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const MachineConstantPoolEntry &CPE = CP[i];
unsigned Align = CPE.getAlignment();
SectionKind Kind = CPE.getSectionKind(TM.getDataLayout());
const Constant *C = nullptr;
if (!CPE.isMachineConstantPoolEntry())
C = CPE.Val.ConstVal;
const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C);
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
unsigned SecIdx = CPSections.size();
while (SecIdx != 0) {
if (CPSections[--SecIdx].S == S) {
Found = true;
break;
}
}
if (!Found) {
SecIdx = CPSections.size();
CPSections.push_back(SectionCPs(S, Align));
}
if (Align > CPSections[SecIdx].Alignment)
CPSections[SecIdx].Alignment = Align;
CPSections[SecIdx].CPEs.push_back(i);
}
// Now print stuff into the calculated sections.
const MCSection *CurSection = nullptr;
unsigned Offset = 0;
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
unsigned CPI = CPSections[i].CPEs[j];
MCSymbol *Sym = GetCPISymbol(CPI);
if (!Sym->isUndefined())
continue;
if (CurSection != CPSections[i].S) {
OutStreamer.SwitchSection(CPSections[i].S);
EmitAlignment(Log2_32(CPSections[i].Alignment));
CurSection = CPSections[i].S;
Offset = 0;
}
MachineConstantPoolEntry CPE = CP[CPI];
// Emit inter-object padding for alignment.
unsigned AlignMask = CPE.getAlignment() - 1;
unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
OutStreamer.EmitZeros(NewOffset - Offset);
Type *Ty = CPE.getType();
Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
OutStreamer.EmitLabel(Sym);
if (CPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
else
EmitGlobalConstant(CPE.Val.ConstVal);
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo() {
const DataLayout *DL = MF->getTarget().getDataLayout();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
if (!MJTI) return;
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
const Function *F = MF->getFunction();
bool JTInDiffSection = false;
if (// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// FIXME: Need a better predicate for this: what about custom entries?
MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
// We should also do if the section name is NULL or function is declared
// in discardable section
// FIXME: this isn't the right predicate, should be based on the MCSection
// for the function.
F->isWeakForLinker()) {
OutStreamer.SwitchSection(
getObjFileLowering().SectionForGlobal(F, *Mang, TM));
} else {
// Otherwise, drop it in the readonly section.
const MCSection *ReadOnlySection =
getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(),
/*C=*/nullptr);
OutStreamer.SwitchSection(ReadOnlySection);
JTInDiffSection = true;
}
EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
// Jump tables in code sections are marked with a data_region directive
// where that's supported.
if (!JTInDiffSection)
OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For the EK_LabelDifference32 entry, if the target supports .set, emit a
// .set directive for each unique entry. This reduces the number of
// relocations the assembler will generate for the jump table.
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
MAI->hasSetDirective()) {
SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
const TargetLowering *TLI = TM.getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
const MachineBasicBlock *MBB = JTBBs[ii];
if (!EmittedSets.insert(MBB)) continue;
// .set LJTSet, LBB32-base
const MCExpr *LHS =
MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
MCBinaryExpr::CreateSub(LHS, Base, OutContext));
}
}
// On some targets (e.g. Darwin) we want to emit two consecutive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
// FIXME: This doesn't have to have any specific name, just any randomly
// named and numbered 'l' label would work. Simplify GetJTISymbol.
OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
OutStreamer.EmitLabel(GetJTISymbol(JTI));
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
}
if (!JTInDiffSection)
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
}
/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
/// current stream.
void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned UID) const {
assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
const MCExpr *Value = nullptr;
switch (MJTI->getEntryKind()) {
case MachineJumpTableInfo::EK_Inline:
llvm_unreachable("Cannot emit EK_Inline jump table entry");
case MachineJumpTableInfo::EK_Custom32:
Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
OutContext);
break;
case MachineJumpTableInfo::EK_BlockAddress:
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
// .word LBB123
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
break;
case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
// EK_GPRel32BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gprel32 LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
// EK_GPRel64BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gpdword LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_LabelDifference32: {
// EK_LabelDifference32 - Each entry is the address of the block minus
// the address of the jump table. This is used for PIC jump tables where
// gprel32 is not supported. e.g.:
// .word LBB123 - LJTI1_2
// If the .set directive is supported, this is emitted as:
// .set L4_5_set_123, LBB123 - LJTI1_2
// .word L4_5_set_123
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
if (MAI->hasSetDirective()) {
// If we used .set, reference the .set's symbol.
Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
OutContext);
break;
}
// Otherwise, use the difference as the jump table entry.
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
break;
}
}
assert(Value && "Unknown entry kind!");
unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
OutStreamer.EmitValue(Value, EntrySize);
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (MAI->hasNoDeadStrip()) // No need to emit this at all.
EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
return true;
}
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (StringRef(GV->getSection()) == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
if (GV->getName() == "llvm.global_ctors") {
EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
if (TM.getRelocationModel() == Reloc::Static &&
MAI->hasStaticCtorDtorReferenceInStaticMode()) {
StringRef Sym(".constructors_used");
OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
MCSA_Reference);
}
return true;
}
if (GV->getName() == "llvm.global_dtors") {
EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
if (TM.getRelocationModel() == Reloc::Static &&
MAI->hasStaticCtorDtorReferenceInStaticMode()) {
StringRef Sym(".destructors_used");
OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
MCSA_Reference);
}
return true;
}
return false;
}
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
// Should be an array of 'i8*'.
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV)
OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
}
}
namespace {
struct Structor {
Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
int Priority;
llvm::Constant *Func;
llvm::GlobalValue *ComdatKey;
};
} // end namespace
/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
/// priority.
void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority.
if (!isa<ConstantArray>(List)) return;
// Sanity check the structors list.
const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (!InitList) return; // Not an array!
StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
// FIXME: Only allow the 3-field form in LLVM 4.0.
if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
return; // Not an array of two or three elements!
if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
!isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
return; // Not (int, ptr, ptr).
// Gather the structors in a form that's convenient for sorting by priority.
SmallVector<Structor, 8> Structors;
for (Value *O : InitList->operands()) {
ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
if (!CS) continue; // Malformed.
if (CS->getOperand(1)->isNullValue())
break; // Found a null terminator, skip the rest.
ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
if (!Priority) continue; // Malformed.
Structors.push_back(Structor());
Structor &S = Structors.back();
S.Priority = Priority->getLimitedValue(65535);
S.Func = CS->getOperand(1);
if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
}
// Emit the function pointers in the target-specific order
const DataLayout *DL = TM.getDataLayout();
unsigned Align = Log2_32(DL->getPointerPrefAlignment());
std::stable_sort(Structors.begin(), Structors.end(),
[](const Structor &L,
const Structor &R) { return L.Priority < R.Priority; });
for (Structor &S : Structors) {
const TargetLoweringObjectFile &Obj = getObjFileLowering();
const MCSymbol *KeySym = nullptr;
if (GlobalValue *GV = S.ComdatKey) {
if (GV->hasAvailableExternallyLinkage())
// If the associated variable is available_externally, some other TU
// will provide its dynamic initializer.
continue;
KeySym = getSymbol(GV);
}
const MCSection *OutputSection =
(isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
: Obj.getStaticDtorSection(S.Priority, KeySym));
OutStreamer.SwitchSection(OutputSection);
if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
EmitAlignment(Align);
EmitXXStructor(S.Func);
}
}
void AsmPrinter::EmitModuleIdents(Module &M) {
if (!MAI->hasIdentDirective())
return;
if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *N = NMD->getOperand(i);
assert(N->getNumOperands() == 1 &&
"llvm.ident metadata entry can have only one operand");
const MDString *S = cast<MDString>(N->getOperand(0));
OutStreamer.EmitIdent(S->getString());
}
}
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
OutStreamer.EmitIntValue(Value, 1);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
OutStreamer.EmitIntValue(Value, 2);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
OutStreamer.EmitIntValue(Value, 4);
}
/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
/// in bytes of the directive is specified by Size and Hi/Lo specify the
/// labels. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
unsigned Size) const {
// Get the Hi-Lo expression.
const MCExpr *Diff =
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
MCSymbolRefExpr::Create(Lo, OutContext),
OutContext);
if (!MAI->hasSetDirective()) {
OutStreamer.EmitValue(Diff, Size);
return;
}
// Otherwise, emit with .set (aka assignment).
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
OutStreamer.EmitAssignment(SetLabel, Diff);
OutStreamer.EmitSymbolValue(SetLabel, Size);
}
/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
/// where the size in bytes of the directive is specified by Size and Hi/Lo
/// specify the labels. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
const MCSymbol *Lo,
unsigned Size) const {
// Emit Hi+Offset - Lo
// Get the Hi+Offset expression.
const MCExpr *Plus =
MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
MCConstantExpr::Create(Offset, OutContext),
OutContext);
// Get the Hi+Offset-Lo expression.
const MCExpr *Diff =
MCBinaryExpr::CreateSub(Plus,
MCSymbolRefExpr::Create(Lo, OutContext),
OutContext);
if (!MAI->hasSetDirective())
OutStreamer.EmitValue(Diff, Size);
else {
// Otherwise, emit with .set (aka assignment).
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
OutStreamer.EmitAssignment(SetLabel, Diff);
OutStreamer.EmitSymbolValue(SetLabel, Size);
}
}
/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
/// where the size in bytes of the directive is specified by Size and Label
/// specifies the label. This implicitly uses .set if it is available.
void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
unsigned Size,
bool IsSectionRelative) const {
if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
OutStreamer.EmitCOFFSecRel32(Label);
return;
}
// Emit Label+Offset (or just Label if Offset is zero)
const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
if (Offset)
Expr = MCBinaryExpr::CreateAdd(
Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
OutStreamer.EmitValue(Expr, Size);
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will override the alignment request
// if required for correctness.
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
if (getCurrentSection()->getKind().isText())
OutStreamer.EmitCodeAlignment(1 << NumBits);
else
OutStreamer.EmitValueToAlignment(1 << NumBits);
}
//===----------------------------------------------------------------------===//
// Constant emission.
//===----------------------------------------------------------------------===//
/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
///
static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
MCContext &Ctx = AP.OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::Create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (!CE) {
llvm_unreachable("Unknown constant value to lower!");
}
if (const MCExpr *RelocExpr =
AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang,
AP.TM))
return RelocExpr;
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C =
ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
if (C != CE)
return lowerConstant(C, AP);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/false,
!AP.MF ? nullptr : AP.MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
const DataLayout &DL = *AP.TM.getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
// FALL THROUGH.
case Instruction::BitCast:
return lowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
const DataLayout &DL = *AP.TM.getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
false/*ZExt*/);
return lowerConstant(Op, AP);
}
case Instruction::PtrToInt: {
const DataLayout &DL = *AP.TM.getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = lowerConstant(Op, AP);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
}
}
}
}
static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const ConstantDataSequential *V) {
StringRef Data = V->getRawDataValues();
assert(!Data.empty() && "Empty aggregates should be CAZ node");
char C = Data[0];
for (unsigned i = 1, e = Data.size(); i != e; ++i)
if (Data[i] != C) return -1;
return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
}
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64) return -1;
uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
uint64_t Value = CI->getZExtValue();
// Make sure the constant is at least 8 bits long and has a power
// of 2 bit width. This guarantees the constant bit width is
// always a multiple of 8 bits, avoiding issues with padding out
// to Size and other such corner cases.
if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
uint8_t Byte = static_cast<uint8_t>(Value);
for (unsigned i = 1; i < Size; ++i) {
Value >>= 8;
if (static_cast<uint8_t>(Value) != Byte) return -1;
}
return Byte;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
// Make sure all array elements are sequences of the same repeated
// byte.
assert(CA->getNumOperands() != 0 && "Should be a CAZ");
int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
if (Byte == -1) return -1;
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
if (ThisByte == -1) return -1;
if (Byte != ThisByte) return -1;
}
return Byte;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
return isRepeatedByteSequence(CDS);
return -1;
}
static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
AsmPrinter &AP){
// See if we can aggregate this into a .fill, if so, emit it as such.
int Value = isRepeatedByteSequence(CDS, AP.TM);
if (Value != -1) {
uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
// Don't emit a 1-byte object as a .fill.
if (Bytes > 1)
return AP.OutStreamer.EmitFill(Bytes, Value);
}
// If this can be emitted with .ascii/.asciz, emit it as such.
if (CDS->isString())
return AP.OutStreamer.EmitBytes(CDS->getAsString());
// Otherwise, emit the values in successive locations.
unsigned ElementByteSize = CDS->getElementByteSize();
if (isa<IntegerType>(CDS->getElementType())) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
CDS->getElementAsInteger(i));
AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
ElementByteSize);
}
} else if (ElementByteSize == 4) {
// FP Constants are printed as integer constants to avoid losing
// precision.
assert(CDS->getElementType()->isFloatTy());
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union {
float F;
uint32_t I;
};
F = CDS->getElementAsFloat(i);
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
AP.OutStreamer.EmitIntValue(I, 4);
}
} else {
assert(CDS->getElementType()->isDoubleTy());
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union {
double F;
uint64_t I;
};
F = CDS->getElementAsDouble(i);
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
AP.OutStreamer.EmitIntValue(I, 8);
}
}
const DataLayout &DL = *AP.TM.getDataLayout();
unsigned Size = DL.getTypeAllocSize(CDS->getType());
unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
CDS->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer.EmitZeros(Padding);
}
static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
// See if we can aggregate some values. Make sure it can be
// represented as a series of bytes of the constant value.
int Value = isRepeatedByteSequence(CA, AP.TM);
if (Value != -1) {
uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
AP.OutStreamer.EmitFill(Bytes, Value);
}
else {
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
emitGlobalConstantImpl(CA->getOperand(i), AP);
}
}
static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
emitGlobalConstantImpl(CV->getOperand(i), AP);
const DataLayout &DL = *AP.TM.getDataLayout();
unsigned Size = DL.getTypeAllocSize(CV->getType());
unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
CV->getType()->getNumElements();
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer.EmitZeros(Padding);
}
static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
// Print the fields in successive locations. Pad to align if needed!
const DataLayout *DL = AP.TM.getDataLayout();
unsigned Size = DL->getTypeAllocSize(CS->getType());
const StructLayout *Layout = DL->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
const Constant *Field = CS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
- Layout->getElementOffset(i)) - FieldSize;
SizeSoFar += FieldSize + PadSize;
// Now print the actual field value.
emitGlobalConstantImpl(Field, AP);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
AP.OutStreamer.EmitZeros(PadSize);
}
assert(SizeSoFar == Layout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
APInt API = CFP->getValueAPF().bitcastToAPInt();
// First print a comment with what we think the original floating-point value
// should have been.
if (AP.isVerbose()) {
SmallString<8> StrVal;
CFP->getValueAPF().toString(StrVal);
if (CFP->getType())
CFP->getType()->print(AP.OutStreamer.GetCommentOS());
else
AP.OutStreamer.GetCommentOS() << "Printing <null> Type";
AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
}
// Now iterate through the APInt chunks, emitting them in endian-correct
// order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
// floats).
unsigned NumBytes = API.getBitWidth() / 8;
unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
const uint64_t *p = API.getRawData();
// PPC's long double has odd notions of endianness compared to how LLVM
// handles it: p[0] goes first for *big* endian on PPC.
if (AP.TM.getDataLayout()->isBigEndian() &&
!CFP->getType()->isPPC_FP128Ty()) {
int Chunk = API.getNumWords() - 1;
if (TrailingBytes)
AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
for (; Chunk >= 0; --Chunk)
AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
} else {
unsigned Chunk;
for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
if (TrailingBytes)
AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
}
// Emit the tail padding for the long double.
const DataLayout &DL = *AP.TM.getDataLayout();
AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
DL.getTypeStoreSize(CFP->getType()));
}
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
const DataLayout *DL = AP.TM.getDataLayout();
unsigned BitWidth = CI->getBitWidth();
// Copy the value as we may massage the layout for constants whose bit width
// is not a multiple of 64-bits.
APInt Realigned(CI->getValue());
uint64_t ExtraBits = 0;
unsigned ExtraBitsSize = BitWidth & 63;
if (ExtraBitsSize) {
// The bit width of the data is not a multiple of 64-bits.
// The extra bits are expected to be at the end of the chunk of the memory.
// Little endian:
// * Nothing to be done, just record the extra bits to emit.
// Big endian:
// * Record the extra bits to emit.
// * Realign the raw data to emit the chunks of 64-bits.
if (DL->isBigEndian()) {
// Basically the structure of the raw data is a chunk of 64-bits cells:
// 0 1 BitWidth / 64
// [chunk1][chunk2] ... [chunkN].
// The most significant chunk is chunkN and it should be emitted first.
// However, due to the alignment issue chunkN contains useless bits.
// Realign the chunks so that they contain only useless information:
// ExtraBits 0 1 (BitWidth / 64) - 1
// chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
ExtraBits = Realigned.getRawData()[0] &
(((uint64_t)-1) >> (64 - ExtraBitsSize));
Realigned = Realigned.lshr(ExtraBitsSize);
} else
ExtraBits = Realigned.getRawData()[BitWidth / 64];
}
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = Realigned.getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
AP.OutStreamer.EmitIntValue(Val, 8);
}
if (ExtraBitsSize) {
// Emit the extra bits after the 64-bits chunks.
// Emit a directive that fills the expected size.
uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
Size -= (BitWidth / 64) * 8;
assert(Size && Size * 8 >= ExtraBitsSize &&
(ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
== ExtraBits && "Directive too small for extra bits.");
AP.OutStreamer.EmitIntValue(ExtraBits, Size);
}
}
static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
const DataLayout *DL = AP.TM.getDataLayout();
uint64_t Size = DL->getTypeAllocSize(CV->getType());
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
return AP.OutStreamer.EmitZeros(Size);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
switch (Size) {
case 1:
case 2:
case 4:
case 8:
if (AP.isVerbose())
AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
CI->getZExtValue());
AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
return;
default:
emitGlobalConstantLargeInt(CI, AP);
return;
}
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
return emitGlobalConstantFP(CFP, AP);
if (isa<ConstantPointerNull>(CV)) {
AP.OutStreamer.EmitIntValue(0, Size);
return;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
return emitGlobalConstantDataSequential(CDS, AP);
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
return emitGlobalConstantArray(CVA, AP);
if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
return emitGlobalConstantStruct(CVS, AP);
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
// Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
// vectors).
if (CE->getOpcode() == Instruction::BitCast)
return emitGlobalConstantImpl(CE->getOperand(0), AP);
if (Size > 8) {
// If the constant expression's size is greater than 64-bits, then we have
// to emit the value in chunks. Try to constant fold the value and emit it
// that way.
Constant *New = ConstantFoldConstantExpression(CE, DL);
if (New && New != CE)
return emitGlobalConstantImpl(New, AP);
}
}
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
return emitGlobalConstantVector(V, AP);
// Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
// thread the streamer with EmitValue.
AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
if (Size)
emitGlobalConstantImpl(CV, *this);
else if (MAI->hasSubsectionsViaSymbols()) {
// If the global has zero size, emit a single byte so that two labels don't
// look like they are at the same location.
OutStreamer.EmitIntValue(0, 1);
}
}
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
if (Offset > 0)
OS << '+' << Offset;
else if (Offset < 0)
OS << Offset;
}
//===----------------------------------------------------------------------===//
// Symbol Lowering Routines.
//===----------------------------------------------------------------------===//
/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
/// temporary label with the specified stem and unique ID.
MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
const DataLayout *DL = TM.getDataLayout();
return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
Name + Twine(ID));
}
/// GetTempSymbol - Return an assembler temporary label with the specified
/// stem.
MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const {
const DataLayout *DL = TM.getDataLayout();
return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
Name);
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
return MMI->getAddrLabelSymbol(BA->getBasicBlock());
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
return MMI->getAddrLabelSymbol(BB);
}
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
const DataLayout *DL = TM.getDataLayout();
return OutContext.GetOrCreateSymbol
(Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
+ "_" + Twine(CPID));
}
/// GetJTISymbol - Return the symbol for the specified jump table entry.
MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
}
/// GetJTSetSymbol - Return the symbol for the specified jump table .set
/// FIXME: privatize to AsmPrinter.
MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
const DataLayout *DL = TM.getDataLayout();
return OutContext.GetOrCreateSymbol
(Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
Twine(UID) + "_set_" + Twine(MBBID));
}
MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
StringRef Suffix) const {
return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
TM);
}
/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
/// ExternalSymbol.
MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
SmallString<60> NameStr;
Mang->getNameWithPrefix(NameStr, Sym);
return OutContext.GetOrCreateSymbol(NameStr.str());
}
/// PrintParentLoopComment - Print comments about parent loops of this one.
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
if (!Loop) return;
PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
OS.indent(Loop->getLoopDepth()*2)
<< "Parent Loop BB" << FunctionNumber << "_"
<< Loop->getHeader()->getNumber()
<< " Depth=" << Loop->getLoopDepth() << '\n';
}
/// PrintChildLoopComment - Print comments about child loops within
/// the loop for this basic block, with nesting.
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
// Add child loop information
for (const MachineLoop *CL : *Loop) {
OS.indent(CL->getLoopDepth()*2)
<< "Child Loop BB" << FunctionNumber << "_"
<< CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
<< '\n';
PrintChildLoopComment(OS, CL, FunctionNumber);
}
}
/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
const MachineLoopInfo *LI,
const AsmPrinter &AP) {
// Add loop depth information
const MachineLoop *Loop = LI->getLoopFor(&MBB);
if (!Loop) return;
MachineBasicBlock *Header = Loop->getHeader();
assert(Header && "No header for loop");
// If this block is not a loop header, just print out what is the loop header
// and return.
if (Header != &MBB) {
AP.OutStreamer.AddComment(" in Loop: Header=BB" +
Twine(AP.getFunctionNumber())+"_" +
Twine(Loop->getHeader()->getNumber())+
" Depth="+Twine(Loop->getLoopDepth()));
return;
}
// Otherwise, it is a loop header. Print out information about child and
// parent loops.
raw_ostream &OS = AP.OutStreamer.GetCommentOS();
PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
OS << "=>";
OS.indent(Loop->getLoopDepth()*2-2);
OS << "This ";
if (Loop->empty())
OS << "Inner ";
OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
}
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
// Emit an alignment directive for this block, if needed.
if (unsigned Align = MBB.getAlignment())
EmitAlignment(Align);
// If the block has its address taken, emit any labels that were used to
// reference the block. It is possible that there is more than one label
// here, because multiple LLVM BB's may have been RAUW'd to this block after
// the references were generated.
if (MBB.hasAddressTaken()) {
const BasicBlock *BB = MBB.getBasicBlock();
if (isVerbose())
OutStreamer.AddComment("Block address taken");
std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB);
for (auto *Sym : Symbols)
OutStreamer.EmitLabel(Sym);
}
// Print some verbose block comments.
if (isVerbose()) {
if (const BasicBlock *BB = MBB.getBasicBlock())
if (BB->hasName())
OutStreamer.AddComment("%" + BB->getName());
emitBasicBlockLoopComments(MBB, LI, *this);
}
// Print the main label for the block.
if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) {
if (isVerbose()) {
// NOTE: Want this comment at start of line, don't emit with AddComment.
OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
}
} else {
OutStreamer.EmitLabel(MBB.getSymbol());
}
}
void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
bool IsDefinition) const {
MCSymbolAttr Attr = MCSA_Invalid;
switch (Visibility) {
default: break;
case GlobalValue::HiddenVisibility:
if (IsDefinition)
Attr = MAI->getHiddenVisibilityAttr();
else
Attr = MAI->getHiddenDeclarationVisibilityAttr();
break;
case GlobalValue::ProtectedVisibility:
Attr = MAI->getProtectedVisibilityAttr();
break;
}
if (Attr != MCSA_Invalid)
OutStreamer.EmitSymbolAttribute(Sym, Attr);
}
/// isBlockOnlyReachableByFallthough - Return true if the basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
// If this is a landing pad, it isn't a fall through. If it has no preds,
// then nothing falls through to it.
if (MBB->isLandingPad() || MBB->pred_empty())
return false;
// If there isn't exactly one predecessor, it can't be a fall through.
if (MBB->pred_size() > 1)
return false;
// The predecessor has to be immediately before this block.
MachineBasicBlock *Pred = *MBB->pred_begin();
if (!Pred->isLayoutSuccessor(MBB))
return false;
// If the block is completely empty, then it definitely does fall through.
if (Pred->empty())
return true;
// Check the terminators in the previous blocks
for (const auto &MI : Pred->terminators()) {
// If it is not a simple branch, we are in a table somewhere.
if (!MI.isBranch() || MI.isIndirectBranch())
return false;
// If we are the operands of one of the branches, this is not a fall
// through. Note that targets with delay slots will usually bundle
// terminators with the delay slot instruction.
for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
if (OP->isJTI())
return false;
if (OP->isMBB() && OP->getMBB() == MBB)
return false;
}
}
return true;
}
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
if (!S.usesMetadata())
return nullptr;
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
gcp_map_type::iterator GCPI = GCMap.find(&S);
if (GCPI != GCMap.end())
return GCPI->second.get();
const char *Name = S.getName().c_str();
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
if (strcmp(Name, I->getName()) == 0) {
std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
GMP->S = &S;
auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
return IterBool.first->second.get();
}
report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
}
/// Pin vtable to this file.
AsmPrinterHandler::~AsmPrinterHandler() {}