mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-18 10:08:34 +00:00
dea8fbcae5
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92596 91177308-0d34-0410-b5e6-96231b3b80d8
1052 lines
39 KiB
C++
1052 lines
39 KiB
C++
//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates machine instruction PHI nodes by inserting copy
|
|
// instructions, using an intelligent copy-folding technique based on
|
|
// dominator information. This is technique is derived from:
|
|
//
|
|
// Budimlic, et al. Fast copy coalescing and live-range identification.
|
|
// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
|
|
// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
|
|
// PLDI '02. ACM, New York, NY, 25-32.
|
|
// DOI= http://doi.acm.org/10.1145/512529.512534
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "strongphielim"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct StrongPHIElimination : public MachineFunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
StrongPHIElimination() : MachineFunctionPass(&ID) {}
|
|
|
|
// Waiting stores, for each MBB, the set of copies that need to
|
|
// be inserted into that MBB
|
|
DenseMap<MachineBasicBlock*,
|
|
std::multimap<unsigned, unsigned> > Waiting;
|
|
|
|
// Stacks holds the renaming stack for each register
|
|
std::map<unsigned, std::vector<unsigned> > Stacks;
|
|
|
|
// Registers in UsedByAnother are PHI nodes that are themselves
|
|
// used as operands to another another PHI node
|
|
std::set<unsigned> UsedByAnother;
|
|
|
|
// RenameSets are the is a map from a PHI-defined register
|
|
// to the input registers to be coalesced along with the
|
|
// predecessor block for those input registers.
|
|
std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets;
|
|
|
|
// PhiValueNumber holds the ID numbers of the VNs for each phi that we're
|
|
// eliminating, indexed by the register defined by that phi.
|
|
std::map<unsigned, unsigned> PhiValueNumber;
|
|
|
|
// Store the DFS-in number of each block
|
|
DenseMap<MachineBasicBlock*, unsigned> preorder;
|
|
|
|
// Store the DFS-out number of each block
|
|
DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<SlotIndexes>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequired<LiveIntervals>();
|
|
|
|
// TODO: Actually make this true.
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreserved<RegisterCoalescer>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
virtual void releaseMemory() {
|
|
preorder.clear();
|
|
maxpreorder.clear();
|
|
|
|
Waiting.clear();
|
|
Stacks.clear();
|
|
UsedByAnother.clear();
|
|
RenameSets.clear();
|
|
}
|
|
|
|
private:
|
|
|
|
/// DomForestNode - Represents a node in the "dominator forest". This is
|
|
/// a forest in which the nodes represent registers and the edges
|
|
/// represent a dominance relation in the block defining those registers.
|
|
struct DomForestNode {
|
|
private:
|
|
// Store references to our children
|
|
std::vector<DomForestNode*> children;
|
|
// The register we represent
|
|
unsigned reg;
|
|
|
|
// Add another node as our child
|
|
void addChild(DomForestNode* DFN) { children.push_back(DFN); }
|
|
|
|
public:
|
|
typedef std::vector<DomForestNode*>::iterator iterator;
|
|
|
|
// Create a DomForestNode by providing the register it represents, and
|
|
// the node to be its parent. The virtual root node has register 0
|
|
// and a null parent.
|
|
DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
|
|
if (parent)
|
|
parent->addChild(this);
|
|
}
|
|
|
|
~DomForestNode() {
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
delete *I;
|
|
}
|
|
|
|
/// getReg - Return the regiser that this node represents
|
|
inline unsigned getReg() { return reg; }
|
|
|
|
// Provide iterator access to our children
|
|
inline DomForestNode::iterator begin() { return children.begin(); }
|
|
inline DomForestNode::iterator end() { return children.end(); }
|
|
};
|
|
|
|
void computeDFS(MachineFunction& MF);
|
|
void processBlock(MachineBasicBlock* MBB);
|
|
|
|
std::vector<DomForestNode*> computeDomForest(
|
|
std::map<unsigned, MachineBasicBlock*>& instrs,
|
|
MachineRegisterInfo& MRI);
|
|
void processPHIUnion(MachineInstr* Inst,
|
|
std::map<unsigned, MachineBasicBlock*>& PHIUnion,
|
|
std::vector<StrongPHIElimination::DomForestNode*>& DF,
|
|
std::vector<std::pair<unsigned, unsigned> >& locals);
|
|
void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
|
|
void InsertCopies(MachineDomTreeNode* MBB,
|
|
SmallPtrSet<MachineBasicBlock*, 16>& v);
|
|
bool mergeLiveIntervals(unsigned primary, unsigned secondary);
|
|
};
|
|
}
|
|
|
|
char StrongPHIElimination::ID = 0;
|
|
static RegisterPass<StrongPHIElimination>
|
|
X("strong-phi-node-elimination",
|
|
"Eliminate PHI nodes for register allocation, intelligently");
|
|
|
|
const PassInfo *const llvm::StrongPHIEliminationID = &X;
|
|
|
|
/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
|
|
/// of the given MachineFunction. These numbers are then used in other parts
|
|
/// of the PHI elimination process.
|
|
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
|
|
SmallPtrSet<MachineDomTreeNode*, 8> frontier;
|
|
SmallPtrSet<MachineDomTreeNode*, 8> visited;
|
|
|
|
unsigned time = 0;
|
|
|
|
MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
|
|
|
|
MachineDomTreeNode* node = DT.getRootNode();
|
|
|
|
std::vector<MachineDomTreeNode*> worklist;
|
|
worklist.push_back(node);
|
|
|
|
while (!worklist.empty()) {
|
|
MachineDomTreeNode* currNode = worklist.back();
|
|
|
|
if (!frontier.count(currNode)) {
|
|
frontier.insert(currNode);
|
|
++time;
|
|
preorder.insert(std::make_pair(currNode->getBlock(), time));
|
|
}
|
|
|
|
bool inserted = false;
|
|
for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
|
|
I != E; ++I)
|
|
if (!frontier.count(*I) && !visited.count(*I)) {
|
|
worklist.push_back(*I);
|
|
inserted = true;
|
|
break;
|
|
}
|
|
|
|
if (!inserted) {
|
|
frontier.erase(currNode);
|
|
visited.insert(currNode);
|
|
maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
|
|
|
|
worklist.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// PreorderSorter - a helper class that is used to sort registers
|
|
/// according to the preorder number of their defining blocks
|
|
class PreorderSorter {
|
|
private:
|
|
DenseMap<MachineBasicBlock*, unsigned>& preorder;
|
|
MachineRegisterInfo& MRI;
|
|
|
|
public:
|
|
PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
|
|
MachineRegisterInfo& M) : preorder(p), MRI(M) { }
|
|
|
|
bool operator()(unsigned A, unsigned B) {
|
|
if (A == B)
|
|
return false;
|
|
|
|
MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
|
|
MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
|
|
|
|
if (preorder[ABlock] < preorder[BBlock])
|
|
return true;
|
|
else if (preorder[ABlock] > preorder[BBlock])
|
|
return false;
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// computeDomForest - compute the subforest of the DomTree corresponding
|
|
/// to the defining blocks of the registers in question
|
|
std::vector<StrongPHIElimination::DomForestNode*>
|
|
StrongPHIElimination::computeDomForest(
|
|
std::map<unsigned, MachineBasicBlock*>& regs,
|
|
MachineRegisterInfo& MRI) {
|
|
// Begin by creating a virtual root node, since the actual results
|
|
// may well be a forest. Assume this node has maximum DFS-out number.
|
|
DomForestNode* VirtualRoot = new DomForestNode(0, 0);
|
|
maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
|
|
|
|
// Populate a worklist with the registers
|
|
std::vector<unsigned> worklist;
|
|
worklist.reserve(regs.size());
|
|
for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(),
|
|
E = regs.end(); I != E; ++I)
|
|
worklist.push_back(I->first);
|
|
|
|
// Sort the registers by the DFS-in number of their defining block
|
|
PreorderSorter PS(preorder, MRI);
|
|
std::sort(worklist.begin(), worklist.end(), PS);
|
|
|
|
// Create a "current parent" stack, and put the virtual root on top of it
|
|
DomForestNode* CurrentParent = VirtualRoot;
|
|
std::vector<DomForestNode*> stack;
|
|
stack.push_back(VirtualRoot);
|
|
|
|
// Iterate over all the registers in the previously computed order
|
|
for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
|
|
I != E; ++I) {
|
|
unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
|
|
MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
|
|
MRI.getVRegDef(CurrentParent->getReg())->getParent() :
|
|
0;
|
|
|
|
// If the DFS-in number of the register is greater than the DFS-out number
|
|
// of the current parent, repeatedly pop the parent stack until it isn't.
|
|
while (pre > maxpreorder[parentBlock]) {
|
|
stack.pop_back();
|
|
CurrentParent = stack.back();
|
|
|
|
parentBlock = CurrentParent->getReg() ?
|
|
MRI.getVRegDef(CurrentParent->getReg())->getParent() :
|
|
0;
|
|
}
|
|
|
|
// Now that we've found the appropriate parent, create a DomForestNode for
|
|
// this register and attach it to the forest
|
|
DomForestNode* child = new DomForestNode(*I, CurrentParent);
|
|
|
|
// Push this new node on the "current parent" stack
|
|
stack.push_back(child);
|
|
CurrentParent = child;
|
|
}
|
|
|
|
// Return a vector containing the children of the virtual root node
|
|
std::vector<DomForestNode*> ret;
|
|
ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
|
|
return ret;
|
|
}
|
|
|
|
/// isLiveIn - helper method that determines, from a regno, if a register
|
|
/// is live into a block
|
|
static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
|
|
LiveIntervals& LI) {
|
|
LiveInterval& I = LI.getOrCreateInterval(r);
|
|
SlotIndex idx = LI.getMBBStartIdx(MBB);
|
|
return I.liveAt(idx);
|
|
}
|
|
|
|
/// isLiveOut - help method that determines, from a regno, if a register is
|
|
/// live out of a block.
|
|
static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
|
|
LiveIntervals& LI) {
|
|
for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
|
|
E = MBB->succ_end(); PI != E; ++PI)
|
|
if (isLiveIn(r, *PI, LI))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// interferes - checks for local interferences by scanning a block. The only
|
|
/// trick parameter is 'mode' which tells it the relationship of the two
|
|
/// registers. 0 - defined in the same block, 1 - first properly dominates
|
|
/// second, 2 - second properly dominates first
|
|
static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
|
|
LiveIntervals& LV, unsigned mode) {
|
|
MachineInstr* def = 0;
|
|
MachineInstr* kill = 0;
|
|
|
|
// The code is still in SSA form at this point, so there is only one
|
|
// definition per VReg. Thus we can safely use MRI->getVRegDef().
|
|
const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
|
|
|
|
bool interference = false;
|
|
|
|
// Wallk the block, checking for interferences
|
|
for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
|
|
MBI != MBE; ++MBI) {
|
|
MachineInstr* curr = MBI;
|
|
|
|
// Same defining block...
|
|
if (mode == 0) {
|
|
if (curr == MRI->getVRegDef(a)) {
|
|
// If we find our first definition, save it
|
|
if (!def) {
|
|
def = curr;
|
|
// If there's already an unkilled definition, then
|
|
// this is an interference
|
|
} else if (!kill) {
|
|
interference = true;
|
|
break;
|
|
// If there's a definition followed by a KillInst, then
|
|
// they can't interfere
|
|
} else {
|
|
interference = false;
|
|
break;
|
|
}
|
|
// Symmetric with the above
|
|
} else if (curr == MRI->getVRegDef(b)) {
|
|
if (!def) {
|
|
def = curr;
|
|
} else if (!kill) {
|
|
interference = true;
|
|
break;
|
|
} else {
|
|
interference = false;
|
|
break;
|
|
}
|
|
// Store KillInsts if they match up with the definition
|
|
} else if (curr->killsRegister(a)) {
|
|
if (def == MRI->getVRegDef(a)) {
|
|
kill = curr;
|
|
} else if (curr->killsRegister(b)) {
|
|
if (def == MRI->getVRegDef(b)) {
|
|
kill = curr;
|
|
}
|
|
}
|
|
}
|
|
// First properly dominates second...
|
|
} else if (mode == 1) {
|
|
if (curr == MRI->getVRegDef(b)) {
|
|
// Definition of second without kill of first is an interference
|
|
if (!kill) {
|
|
interference = true;
|
|
break;
|
|
// Definition after a kill is a non-interference
|
|
} else {
|
|
interference = false;
|
|
break;
|
|
}
|
|
// Save KillInsts of First
|
|
} else if (curr->killsRegister(a)) {
|
|
kill = curr;
|
|
}
|
|
// Symmetric with the above
|
|
} else if (mode == 2) {
|
|
if (curr == MRI->getVRegDef(a)) {
|
|
if (!kill) {
|
|
interference = true;
|
|
break;
|
|
} else {
|
|
interference = false;
|
|
break;
|
|
}
|
|
} else if (curr->killsRegister(b)) {
|
|
kill = curr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return interference;
|
|
}
|
|
|
|
/// processBlock - Determine how to break up PHIs in the current block. Each
|
|
/// PHI is broken up by some combination of renaming its operands and inserting
|
|
/// copies. This method is responsible for determining which operands receive
|
|
/// which treatment.
|
|
void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
|
|
LiveIntervals& LI = getAnalysis<LiveIntervals>();
|
|
MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
|
|
|
|
// Holds names that have been added to a set in any PHI within this block
|
|
// before the current one.
|
|
std::set<unsigned> ProcessedNames;
|
|
|
|
// Iterate over all the PHI nodes in this block
|
|
MachineBasicBlock::iterator P = MBB->begin();
|
|
while (P != MBB->end() && P->getOpcode() == TargetInstrInfo::PHI) {
|
|
unsigned DestReg = P->getOperand(0).getReg();
|
|
|
|
// Don't both doing PHI elimination for dead PHI's.
|
|
if (P->registerDefIsDead(DestReg)) {
|
|
++P;
|
|
continue;
|
|
}
|
|
|
|
LiveInterval& PI = LI.getOrCreateInterval(DestReg);
|
|
SlotIndex pIdx = LI.getInstructionIndex(P).getDefIndex();
|
|
VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
|
|
PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
|
|
|
|
// PHIUnion is the set of incoming registers to the PHI node that
|
|
// are going to be renames rather than having copies inserted. This set
|
|
// is refinded over the course of this function. UnionedBlocks is the set
|
|
// of corresponding MBBs.
|
|
std::map<unsigned, MachineBasicBlock*> PHIUnion;
|
|
SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
|
|
|
|
// Iterate over the operands of the PHI node
|
|
for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
|
|
unsigned SrcReg = P->getOperand(i-1).getReg();
|
|
|
|
// Don't need to try to coalesce a register with itself.
|
|
if (SrcReg == DestReg) {
|
|
ProcessedNames.insert(SrcReg);
|
|
continue;
|
|
}
|
|
|
|
// We don't need to insert copies for implicit_defs.
|
|
MachineInstr* DefMI = MRI.getVRegDef(SrcReg);
|
|
if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
|
|
ProcessedNames.insert(SrcReg);
|
|
|
|
// Check for trivial interferences via liveness information, allowing us
|
|
// to avoid extra work later. Any registers that interfere cannot both
|
|
// be in the renaming set, so choose one and add copies for it instead.
|
|
// The conditions are:
|
|
// 1) if the operand is live into the PHI node's block OR
|
|
// 2) if the PHI node is live out of the operand's defining block OR
|
|
// 3) if the operand is itself a PHI node and the original PHI is
|
|
// live into the operand's defining block OR
|
|
// 4) if the operand is already being renamed for another PHI node
|
|
// in this block OR
|
|
// 5) if any two operands are defined in the same block, insert copies
|
|
// for one of them
|
|
if (isLiveIn(SrcReg, P->getParent(), LI) ||
|
|
isLiveOut(P->getOperand(0).getReg(),
|
|
MRI.getVRegDef(SrcReg)->getParent(), LI) ||
|
|
( MRI.getVRegDef(SrcReg)->getOpcode() == TargetInstrInfo::PHI &&
|
|
isLiveIn(P->getOperand(0).getReg(),
|
|
MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
|
|
ProcessedNames.count(SrcReg) ||
|
|
UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
|
|
|
|
// Add a copy for the selected register
|
|
MachineBasicBlock* From = P->getOperand(i).getMBB();
|
|
Waiting[From].insert(std::make_pair(SrcReg, DestReg));
|
|
UsedByAnother.insert(SrcReg);
|
|
} else {
|
|
// Otherwise, add it to the renaming set
|
|
PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB()));
|
|
UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
|
|
}
|
|
}
|
|
|
|
// Compute the dominator forest for the renaming set. This is a forest
|
|
// where the nodes are the registers and the edges represent dominance
|
|
// relations between the defining blocks of the registers
|
|
std::vector<StrongPHIElimination::DomForestNode*> DF =
|
|
computeDomForest(PHIUnion, MRI);
|
|
|
|
// Walk DomForest to resolve interferences at an inter-block level. This
|
|
// will remove registers from the renaming set (and insert copies for them)
|
|
// if interferences are found.
|
|
std::vector<std::pair<unsigned, unsigned> > localInterferences;
|
|
processPHIUnion(P, PHIUnion, DF, localInterferences);
|
|
|
|
// If one of the inputs is defined in the same block as the current PHI
|
|
// then we need to check for a local interference between that input and
|
|
// the PHI.
|
|
for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
|
|
E = PHIUnion.end(); I != E; ++I)
|
|
if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
|
|
localInterferences.push_back(std::make_pair(I->first,
|
|
P->getOperand(0).getReg()));
|
|
|
|
// The dominator forest walk may have returned some register pairs whose
|
|
// interference cannot be determined from dominator analysis. We now
|
|
// examine these pairs for local interferences.
|
|
for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
|
|
localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
|
|
std::pair<unsigned, unsigned> p = *I;
|
|
|
|
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
|
|
|
|
// Determine the block we need to scan and the relationship between
|
|
// the two registers
|
|
MachineBasicBlock* scan = 0;
|
|
unsigned mode = 0;
|
|
if (MRI.getVRegDef(p.first)->getParent() ==
|
|
MRI.getVRegDef(p.second)->getParent()) {
|
|
scan = MRI.getVRegDef(p.first)->getParent();
|
|
mode = 0; // Same block
|
|
} else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
|
|
MRI.getVRegDef(p.second)->getParent())) {
|
|
scan = MRI.getVRegDef(p.second)->getParent();
|
|
mode = 1; // First dominates second
|
|
} else {
|
|
scan = MRI.getVRegDef(p.first)->getParent();
|
|
mode = 2; // Second dominates first
|
|
}
|
|
|
|
// If there's an interference, we need to insert copies
|
|
if (interferes(p.first, p.second, scan, LI, mode)) {
|
|
// Insert copies for First
|
|
for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
|
|
if (P->getOperand(i-1).getReg() == p.first) {
|
|
unsigned SrcReg = p.first;
|
|
MachineBasicBlock* From = P->getOperand(i).getMBB();
|
|
|
|
Waiting[From].insert(std::make_pair(SrcReg,
|
|
P->getOperand(0).getReg()));
|
|
UsedByAnother.insert(SrcReg);
|
|
|
|
PHIUnion.erase(SrcReg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the renaming set for this PHI node to our overall renaming information
|
|
for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
|
|
QE = PHIUnion.end(); QI != QE; ++QI) {
|
|
DEBUG(dbgs() << "Adding Renaming: " << QI->first << " -> "
|
|
<< P->getOperand(0).getReg() << "\n");
|
|
}
|
|
|
|
RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
|
|
|
|
// Remember which registers are already renamed, so that we don't try to
|
|
// rename them for another PHI node in this block
|
|
for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
|
|
E = PHIUnion.end(); I != E; ++I)
|
|
ProcessedNames.insert(I->first);
|
|
|
|
++P;
|
|
}
|
|
}
|
|
|
|
/// processPHIUnion - Take a set of candidate registers to be coalesced when
|
|
/// decomposing the PHI instruction. Use the DominanceForest to remove the ones
|
|
/// that are known to interfere, and flag others that need to be checked for
|
|
/// local interferences.
|
|
void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
|
|
std::map<unsigned, MachineBasicBlock*>& PHIUnion,
|
|
std::vector<StrongPHIElimination::DomForestNode*>& DF,
|
|
std::vector<std::pair<unsigned, unsigned> >& locals) {
|
|
|
|
std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
|
|
SmallPtrSet<DomForestNode*, 4> visited;
|
|
|
|
// Code is still in SSA form, so we can use MRI::getVRegDef()
|
|
MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
|
|
|
|
LiveIntervals& LI = getAnalysis<LiveIntervals>();
|
|
unsigned DestReg = Inst->getOperand(0).getReg();
|
|
|
|
// DF walk on the DomForest
|
|
while (!worklist.empty()) {
|
|
DomForestNode* DFNode = worklist.back();
|
|
|
|
visited.insert(DFNode);
|
|
|
|
bool inserted = false;
|
|
for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
|
|
CI != CE; ++CI) {
|
|
DomForestNode* child = *CI;
|
|
|
|
// If the current node is live-out of the defining block of one of its
|
|
// children, insert a copy for it. NOTE: The paper actually calls for
|
|
// a more elaborate heuristic for determining whether to insert copies
|
|
// for the child or the parent. In the interest of simplicity, we're
|
|
// just always choosing the parent.
|
|
if (isLiveOut(DFNode->getReg(),
|
|
MRI.getVRegDef(child->getReg())->getParent(), LI)) {
|
|
// Insert copies for parent
|
|
for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
|
|
if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
|
|
unsigned SrcReg = DFNode->getReg();
|
|
MachineBasicBlock* From = Inst->getOperand(i).getMBB();
|
|
|
|
Waiting[From].insert(std::make_pair(SrcReg, DestReg));
|
|
UsedByAnother.insert(SrcReg);
|
|
|
|
PHIUnion.erase(SrcReg);
|
|
}
|
|
}
|
|
|
|
// If a node is live-in to the defining block of one of its children, but
|
|
// not live-out, then we need to scan that block for local interferences.
|
|
} else if (isLiveIn(DFNode->getReg(),
|
|
MRI.getVRegDef(child->getReg())->getParent(), LI) ||
|
|
MRI.getVRegDef(DFNode->getReg())->getParent() ==
|
|
MRI.getVRegDef(child->getReg())->getParent()) {
|
|
// Add (p, c) to possible local interferences
|
|
locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
|
|
}
|
|
|
|
if (!visited.count(child)) {
|
|
worklist.push_back(child);
|
|
inserted = true;
|
|
}
|
|
}
|
|
|
|
if (!inserted) worklist.pop_back();
|
|
}
|
|
}
|
|
|
|
/// ScheduleCopies - Insert copies into predecessor blocks, scheduling
|
|
/// them properly so as to avoid the 'lost copy' and the 'virtual swap'
|
|
/// problems.
|
|
///
|
|
/// Based on "Practical Improvements to the Construction and Destruction
|
|
/// of Static Single Assignment Form" by Briggs, et al.
|
|
void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
|
|
std::set<unsigned>& pushed) {
|
|
// FIXME: This function needs to update LiveIntervals
|
|
std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB];
|
|
|
|
std::multimap<unsigned, unsigned> worklist;
|
|
std::map<unsigned, unsigned> map;
|
|
|
|
// Setup worklist of initial copies
|
|
for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
|
|
E = copy_set.end(); I != E; ) {
|
|
map.insert(std::make_pair(I->first, I->first));
|
|
map.insert(std::make_pair(I->second, I->second));
|
|
|
|
if (!UsedByAnother.count(I->second)) {
|
|
worklist.insert(*I);
|
|
|
|
// Avoid iterator invalidation
|
|
std::multimap<unsigned, unsigned>::iterator OI = I;
|
|
++I;
|
|
copy_set.erase(OI);
|
|
} else {
|
|
++I;
|
|
}
|
|
}
|
|
|
|
LiveIntervals& LI = getAnalysis<LiveIntervals>();
|
|
MachineFunction* MF = MBB->getParent();
|
|
MachineRegisterInfo& MRI = MF->getRegInfo();
|
|
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
|
|
|
|
SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests;
|
|
|
|
// Iterate over the worklist, inserting copies
|
|
while (!worklist.empty() || !copy_set.empty()) {
|
|
while (!worklist.empty()) {
|
|
std::multimap<unsigned, unsigned>::iterator WI = worklist.begin();
|
|
std::pair<unsigned, unsigned> curr = *WI;
|
|
worklist.erase(WI);
|
|
|
|
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
|
|
|
|
if (isLiveOut(curr.second, MBB, LI)) {
|
|
// Create a temporary
|
|
unsigned t = MF->getRegInfo().createVirtualRegister(RC);
|
|
|
|
// Insert copy from curr.second to a temporary at
|
|
// the Phi defining curr.second
|
|
MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
|
|
TII->copyRegToReg(*PI->getParent(), PI, t,
|
|
curr.second, RC, RC);
|
|
|
|
DEBUG(dbgs() << "Inserted copy from " << curr.second << " to " << t
|
|
<< "\n");
|
|
|
|
// Push temporary on Stacks
|
|
Stacks[curr.second].push_back(t);
|
|
|
|
// Insert curr.second in pushed
|
|
pushed.insert(curr.second);
|
|
|
|
// Create a live interval for this temporary
|
|
InsertedPHIDests.push_back(std::make_pair(t, --PI));
|
|
}
|
|
|
|
// Insert copy from map[curr.first] to curr.second
|
|
TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
|
|
map[curr.first], RC, RC);
|
|
map[curr.first] = curr.second;
|
|
DEBUG(dbgs() << "Inserted copy from " << curr.first << " to "
|
|
<< curr.second << "\n");
|
|
|
|
// Push this copy onto InsertedPHICopies so we can
|
|
// update LiveIntervals with it.
|
|
MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
|
|
InsertedPHIDests.push_back(std::make_pair(curr.second, --MI));
|
|
|
|
// If curr.first is a destination in copy_set...
|
|
for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
|
|
E = copy_set.end(); I != E; )
|
|
if (curr.first == I->second) {
|
|
std::pair<unsigned, unsigned> temp = *I;
|
|
worklist.insert(temp);
|
|
|
|
// Avoid iterator invalidation
|
|
std::multimap<unsigned, unsigned>::iterator OI = I;
|
|
++I;
|
|
copy_set.erase(OI);
|
|
|
|
break;
|
|
} else {
|
|
++I;
|
|
}
|
|
}
|
|
|
|
if (!copy_set.empty()) {
|
|
std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin();
|
|
std::pair<unsigned, unsigned> curr = *CI;
|
|
worklist.insert(curr);
|
|
copy_set.erase(CI);
|
|
|
|
LiveInterval& I = LI.getInterval(curr.second);
|
|
MachineBasicBlock::iterator term = MBB->getFirstTerminator();
|
|
SlotIndex endIdx = SlotIndex();
|
|
if (term != MBB->end())
|
|
endIdx = LI.getInstructionIndex(term);
|
|
else
|
|
endIdx = LI.getMBBEndIdx(MBB);
|
|
|
|
if (I.liveAt(endIdx)) {
|
|
const TargetRegisterClass *RC =
|
|
MF->getRegInfo().getRegClass(curr.first);
|
|
|
|
// Insert a copy from dest to a new temporary t at the end of b
|
|
unsigned t = MF->getRegInfo().createVirtualRegister(RC);
|
|
TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
|
|
curr.second, RC, RC);
|
|
map[curr.second] = t;
|
|
|
|
MachineBasicBlock::iterator TI = MBB->getFirstTerminator();
|
|
InsertedPHIDests.push_back(std::make_pair(t, --TI));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Renumber the instructions so that we can perform the index computations
|
|
// needed to create new live intervals.
|
|
LI.renumber();
|
|
|
|
// For copies that we inserted at the ends of predecessors, we construct
|
|
// live intervals. This is pretty easy, since we know that the destination
|
|
// register cannot have be in live at that point previously. We just have
|
|
// to make sure that, for registers that serve as inputs to more than one
|
|
// PHI, we don't create multiple overlapping live intervals.
|
|
std::set<unsigned> RegHandled;
|
|
for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I =
|
|
InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
|
|
if (RegHandled.insert(I->first).second) {
|
|
LiveInterval& Int = LI.getOrCreateInterval(I->first);
|
|
SlotIndex instrIdx = LI.getInstructionIndex(I->second);
|
|
if (Int.liveAt(instrIdx.getDefIndex()))
|
|
Int.removeRange(instrIdx.getDefIndex(),
|
|
LI.getMBBEndIdx(I->second->getParent()).getNextSlot(),
|
|
true);
|
|
|
|
LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
|
|
R.valno->setCopy(I->second);
|
|
R.valno->def = LI.getInstructionIndex(I->second).getDefIndex();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// InsertCopies - insert copies into MBB and all of its successors
|
|
void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
|
|
SmallPtrSet<MachineBasicBlock*, 16>& visited) {
|
|
MachineBasicBlock* MBB = MDTN->getBlock();
|
|
visited.insert(MBB);
|
|
|
|
std::set<unsigned> pushed;
|
|
|
|
LiveIntervals& LI = getAnalysis<LiveIntervals>();
|
|
// Rewrite register uses from Stacks
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I) {
|
|
if (I->getOpcode() == TargetInstrInfo::PHI)
|
|
continue;
|
|
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i)
|
|
if (I->getOperand(i).isReg() &&
|
|
Stacks[I->getOperand(i).getReg()].size()) {
|
|
// Remove the live range for the old vreg.
|
|
LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg());
|
|
LiveInterval::iterator OldLR =
|
|
OldInt.FindLiveRangeContaining(LI.getInstructionIndex(I).getUseIndex());
|
|
if (OldLR != OldInt.end())
|
|
OldInt.removeRange(*OldLR, true);
|
|
|
|
// Change the register
|
|
I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
|
|
|
|
// Add a live range for the new vreg
|
|
LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg());
|
|
VNInfo* FirstVN = *Int.vni_begin();
|
|
FirstVN->setHasPHIKill(false);
|
|
if (I->getOperand(i).isKill())
|
|
FirstVN->addKill(LI.getInstructionIndex(I).getUseIndex());
|
|
|
|
LiveRange LR (LI.getMBBStartIdx(I->getParent()),
|
|
LI.getInstructionIndex(I).getUseIndex().getNextSlot(),
|
|
FirstVN);
|
|
|
|
Int.addRange(LR);
|
|
}
|
|
}
|
|
|
|
// Schedule the copies for this block
|
|
ScheduleCopies(MBB, pushed);
|
|
|
|
// Recur down the dominator tree.
|
|
for (MachineDomTreeNode::iterator I = MDTN->begin(),
|
|
E = MDTN->end(); I != E; ++I)
|
|
if (!visited.count((*I)->getBlock()))
|
|
InsertCopies(*I, visited);
|
|
|
|
// As we exit this block, pop the names we pushed while processing it
|
|
for (std::set<unsigned>::iterator I = pushed.begin(),
|
|
E = pushed.end(); I != E; ++I)
|
|
Stacks[*I].pop_back();
|
|
}
|
|
|
|
bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
|
|
unsigned secondary) {
|
|
|
|
LiveIntervals& LI = getAnalysis<LiveIntervals>();
|
|
LiveInterval& LHS = LI.getOrCreateInterval(primary);
|
|
LiveInterval& RHS = LI.getOrCreateInterval(secondary);
|
|
|
|
LI.renumber();
|
|
|
|
DenseMap<VNInfo*, VNInfo*> VNMap;
|
|
for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
|
|
LiveRange R = *I;
|
|
|
|
SlotIndex Start = R.start;
|
|
SlotIndex End = R.end;
|
|
if (LHS.getLiveRangeContaining(Start))
|
|
return false;
|
|
|
|
if (LHS.getLiveRangeContaining(End))
|
|
return false;
|
|
|
|
LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R);
|
|
if (RI != LHS.end() && RI->start < End)
|
|
return false;
|
|
}
|
|
|
|
for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
|
|
LiveRange R = *I;
|
|
VNInfo* OldVN = R.valno;
|
|
VNInfo*& NewVN = VNMap[OldVN];
|
|
if (!NewVN) {
|
|
NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator());
|
|
}
|
|
|
|
LiveRange LR (R.start, R.end, NewVN);
|
|
LHS.addRange(LR);
|
|
}
|
|
|
|
LI.removeInterval(RHS.reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
|
|
LiveIntervals& LI = getAnalysis<LiveIntervals>();
|
|
|
|
// Compute DFS numbers of each block
|
|
computeDFS(Fn);
|
|
|
|
// Determine which phi node operands need copies
|
|
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
if (!I->empty() &&
|
|
I->begin()->getOpcode() == TargetInstrInfo::PHI)
|
|
processBlock(I);
|
|
|
|
// Break interferences where two different phis want to coalesce
|
|
// in the same register.
|
|
std::set<unsigned> seen;
|
|
typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> >
|
|
RenameSetType;
|
|
for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
|
|
I != E; ++I) {
|
|
for (std::map<unsigned, MachineBasicBlock*>::iterator
|
|
OI = I->second.begin(), OE = I->second.end(); OI != OE; ) {
|
|
if (!seen.count(OI->first)) {
|
|
seen.insert(OI->first);
|
|
++OI;
|
|
} else {
|
|
Waiting[OI->second].insert(std::make_pair(OI->first, I->first));
|
|
unsigned reg = OI->first;
|
|
++OI;
|
|
I->second.erase(reg);
|
|
DEBUG(dbgs() << "Removing Renaming: " << reg << " -> " << I->first
|
|
<< "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Insert copies
|
|
// FIXME: This process should probably preserve LiveIntervals
|
|
SmallPtrSet<MachineBasicBlock*, 16> visited;
|
|
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
|
|
InsertCopies(MDT.getRootNode(), visited);
|
|
|
|
// Perform renaming
|
|
for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
|
|
I != E; ++I)
|
|
while (I->second.size()) {
|
|
std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
|
|
|
|
DEBUG(dbgs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
|
|
|
|
if (SI->first != I->first) {
|
|
if (mergeLiveIntervals(I->first, SI->first)) {
|
|
Fn.getRegInfo().replaceRegWith(SI->first, I->first);
|
|
|
|
if (RenameSets.count(SI->first)) {
|
|
I->second.insert(RenameSets[SI->first].begin(),
|
|
RenameSets[SI->first].end());
|
|
RenameSets.erase(SI->first);
|
|
}
|
|
} else {
|
|
// Insert a last-minute copy if a conflict was detected.
|
|
const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
|
|
const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(I->first);
|
|
TII->copyRegToReg(*SI->second, SI->second->getFirstTerminator(),
|
|
I->first, SI->first, RC, RC);
|
|
|
|
LI.renumber();
|
|
|
|
LiveInterval& Int = LI.getOrCreateInterval(I->first);
|
|
SlotIndex instrIdx =
|
|
LI.getInstructionIndex(--SI->second->getFirstTerminator());
|
|
if (Int.liveAt(instrIdx.getDefIndex()))
|
|
Int.removeRange(instrIdx.getDefIndex(),
|
|
LI.getMBBEndIdx(SI->second).getNextSlot(), true);
|
|
|
|
LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
|
|
--SI->second->getFirstTerminator());
|
|
R.valno->setCopy(--SI->second->getFirstTerminator());
|
|
R.valno->def = instrIdx.getDefIndex();
|
|
|
|
DEBUG(dbgs() << "Renaming failed: " << SI->first << " -> "
|
|
<< I->first << "\n");
|
|
}
|
|
}
|
|
|
|
LiveInterval& Int = LI.getOrCreateInterval(I->first);
|
|
const LiveRange* LR =
|
|
Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second));
|
|
LR->valno->setHasPHIKill(true);
|
|
|
|
I->second.erase(SI->first);
|
|
}
|
|
|
|
// Remove PHIs
|
|
std::vector<MachineInstr*> phis;
|
|
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
|
|
for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
|
|
BI != BE; ++BI)
|
|
if (BI->getOpcode() == TargetInstrInfo::PHI)
|
|
phis.push_back(BI);
|
|
}
|
|
|
|
for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
|
|
I != E; ) {
|
|
MachineInstr* PInstr = *(I++);
|
|
|
|
// If this is a dead PHI node, then remove it from LiveIntervals.
|
|
unsigned DestReg = PInstr->getOperand(0).getReg();
|
|
LiveInterval& PI = LI.getInterval(DestReg);
|
|
if (PInstr->registerDefIsDead(DestReg)) {
|
|
if (PI.containsOneValue()) {
|
|
LI.removeInterval(DestReg);
|
|
} else {
|
|
SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex();
|
|
PI.removeRange(*PI.getLiveRangeContaining(idx), true);
|
|
}
|
|
} else {
|
|
// Trim live intervals of input registers. They are no longer live into
|
|
// this block if they died after the PHI. If they lived after it, don't
|
|
// trim them because they might have other legitimate uses.
|
|
for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) {
|
|
unsigned reg = PInstr->getOperand(i).getReg();
|
|
|
|
MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB();
|
|
LiveInterval& InputI = LI.getInterval(reg);
|
|
if (MBB != PInstr->getParent() &&
|
|
InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
|
|
InputI.expiredAt(LI.getInstructionIndex(PInstr).getNextIndex()))
|
|
InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
|
|
LI.getInstructionIndex(PInstr),
|
|
true);
|
|
}
|
|
|
|
// If the PHI is not dead, then the valno defined by the PHI
|
|
// now has an unknown def.
|
|
SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex();
|
|
const LiveRange* PLR = PI.getLiveRangeContaining(idx);
|
|
PLR->valno->setIsPHIDef(true);
|
|
LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),
|
|
PLR->start, PLR->valno);
|
|
PI.addRange(R);
|
|
}
|
|
|
|
LI.RemoveMachineInstrFromMaps(PInstr);
|
|
PInstr->eraseFromParent();
|
|
}
|
|
|
|
LI.renumber();
|
|
|
|
return true;
|
|
}
|