mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-17 03:30:28 +00:00
e8e28dd7af
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6568 91177308-0d34-0410-b5e6-96231b3b80d8
429 lines
15 KiB
C++
429 lines
15 KiB
C++
//===-- SparcV9CodeEmitter.cpp - --------===//
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "Support/hash_set"
|
|
#include "SparcInternals.h"
|
|
#include "SparcV9CodeEmitter.h"
|
|
|
|
bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
|
|
MachineCodeEmitter &MCE) {
|
|
//PM.add(new SparcV9CodeEmitter(MCE));
|
|
//MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter();
|
|
MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE);
|
|
PM.add(new SparcV9CodeEmitter(this, *M));
|
|
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class JITResolver {
|
|
MachineCodeEmitter &MCE;
|
|
|
|
// LazyCodeGenMap - Keep track of call sites for functions that are to be
|
|
// lazily resolved.
|
|
std::map<unsigned, Function*> LazyCodeGenMap;
|
|
|
|
// LazyResolverMap - Keep track of the lazy resolver created for a
|
|
// particular function so that we can reuse them if necessary.
|
|
std::map<Function*, unsigned> LazyResolverMap;
|
|
public:
|
|
JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
|
|
unsigned getLazyResolver(Function *F);
|
|
unsigned addFunctionReference(unsigned Address, Function *F);
|
|
|
|
private:
|
|
unsigned emitStubForFunction(Function *F);
|
|
static void CompilationCallback();
|
|
unsigned resolveFunctionReference(unsigned RetAddr);
|
|
};
|
|
|
|
JITResolver *TheJITResolver;
|
|
}
|
|
|
|
/// addFunctionReference - This method is called when we need to emit the
|
|
/// address of a function that has not yet been emitted, so we don't know the
|
|
/// address. Instead, we emit a call to the CompilationCallback method, and
|
|
/// keep track of where we are.
|
|
///
|
|
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
|
|
LazyCodeGenMap[Address] = F;
|
|
return (intptr_t)&JITResolver::CompilationCallback;
|
|
}
|
|
|
|
unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
|
|
std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
|
|
assert(I != LazyCodeGenMap.end() && "Not in map!");
|
|
Function *F = I->second;
|
|
LazyCodeGenMap.erase(I);
|
|
return MCE.forceCompilationOf(F);
|
|
}
|
|
|
|
unsigned JITResolver::getLazyResolver(Function *F) {
|
|
std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
|
|
if (I != LazyResolverMap.end() && I->first == F) return I->second;
|
|
|
|
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
|
|
|
|
unsigned Stub = emitStubForFunction(F);
|
|
LazyResolverMap.insert(I, std::make_pair(F, Stub));
|
|
return Stub;
|
|
}
|
|
|
|
void JITResolver::CompilationCallback() {
|
|
uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0);
|
|
uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0);
|
|
|
|
#if 0
|
|
std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
|
|
<< " SP=0x" << (unsigned)StackPtr << std::dec
|
|
<< ": Resolving call to function: "
|
|
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n";
|
|
#endif
|
|
|
|
std::cerr << "Sparc's JIT Resolver not implemented!\n";
|
|
abort();
|
|
|
|
#if 0
|
|
unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr);
|
|
|
|
// Rewrite the call target... so that we don't fault every time we execute
|
|
// the call.
|
|
*(unsigned*)RetAddr = NewVal;
|
|
|
|
// Change the return address to reexecute the call instruction...
|
|
StackPtr[1] -= 4;
|
|
#endif
|
|
}
|
|
|
|
/// emitStubForFunction - This method is used by the JIT when it needs to emit
|
|
/// the address of a function for a function whose code has not yet been
|
|
/// generated. In order to do this, it generates a stub which jumps to the lazy
|
|
/// function compiler, which will eventually get fixed to call the function
|
|
/// directly.
|
|
///
|
|
unsigned JITResolver::emitStubForFunction(Function *F) {
|
|
#if 0
|
|
MCE.startFunctionStub(*F, 6);
|
|
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
|
|
|
|
unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
|
|
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
|
|
|
|
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
|
|
return (intptr_t)MCE.finishFunctionStub(*F);
|
|
#endif
|
|
std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n";
|
|
abort();
|
|
}
|
|
|
|
|
|
void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) {
|
|
// Output the constant in big endian byte order...
|
|
unsigned byteVal;
|
|
for (int i = Size-1; i >= 0; --i) {
|
|
byteVal = Val >> 8*i;
|
|
MCE->emitByte(byteVal & 255);
|
|
}
|
|
}
|
|
|
|
unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) {
|
|
switch (regClass) {
|
|
case UltraSparcRegInfo::IntRegType: {
|
|
// Sparc manual, p31
|
|
static const unsigned IntRegMap[] = {
|
|
// "o0", "o1", "o2", "o3", "o4", "o5", "o7",
|
|
8, 9, 10, 11, 12, 13, 15,
|
|
// "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
|
16, 17, 18, 19, 20, 21, 22, 23,
|
|
// "i0", "i1", "i2", "i3", "i4", "i5",
|
|
24, 25, 26, 27, 28, 29,
|
|
// "i6", "i7",
|
|
30, 31,
|
|
// "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
|
0, 1, 2, 3, 4, 5, 6, 7,
|
|
// "o6"
|
|
14
|
|
};
|
|
|
|
return IntRegMap[fakeReg];
|
|
break;
|
|
}
|
|
case UltraSparcRegInfo::FPSingleRegType: {
|
|
return fakeReg;
|
|
}
|
|
case UltraSparcRegInfo::FPDoubleRegType: {
|
|
return fakeReg;
|
|
}
|
|
case UltraSparcRegInfo::FloatCCRegType: {
|
|
return fakeReg;
|
|
|
|
}
|
|
case UltraSparcRegInfo::IntCCRegType: {
|
|
return fakeReg;
|
|
}
|
|
default:
|
|
assert(0 && "Invalid unified register number in getRegType");
|
|
return fakeReg;
|
|
}
|
|
}
|
|
|
|
int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
|
|
MachineOperand &MO) {
|
|
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
|
|
// or things that get fixed up later by the JIT.
|
|
|
|
if (MO.isVirtualRegister()) {
|
|
std::cerr << "ERROR: virtual register found in machine code.\n";
|
|
abort();
|
|
} else if (MO.isPCRelativeDisp()) {
|
|
Value *V = MO.getVRegValue();
|
|
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
|
std::cerr << "Saving reference to BB (VReg)\n";
|
|
unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue();
|
|
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
|
|
} else if (Constant *C = dyn_cast<Constant>(V)) {
|
|
if (ConstantMap.find(C) != ConstantMap.end())
|
|
rv = (int64_t)(intptr_t)ConstantMap[C] - MCE->getCurrentPCValue();
|
|
else {
|
|
std::cerr << "ERROR: constant not in map:" << MO << "\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
|
|
abort();
|
|
}
|
|
} else if (MO.isPhysicalRegister()) {
|
|
// This is necessary because the Sparc doesn't actually lay out registers
|
|
// in the real fashion -- it skips those that it chooses not to allocate,
|
|
// i.e. those that are the SP, etc.
|
|
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
|
|
regType = TM->getRegInfo().getRegType(fakeReg);
|
|
// At least map fakeReg into its class
|
|
fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass);
|
|
// Find the real register number for use in an instruction
|
|
realReg = getRealRegNum(fakeReg, regClass);
|
|
std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n";
|
|
rv = realReg;
|
|
} else if (MO.isImmediate()) {
|
|
rv = MO.getImmedValue();
|
|
} else if (MO.isGlobalAddress()) {
|
|
rv = (int64_t)
|
|
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
|
|
MI, MO.isPCRelative());
|
|
} else if (MO.isMachineBasicBlock()) {
|
|
// Duplicate code of the above case for VirtualRegister, BasicBlock...
|
|
// It should really hit this case, but Sparc backend uses VRegs instead
|
|
std::cerr << "Saving reference to MBB\n";
|
|
BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
|
|
unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue();
|
|
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
|
|
} else if (MO.isExternalSymbol()) {
|
|
// Sparc backend doesn't generate this (yet...)
|
|
std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
|
|
abort();
|
|
} else if (MO.isFrameIndex()) {
|
|
// Sparc backend doesn't generate this (yet...)
|
|
int FrameIndex = MO.getFrameIndex();
|
|
std::cerr << "ERROR: Frame index unhandled.\n";
|
|
abort();
|
|
} else if (MO.isConstantPoolIndex()) {
|
|
// Sparc backend doesn't generate this (yet...)
|
|
std::cerr << "ERROR: Constant Pool index unhandled.\n";
|
|
abort();
|
|
} else {
|
|
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Finally, deal with the various bitfield-extracting functions that
|
|
// are used in SPARC assembly. (Some of these make no sense in combination
|
|
// with some of the above; we'll trust that the instruction selector
|
|
// will not produce nonsense, and not check for valid combinations here.)
|
|
if (MO.opLoBits32()) { // %lo(val)
|
|
return rv & 0x03ff;
|
|
} else if (MO.opHiBits32()) { // %lm(val)
|
|
return (rv >> 10) & 0x03fffff;
|
|
} else if (MO.opLoBits64()) { // %hm(val)
|
|
return (rv >> 32) & 0x03ff;
|
|
} else if (MO.opHiBits64()) { // %hh(val)
|
|
return rv >> 42;
|
|
} else { // (unadorned) val
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
|
|
Val >>= bit;
|
|
return (Val & 1);
|
|
}
|
|
|
|
void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) {
|
|
if (isPCRelative) {
|
|
return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue());
|
|
} else {
|
|
return (void*)Addr;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
|
|
std::cerr << "Starting function " << MF.getFunction()->getName()
|
|
<< ", address: " << "0x" << std::hex
|
|
<< (long)MCE->getCurrentPCValue() << "\n";
|
|
|
|
MCE->startFunction(MF);
|
|
|
|
// FIXME: the Sparc backend does not use the ConstantPool!!
|
|
//MCE->emitConstantPool(MF.getConstantPool());
|
|
|
|
// Instead, the Sparc backend has its own constant pool implementation:
|
|
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
|
|
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
|
|
E = pool.end(); I != E; ++I)
|
|
{
|
|
const Constant *C = *I;
|
|
// For now we just allocate some memory on the heap, this can be
|
|
// dramatically improved.
|
|
const Type *Ty = ((Value*)C)->getType();
|
|
void *Addr = malloc(TM->getTargetData().getTypeSize(Ty));
|
|
//FIXME
|
|
//TheVM.InitializeMemory(C, Addr);
|
|
std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n";
|
|
ConstantMap[C] = Addr;
|
|
}
|
|
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
emitBasicBlock(*I);
|
|
MCE->finishFunction(MF);
|
|
|
|
std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n";
|
|
ConstantMap.clear();
|
|
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
|
|
long Location = BBLocations[BBRefs[i].first];
|
|
unsigned *Ref = BBRefs[i].second.first;
|
|
MachineInstr *MI = BBRefs[i].second.second;
|
|
std::cerr << "Fixup @" << std::hex << Ref << " to " << Location
|
|
<< " in instr: " << std::dec << *MI << "\n";
|
|
}
|
|
|
|
// Resolve branches to BasicBlocks for the entire function
|
|
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
|
|
long Location = BBLocations[BBRefs[i].first];
|
|
unsigned *Ref = BBRefs[i].second.first;
|
|
MachineInstr *MI = BBRefs[i].second.second;
|
|
std::cerr << "attempting to resolve BB: " << i << "\n";
|
|
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
|
|
MachineOperand &op = MI->getOperand(ii);
|
|
if (op.isPCRelativeDisp()) {
|
|
// the instruction's branch target is made such that it branches to
|
|
// PC + (br target * 4), so undo that arithmetic here:
|
|
// Location is the target of the branch
|
|
// Ref is the location of the instruction, and hence the PC
|
|
unsigned branchTarget = (Location - (long)Ref) >> 2;
|
|
// Save the flags.
|
|
bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
|
|
if (op.opLoBits32()) { loBits32=true; }
|
|
if (op.opHiBits32()) { hiBits32=true; }
|
|
if (op.opLoBits64()) { loBits64=true; }
|
|
if (op.opHiBits64()) { hiBits64=true; }
|
|
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
|
|
branchTarget);
|
|
if (loBits32) { MI->setOperandLo32(ii); }
|
|
else if (hiBits32) { MI->setOperandHi32(ii); }
|
|
else if (loBits64) { MI->setOperandLo64(ii); }
|
|
else if (hiBits64) { MI->setOperandHi64(ii); }
|
|
std::cerr << "Rewrote BB ref: ";
|
|
unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
|
|
*Ref = fixedInstr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
BBRefs.clear();
|
|
BBLocations.clear();
|
|
|
|
return false;
|
|
}
|
|
|
|
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
|
|
currBB = MBB.getBasicBlock();
|
|
BBLocations[currBB] = MCE->getCurrentPCValue();
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
|
|
emitInstruction(**I);
|
|
}
|
|
|
|
void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) {
|
|
emitConstant(getBinaryCodeForInstr(MI), 4);
|
|
}
|
|
|
|
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
|
|
bool isPCRelative)
|
|
{
|
|
if (isPCRelative) { // must be a call, this is a major hack!
|
|
// Try looking up the function to see if it is already compiled!
|
|
if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) {
|
|
intptr_t CurByte = MCE->getCurrentPCValue();
|
|
// The real target of the call is Addr = PC + (target * 4)
|
|
// CurByte is the PC, Addr we just received
|
|
return (void*) (((long)Addr - (long)CurByte) >> 2);
|
|
} else {
|
|
if (Function *F = dyn_cast<Function>(V)) {
|
|
// Function has not yet been code generated!
|
|
TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(),
|
|
cast<Function>(V));
|
|
// Delayed resolution...
|
|
return
|
|
(void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
|
|
|
|
} else if (Constant *C = ConstantPointerRef::get(V)) {
|
|
if (ConstantMap.find(C) != ConstantMap.end()) {
|
|
return ConstantMap[C];
|
|
} else {
|
|
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
|
|
<< ", " << *V << " not found in ConstantMap!\n";
|
|
abort();
|
|
}
|
|
|
|
#if 0
|
|
} else if (const GlobalVariable *G = dyn_cast<GlobalVariable>(V)) {
|
|
if (G->isConstant()) {
|
|
const Constant* C = G->getInitializer();
|
|
if (ConstantMap.find(C) != ConstantMap.end()) {
|
|
return ConstantMap[C];
|
|
} else {
|
|
std::cerr << "Constant: " << *G << " not found in ConstantMap!\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
std::cerr << "Variable: " << *G << " address not found!\n";
|
|
abort();
|
|
}
|
|
#endif
|
|
} else {
|
|
std::cerr << "Unhandled global: " << *V << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
} else {
|
|
return convertAddress((intptr_t)MCE->getGlobalValueAddress(V),
|
|
isPCRelative);
|
|
}
|
|
}
|
|
|
|
|
|
#include "SparcV9CodeEmitter.inc"
|
|
|