llvm-6502/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
2007-06-04 16:17:33 +00:00

5756 lines
223 KiB
C++

//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <map>
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool>
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize"));
#else
static const bool ViewLegalizeDAGs = 0;
#endif
namespace llvm {
template<>
struct DenseMapKeyInfo<SDOperand> {
static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); }
static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);}
static unsigned getHashValue(const SDOperand &Val) {
return DenseMapKeyInfo<void*>::getHashValue(Val.Val) + Val.ResNo;
}
static bool isPod() { return true; }
};
}
//===----------------------------------------------------------------------===//
/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
class VISIBILITY_HIDDEN SelectionDAGLegalize {
TargetLowering &TLI;
SelectionDAG &DAG;
// Libcall insertion helpers.
/// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
/// legalized. We use this to ensure that calls are properly serialized
/// against each other, including inserted libcalls.
SDOperand LastCALLSEQ_END;
/// IsLegalizingCall - This member is used *only* for purposes of providing
/// helpful assertions that a libcall isn't created while another call is
/// being legalized (which could lead to non-serialized call sequences).
bool IsLegalizingCall;
enum LegalizeAction {
Legal, // The target natively supports this operation.
Promote, // This operation should be executed in a larger type.
Expand // Try to expand this to other ops, otherwise use a libcall.
};
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// value type, where the two bits correspond to the LegalizeAction enum.
/// This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// LegalizedNodes - For nodes that are of legal width, and that have more
/// than one use, this map indicates what regularized operand to use. This
/// allows us to avoid legalizing the same thing more than once.
DenseMap<SDOperand, SDOperand> LegalizedNodes;
/// PromotedNodes - For nodes that are below legal width, and that have more
/// than one use, this map indicates what promoted value to use. This allows
/// us to avoid promoting the same thing more than once.
DenseMap<SDOperand, SDOperand> PromotedNodes;
/// ExpandedNodes - For nodes that need to be expanded this map indicates
/// which which operands are the expanded version of the input. This allows
/// us to avoid expanding the same node more than once.
DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes;
/// SplitNodes - For vector nodes that need to be split, this map indicates
/// which which operands are the split version of the input. This allows us
/// to avoid splitting the same node more than once.
std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes;
/// PackedNodes - For nodes that need to be packed from MVT::Vector types to
/// concrete vector types, this contains the mapping of ones we have already
/// processed to the result.
std::map<SDOperand, SDOperand> PackedNodes;
void AddLegalizedOperand(SDOperand From, SDOperand To) {
LegalizedNodes.insert(std::make_pair(From, To));
// If someone requests legalization of the new node, return itself.
if (From != To)
LegalizedNodes.insert(std::make_pair(To, To));
}
void AddPromotedOperand(SDOperand From, SDOperand To) {
bool isNew = PromotedNodes.insert(std::make_pair(From, To));
assert(isNew && "Got into the map somehow?");
// If someone requests legalization of the new node, return itself.
LegalizedNodes.insert(std::make_pair(To, To));
}
public:
SelectionDAGLegalize(SelectionDAG &DAG);
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal or we need to expand it into multiple registers of
/// smaller integer type, or we need to promote it to a larger type.
LegalizeAction getTypeAction(MVT::ValueType VT) const {
return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
}
/// isTypeLegal - Return true if this type is legal on this target.
///
bool isTypeLegal(MVT::ValueType VT) const {
return getTypeAction(VT) == Legal;
}
void LegalizeDAG();
private:
/// HandleOp - Legalize, Promote, Expand or Pack the specified operand as
/// appropriate for its type.
void HandleOp(SDOperand Op);
/// LegalizeOp - We know that the specified value has a legal type.
/// Recursively ensure that the operands have legal types, then return the
/// result.
SDOperand LegalizeOp(SDOperand O);
/// PromoteOp - Given an operation that produces a value in an invalid type,
/// promote it to compute the value into a larger type. The produced value
/// will have the correct bits for the low portion of the register, but no
/// guarantee is made about the top bits: it may be zero, sign-extended, or
/// garbage.
SDOperand PromoteOp(SDOperand O);
/// ExpandOp - Expand the specified SDOperand into its two component pieces
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this,
/// the LegalizeNodes map is filled in for any results that are not expanded,
/// the ExpandedNodes map is filled in for any results that are expanded, and
/// the Lo/Hi values are returned. This applies to integer types and Vector
/// types.
void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);
/// SplitVectorOp - Given an operand of MVT::Vector type, break it down into
/// two smaller values of MVT::Vector type.
void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);
/// PackVectorOp - Given an operand of MVT::Vector type, convert it into the
/// equivalent operation that returns a packed value (e.g. MVT::V4F32). When
/// this is called, we know that PackedVT is the right type for the result and
/// we know that this type is legal for the target.
SDOperand PackVectorOp(SDOperand O, MVT::ValueType PackedVT);
/// isShuffleLegal - Return true if a vector shuffle is legal with the
/// specified mask and type. Targets can specify exactly which masks they
/// support and the code generator is tasked with not creating illegal masks.
///
/// Note that this will also return true for shuffles that are promoted to a
/// different type.
///
/// If this is a legal shuffle, this method returns the (possibly promoted)
/// build_vector Mask. If it's not a legal shuffle, it returns null.
SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const;
bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC);
SDOperand CreateStackTemporary(MVT::ValueType VT);
SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned,
SDOperand &Hi);
SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy,
SDOperand Source);
SDOperand ExpandBIT_CONVERT(MVT::ValueType DestVT, SDOperand SrcOp);
SDOperand ExpandBUILD_VECTOR(SDNode *Node);
SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node);
SDOperand ExpandLegalINT_TO_FP(bool isSigned,
SDOperand LegalOp,
MVT::ValueType DestVT);
SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT,
bool isSigned);
SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT,
bool isSigned);
SDOperand ExpandBSWAP(SDOperand Op);
SDOperand ExpandBitCount(unsigned Opc, SDOperand Op);
bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt,
SDOperand &Lo, SDOperand &Hi);
void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt,
SDOperand &Lo, SDOperand &Hi);
SDOperand LowerVEXTRACT_VECTOR_ELT(SDOperand Op);
SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op);
SDOperand getIntPtrConstant(uint64_t Val) {
return DAG.getConstant(Val, TLI.getPointerTy());
}
};
}
/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the
/// specified mask and type. Targets can specify exactly which masks they
/// support and the code generator is tasked with not creating illegal masks.
///
/// Note that this will also return true for shuffles that are promoted to a
/// different type.
SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT,
SDOperand Mask) const {
switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) {
default: return 0;
case TargetLowering::Legal:
case TargetLowering::Custom:
break;
case TargetLowering::Promote: {
// If this is promoted to a different type, convert the shuffle mask and
// ask if it is legal in the promoted type!
MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT);
// If we changed # elements, change the shuffle mask.
unsigned NumEltsGrowth =
MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT);
assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
if (NumEltsGrowth > 1) {
// Renumber the elements.
SmallVector<SDOperand, 8> Ops;
for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) {
SDOperand InOp = Mask.getOperand(i);
for (unsigned j = 0; j != NumEltsGrowth; ++j) {
if (InOp.getOpcode() == ISD::UNDEF)
Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
else {
unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue();
Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32));
}
}
}
Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size());
}
VT = NVT;
break;
}
}
return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0;
}
/// getScalarizedOpcode - Return the scalar opcode that corresponds to the
/// specified vector opcode.
static unsigned getScalarizedOpcode(unsigned VecOp, MVT::ValueType VT) {
switch (VecOp) {
default: assert(0 && "Don't know how to scalarize this opcode!");
case ISD::VADD: return MVT::isInteger(VT) ? ISD::ADD : ISD::FADD;
case ISD::VSUB: return MVT::isInteger(VT) ? ISD::SUB : ISD::FSUB;
case ISD::VMUL: return MVT::isInteger(VT) ? ISD::MUL : ISD::FMUL;
case ISD::VSDIV: return MVT::isInteger(VT) ? ISD::SDIV: ISD::FDIV;
case ISD::VUDIV: return MVT::isInteger(VT) ? ISD::UDIV: ISD::FDIV;
case ISD::VAND: return MVT::isInteger(VT) ? ISD::AND : 0;
case ISD::VOR: return MVT::isInteger(VT) ? ISD::OR : 0;
case ISD::VXOR: return MVT::isInteger(VT) ? ISD::XOR : 0;
}
}
SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
assert(MVT::LAST_VALUETYPE <= 32 &&
"Too many value types for ValueTypeActions to hold!");
}
/// ComputeTopDownOrdering - Add the specified node to the Order list if it has
/// not been visited yet and if all of its operands have already been visited.
static void ComputeTopDownOrdering(SDNode *N, SmallVector<SDNode*, 64> &Order,
DenseMap<SDNode*, unsigned> &Visited) {
if (++Visited[N] != N->getNumOperands())
return; // Haven't visited all operands yet
Order.push_back(N);
if (N->hasOneUse()) { // Tail recurse in common case.
ComputeTopDownOrdering(*N->use_begin(), Order, Visited);
return;
}
// Now that we have N in, add anything that uses it if all of their operands
// are now done.
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;++UI)
ComputeTopDownOrdering(*UI, Order, Visited);
}
void SelectionDAGLegalize::LegalizeDAG() {
LastCALLSEQ_END = DAG.getEntryNode();
IsLegalizingCall = false;
// The legalize process is inherently a bottom-up recursive process (users
// legalize their uses before themselves). Given infinite stack space, we
// could just start legalizing on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, compute an ordering of the nodes where each
// node is only legalized after all of its operands are legalized.
DenseMap<SDNode*, unsigned> Visited;
SmallVector<SDNode*, 64> Order;
// Compute ordering from all of the leaves in the graphs, those (like the
// entry node) that have no operands.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNumOperands() == 0) {
Visited[I] = 0 - 1U;
ComputeTopDownOrdering(I, Order, Visited);
}
}
assert(Order.size() == Visited.size() &&
Order.size() ==
(unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) &&
"Error: DAG is cyclic!");
Visited.clear();
for (unsigned i = 0, e = Order.size(); i != e; ++i)
HandleOp(SDOperand(Order[i], 0));
// Finally, it's possible the root changed. Get the new root.
SDOperand OldRoot = DAG.getRoot();
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
DAG.setRoot(LegalizedNodes[OldRoot]);
ExpandedNodes.clear();
LegalizedNodes.clear();
PromotedNodes.clear();
SplitNodes.clear();
PackedNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes();
}
/// FindCallEndFromCallStart - Given a chained node that is part of a call
/// sequence, find the CALLSEQ_END node that terminates the call sequence.
static SDNode *FindCallEndFromCallStart(SDNode *Node) {
if (Node->getOpcode() == ISD::CALLSEQ_END)
return Node;
if (Node->use_empty())
return 0; // No CallSeqEnd
// The chain is usually at the end.
SDOperand TheChain(Node, Node->getNumValues()-1);
if (TheChain.getValueType() != MVT::Other) {
// Sometimes it's at the beginning.
TheChain = SDOperand(Node, 0);
if (TheChain.getValueType() != MVT::Other) {
// Otherwise, hunt for it.
for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
if (Node->getValueType(i) == MVT::Other) {
TheChain = SDOperand(Node, i);
break;
}
// Otherwise, we walked into a node without a chain.
if (TheChain.getValueType() != MVT::Other)
return 0;
}
}
for (SDNode::use_iterator UI = Node->use_begin(),
E = Node->use_end(); UI != E; ++UI) {
// Make sure to only follow users of our token chain.
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
if (User->getOperand(i) == TheChain)
if (SDNode *Result = FindCallEndFromCallStart(User))
return Result;
}
return 0;
}
/// FindCallStartFromCallEnd - Given a chained node that is part of a call
/// sequence, find the CALLSEQ_START node that initiates the call sequence.
static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
assert(Node && "Didn't find callseq_start for a call??");
if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
assert(Node->getOperand(0).getValueType() == MVT::Other &&
"Node doesn't have a token chain argument!");
return FindCallStartFromCallEnd(Node->getOperand(0).Val);
}
/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
/// see if any uses can reach Dest. If no dest operands can get to dest,
/// legalize them, legalize ourself, and return false, otherwise, return true.
///
/// Keep track of the nodes we fine that actually do lead to Dest in
/// NodesLeadingTo. This avoids retraversing them exponential number of times.
///
bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
if (N == Dest) return true; // N certainly leads to Dest :)
// If we've already processed this node and it does lead to Dest, there is no
// need to reprocess it.
if (NodesLeadingTo.count(N)) return true;
// If the first result of this node has been already legalized, then it cannot
// reach N.
switch (getTypeAction(N->getValueType(0))) {
case Legal:
if (LegalizedNodes.count(SDOperand(N, 0))) return false;
break;
case Promote:
if (PromotedNodes.count(SDOperand(N, 0))) return false;
break;
case Expand:
if (ExpandedNodes.count(SDOperand(N, 0))) return false;
break;
}
// Okay, this node has not already been legalized. Check and legalize all
// operands. If none lead to Dest, then we can legalize this node.
bool OperandsLeadToDest = false;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
OperandsLeadToDest |= // If an operand leads to Dest, so do we.
LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo);
if (OperandsLeadToDest) {
NodesLeadingTo.insert(N);
return true;
}
// Okay, this node looks safe, legalize it and return false.
HandleOp(SDOperand(N, 0));
return false;
}
/// HandleOp - Legalize, Promote, Expand or Pack the specified operand as
/// appropriate for its type.
void SelectionDAGLegalize::HandleOp(SDOperand Op) {
switch (getTypeAction(Op.getValueType())) {
default: assert(0 && "Bad type action!");
case Legal: LegalizeOp(Op); break;
case Promote: PromoteOp(Op); break;
case Expand:
if (Op.getValueType() != MVT::Vector) {
SDOperand X, Y;
ExpandOp(Op, X, Y);
} else {
SDNode *N = Op.Val;
unsigned NumOps = N->getNumOperands();
unsigned NumElements =
cast<ConstantSDNode>(N->getOperand(NumOps-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(NumOps-1))->getVT();
MVT::ValueType PackedVT = MVT::getVectorType(EVT, NumElements);
if (PackedVT != MVT::Other && TLI.isTypeLegal(PackedVT)) {
// In the common case, this is a legal vector type, convert it to the
// packed operation and type now.
PackVectorOp(Op, PackedVT);
} else if (NumElements == 1) {
// Otherwise, if this is a single element vector, convert it to a
// scalar operation.
PackVectorOp(Op, EVT);
} else {
// Otherwise, this is a multiple element vector that isn't supported.
// Split it in half and legalize both parts.
SDOperand X, Y;
SplitVectorOp(Op, X, Y);
}
}
break;
}
}
/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
SelectionDAG &DAG, TargetLowering &TLI) {
bool Extend = false;
// If a FP immediate is precise when represented as a float and if the
// target can do an extending load from float to double, we put it into
// the constant pool as a float, even if it's is statically typed as a
// double.
MVT::ValueType VT = CFP->getValueType(0);
bool isDouble = VT == MVT::f64;
ConstantFP *LLVMC = ConstantFP::get(isDouble ? Type::DoubleTy :
Type::FloatTy, CFP->getValue());
if (!UseCP) {
double Val = LLVMC->getValue();
return isDouble
? DAG.getConstant(DoubleToBits(Val), MVT::i64)
: DAG.getConstant(FloatToBits(Val), MVT::i32);
}
if (isDouble && CFP->isExactlyValue((float)CFP->getValue()) &&
// Only do this if the target has a native EXTLOAD instruction from f32.
TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) {
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy));
VT = MVT::f32;
Extend = true;
}
SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
if (Extend) {
return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(),
CPIdx, NULL, 0, MVT::f32);
} else {
return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0);
}
}
/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise
/// operations.
static
SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT,
SelectionDAG &DAG, TargetLowering &TLI) {
MVT::ValueType VT = Node->getValueType(0);
MVT::ValueType SrcVT = Node->getOperand(1).getValueType();
MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32;
// First get the sign bit of second operand.
SDOperand Mask1 = (SrcVT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT)
: DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT);
Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1);
SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1));
SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1);
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT);
if (SizeDiff > 0) {
SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit,
DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit);
} else if (SizeDiff < 0)
SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit);
// Clear the sign bit of first operand.
SDOperand Mask2 = (VT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
: DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2);
SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
Result = DAG.getNode(ISD::AND, NVT, Result, Mask2);
// Or the value with the sign bit.
Result = DAG.getNode(ISD::OR, NVT, Result, SignBit);
return Result;
}
/// LegalizeOp - We know that the specified value has a legal type.
/// Recursively ensure that the operands have legal types, then return the
/// result.
SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
assert(isTypeLegal(Op.getValueType()) &&
"Caller should expand or promote operands that are not legal!");
SDNode *Node = Op.Val;
// If this operation defines any values that cannot be represented in a
// register on this target, make sure to expand or promote them.
if (Node->getNumValues() > 1) {
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
if (getTypeAction(Node->getValueType(i)) != Legal) {
HandleOp(Op.getValue(i));
assert(LegalizedNodes.count(Op) &&
"Handling didn't add legal operands!");
return LegalizedNodes[Op];
}
}
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
SDOperand Tmp1, Tmp2, Tmp3, Tmp4;
SDOperand Result = Op;
bool isCustom = false;
switch (Node->getOpcode()) {
case ISD::FrameIndex:
case ISD::EntryToken:
case ISD::Register:
case ISD::BasicBlock:
case ISD::TargetFrameIndex:
case ISD::TargetJumpTable:
case ISD::TargetConstant:
case ISD::TargetConstantFP:
case ISD::TargetConstantPool:
case ISD::TargetGlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::TargetExternalSymbol:
case ISD::VALUETYPE:
case ISD::SRCVALUE:
case ISD::STRING:
case ISD::CONDCODE:
// Primitives must all be legal.
assert(TLI.isOperationLegal(Node->getValueType(0), Node->getValueType(0)) &&
"This must be legal!");
break;
default:
if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
// If this is a target node, legalize it by legalizing the operands then
// passing it through.
SmallVector<SDOperand, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size());
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
return Result.getValue(Op.ResNo);
}
// Otherwise this is an unhandled builtin node. splat.
#ifndef NDEBUG
cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to legalize this operator!");
abort();
case ISD::GLOBAL_OFFSET_TABLE:
case ISD::GlobalAddress:
case ISD::GlobalTLSAddress:
case ISD::ExternalSymbol:
case ISD::ConstantPool:
case ISD::JumpTable: // Nothing to do.
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.Val) Result = Tmp1;
// FALLTHROUGH if the target doesn't want to lower this op after all.
case TargetLowering::Legal:
break;
}
break;
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
// The only option for these nodes is to custom lower them. If the target
// does not custom lower them, then return zero.
Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.Val)
Result = Tmp1;
else
Result = DAG.getConstant(0, TLI.getPointerTy());
break;
case ISD::EXCEPTIONADDR: {
Tmp1 = LegalizeOp(Node->getOperand(0));
MVT::ValueType VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
unsigned Reg = TLI.getExceptionAddressRegister();
Result = DAG.getCopyFromReg(Tmp1, Reg, VT).getValue(Op.ResNo);
}
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.Val) break;
// Fall Thru
case TargetLowering::Legal: {
SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 };
Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
Ops, 2).getValue(Op.ResNo);
break;
}
}
}
break;
case ISD::EHSELECTION: {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
MVT::ValueType VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
unsigned Reg = TLI.getExceptionSelectorRegister();
Result = DAG.getCopyFromReg(Tmp2, Reg, VT).getValue(Op.ResNo);
}
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.Val) break;
// Fall Thru
case TargetLowering::Legal: {
SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 };
Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
Ops, 2).getValue(Op.ResNo);
break;
}
}
}
break;
case ISD::AssertSext:
case ISD::AssertZext:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case ISD::MERGE_VALUES:
// Legalize eliminates MERGE_VALUES nodes.
Result = Node->getOperand(Op.ResNo);
break;
case ISD::CopyFromReg:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = Op.getValue(0);
if (Node->getNumValues() == 2) {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
} else {
assert(Node->getNumValues() == 3 && "Invalid copyfromreg!");
if (Node->getNumOperands() == 3) {
Tmp2 = LegalizeOp(Node->getOperand(2));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
} else {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
}
AddLegalizedOperand(Op.getValue(2), Result.getValue(2));
}
// Since CopyFromReg produces two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(Op.getValue(0), Result);
AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
return Result.getValue(Op.ResNo);
case ISD::UNDEF: {
MVT::ValueType VT = Op.getValueType();
switch (TLI.getOperationAction(ISD::UNDEF, VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand:
if (MVT::isInteger(VT))
Result = DAG.getConstant(0, VT);
else if (MVT::isFloatingPoint(VT))
Result = DAG.getConstantFP(0, VT);
else
assert(0 && "Unknown value type!");
break;
case TargetLowering::Legal:
break;
}
break;
}
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID: {
SmallVector<SDOperand, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
// Allow the target to custom lower its intrinsics if it wants to.
if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) ==
TargetLowering::Custom) {
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) Result = Tmp3;
}
if (Result.Val->getNumValues() == 1) break;
// Must have return value and chain result.
assert(Result.Val->getNumValues() == 2 &&
"Cannot return more than two values!");
// Since loads produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result.getValue(Op.ResNo);
}
case ISD::LOCATION:
assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!");
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain.
switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) {
case TargetLowering::Promote:
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other);
bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other);
if (MMI && (useDEBUG_LOC || useLABEL)) {
const std::string &FName =
cast<StringSDNode>(Node->getOperand(3))->getValue();
const std::string &DirName =
cast<StringSDNode>(Node->getOperand(4))->getValue();
unsigned SrcFile = MMI->RecordSource(DirName, FName);
SmallVector<SDOperand, 8> Ops;
Ops.push_back(Tmp1); // chain
SDOperand LineOp = Node->getOperand(1);
SDOperand ColOp = Node->getOperand(2);
if (useDEBUG_LOC) {
Ops.push_back(LineOp); // line #
Ops.push_back(ColOp); // col #
Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id
Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size());
} else {
unsigned Line = cast<ConstantSDNode>(LineOp)->getValue();
unsigned Col = cast<ConstantSDNode>(ColOp)->getValue();
unsigned ID = MMI->RecordLabel(Line, Col, SrcFile);
Ops.push_back(DAG.getConstant(ID, MVT::i32));
Result = DAG.getNode(ISD::LABEL, MVT::Other,&Ops[0],Ops.size());
}
} else {
Result = Tmp1; // chain
}
break;
}
case TargetLowering::Legal:
if (Tmp1 != Node->getOperand(0) ||
getTypeAction(Node->getOperand(1).getValueType()) == Promote) {
SmallVector<SDOperand, 8> Ops;
Ops.push_back(Tmp1);
if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) {
Ops.push_back(Node->getOperand(1)); // line # must be legal.
Ops.push_back(Node->getOperand(2)); // col # must be legal.
} else {
// Otherwise promote them.
Ops.push_back(PromoteOp(Node->getOperand(1)));
Ops.push_back(PromoteOp(Node->getOperand(2)));
}
Ops.push_back(Node->getOperand(3)); // filename must be legal.
Ops.push_back(Node->getOperand(4)); // working dir # must be legal.
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
break;
}
break;
case ISD::DEBUG_LOC:
assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!");
switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #.
Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4);
break;
}
break;
case ISD::LABEL:
assert(Node->getNumOperands() == 2 && "Invalid LABEL node!");
switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
break;
case TargetLowering::Expand:
Result = LegalizeOp(Node->getOperand(0));
break;
}
break;
case ISD::Constant:
// We know we don't need to expand constants here, constants only have one
// value and we check that it is fine above.
// FIXME: Maybe we should handle things like targets that don't support full
// 32-bit immediates?
break;
case ISD::ConstantFP: {
// Spill FP immediates to the constant pool if the target cannot directly
// codegen them. Targets often have some immediate values that can be
// efficiently generated into an FP register without a load. We explicitly
// leave these constants as ConstantFP nodes for the target to deal with.
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
// Check to see if this FP immediate is already legal.
bool isLegal = false;
for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
E = TLI.legal_fpimm_end(); I != E; ++I)
if (CFP->isExactlyValue(*I)) {
isLegal = true;
break;
}
// If this is a legal constant, turn it into a TargetConstantFP node.
if (isLegal) {
Result = DAG.getTargetConstantFP(CFP->getValue(), CFP->getValueType(0));
break;
}
switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand:
Result = ExpandConstantFP(CFP, true, DAG, TLI);
}
break;
}
case ISD::TokenFactor:
if (Node->getNumOperands() == 2) {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
} else if (Node->getNumOperands() == 3) {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Tmp3 = LegalizeOp(Node->getOperand(2));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
} else {
SmallVector<SDOperand, 8> Ops;
// Legalize the operands.
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
break;
case ISD::FORMAL_ARGUMENTS:
case ISD::CALL:
// The only option for this is to custom lower it.
Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
assert(Tmp3.Val && "Target didn't custom lower this node!");
assert(Tmp3.Val->getNumValues() == Result.Val->getNumValues() &&
"Lowering call/formal_arguments produced unexpected # results!");
// Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
// remember that we legalized all of them, so it doesn't get relegalized.
for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) {
Tmp1 = LegalizeOp(Tmp3.getValue(i));
if (Op.ResNo == i)
Tmp2 = Tmp1;
AddLegalizedOperand(SDOperand(Node, i), Tmp1);
}
return Tmp2;
case ISD::BUILD_VECTOR:
switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand:
Result = ExpandBUILD_VECTOR(Result.Val);
break;
}
break;
case ISD::INSERT_VECTOR_ELT:
Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec
Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal
Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT,
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand: {
// If the insert index is a constant, codegen this as a scalar_to_vector,
// then a shuffle that inserts it into the right position in the vector.
if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) {
SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR,
Tmp1.getValueType(), Tmp2);
unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType());
MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts);
MVT::ValueType ShufMaskEltVT = MVT::getVectorBaseType(ShufMaskVT);
// We generate a shuffle of InVec and ScVec, so the shuffle mask should
// be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of
// the RHS.
SmallVector<SDOperand, 8> ShufOps;
for (unsigned i = 0; i != NumElts; ++i) {
if (i != InsertPos->getValue())
ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT));
else
ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT));
}
SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT,
&ShufOps[0], ShufOps.size());
Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(),
Tmp1, ScVec, ShufMask);
Result = LegalizeOp(Result);
break;
}
// If the target doesn't support this, we have to spill the input vector
// to a temporary stack slot, update the element, then reload it. This is
// badness. We could also load the value into a vector register (either
// with a "move to register" or "extload into register" instruction, then
// permute it into place, if the idx is a constant and if the idx is
// supported by the target.
MVT::ValueType VT = Tmp1.getValueType();
MVT::ValueType EltVT = Tmp2.getValueType();
MVT::ValueType IdxVT = Tmp3.getValueType();
MVT::ValueType PtrVT = TLI.getPointerTy();
SDOperand StackPtr = CreateStackTemporary(VT);
// Store the vector.
SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, NULL, 0);
// Truncate or zero extend offset to target pointer type.
unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3);
// Add the offset to the index.
unsigned EltSize = MVT::getSizeInBits(EltVT)/8;
Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr);
// Store the scalar value.
Ch = DAG.getStore(Ch, Tmp2, StackPtr2, NULL, 0);
// Load the updated vector.
Result = DAG.getLoad(VT, Ch, StackPtr, NULL, 0);
break;
}
}
break;
case ISD::SCALAR_TO_VECTOR:
if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) {
Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
break;
}
Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal
Result = DAG.UpdateNodeOperands(Result, Tmp1);
switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR,
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand:
Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
break;
}
break;
case ISD::VECTOR_SHUFFLE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors,
Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
// Allow targets to custom lower the SHUFFLEs they support.
switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) {
default: assert(0 && "Unknown operation action!");
case TargetLowering::Legal:
assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) &&
"vector shuffle should not be created if not legal!");
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand: {
MVT::ValueType VT = Node->getValueType(0);
MVT::ValueType EltVT = MVT::getVectorBaseType(VT);
MVT::ValueType PtrVT = TLI.getPointerTy();
SDOperand Mask = Node->getOperand(2);
unsigned NumElems = Mask.getNumOperands();
SmallVector<SDOperand,8> Ops;
for (unsigned i = 0; i != NumElems; ++i) {
SDOperand Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) {
Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
} else {
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
if (Idx < NumElems)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1,
DAG.getConstant(Idx, PtrVT)));
else
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2,
DAG.getConstant(Idx - NumElems, PtrVT)));
}
}
Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
break;
}
case TargetLowering::Promote: {
// Change base type to a different vector type.
MVT::ValueType OVT = Node->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
// Cast the two input vectors.
Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1);
Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2);
// Convert the shuffle mask to the right # elements.
Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0);
assert(Tmp3.Val && "Shuffle not legal?");
Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3);
Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result);
break;
}
}
break;
case ISD::EXTRACT_VECTOR_ELT:
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT,
Tmp1.getValueType())) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand:
Result = ExpandEXTRACT_VECTOR_ELT(Result);
break;
}
break;
case ISD::VEXTRACT_VECTOR_ELT:
Result = LegalizeOp(LowerVEXTRACT_VECTOR_ELT(Op));
break;
case ISD::CALLSEQ_START: {
SDNode *CallEnd = FindCallEndFromCallStart(Node);
// Recursively Legalize all of the inputs of the call end that do not lead
// to this call start. This ensures that any libcalls that need be inserted
// are inserted *before* the CALLSEQ_START.
{SmallPtrSet<SDNode*, 32> NodesLeadingTo;
for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node,
NodesLeadingTo);
}
// Now that we legalized all of the inputs (which may have inserted
// libcalls) create the new CALLSEQ_START node.
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Merge in the last call, to ensure that this call start after the last
// call ended.
if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
}
// Do not try to legalize the target-specific arguments (#1+).
if (Tmp1 != Node->getOperand(0)) {
SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
Ops[0] = Tmp1;
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
// Remember that the CALLSEQ_START is legalized.
AddLegalizedOperand(Op.getValue(0), Result);
if (Node->getNumValues() == 2) // If this has a flag result, remember it.
AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
// Now that the callseq_start and all of the non-call nodes above this call
// sequence have been legalized, legalize the call itself. During this
// process, no libcalls can/will be inserted, guaranteeing that no calls
// can overlap.
assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
SDOperand InCallSEQ = LastCALLSEQ_END;
// Note that we are selecting this call!
LastCALLSEQ_END = SDOperand(CallEnd, 0);
IsLegalizingCall = true;
// Legalize the call, starting from the CALLSEQ_END.
LegalizeOp(LastCALLSEQ_END);
assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
return Result;
}
case ISD::CALLSEQ_END:
// If the CALLSEQ_START node hasn't been legalized first, legalize it. This
// will cause this node to be legalized as well as handling libcalls right.
if (LastCALLSEQ_END.Val != Node) {
LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0));
DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op);
assert(I != LegalizedNodes.end() &&
"Legalizing the call start should have legalized this node!");
return I->second;
}
// Otherwise, the call start has been legalized and everything is going
// according to plan. Just legalize ourselves normally here.
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Do not try to legalize the target-specific arguments (#1+), except for
// an optional flag input.
if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
if (Tmp1 != Node->getOperand(0)) {
SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
Ops[0] = Tmp1;
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
} else {
Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
if (Tmp1 != Node->getOperand(0) ||
Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
Ops[0] = Tmp1;
Ops.back() = Tmp2;
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
}
assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
// This finishes up call legalization.
IsLegalizingCall = false;
// If the CALLSEQ_END node has a flag, remember that we legalized it.
AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
if (Node->getNumValues() == 2)
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result.getValue(Op.ResNo);
case ISD::DYNAMIC_STACKALLOC: {
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
switch (TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDOperand Chain = Tmp1.getOperand(0);
SDOperand Size = Tmp2.getOperand(1);
SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, Node->getValueType(0));
Tmp1 = DAG.getNode(ISD::SUB, Node->getValueType(0), SP, Size); // Value
Tmp2 = DAG.getCopyToReg(SP.getValue(1), SPReg, Tmp1); // Output chain
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = LegalizeOp(Tmp2);
break;
}
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Tmp1, DAG);
if (Tmp3.Val) {
Tmp1 = LegalizeOp(Tmp3);
Tmp2 = LegalizeOp(Tmp3.getValue(1));
}
break;
case TargetLowering::Legal:
break;
}
// Since this op produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
return Op.ResNo ? Tmp2 : Tmp1;
}
case ISD::INLINEASM: {
SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
bool Changed = false;
// Legalize all of the operands of the inline asm, in case they are nodes
// that need to be expanded or something. Note we skip the asm string and
// all of the TargetConstant flags.
SDOperand Op = LegalizeOp(Ops[0]);
Changed = Op != Ops[0];
Ops[0] = Op;
bool HasInFlag = Ops.back().getValueType() == MVT::Flag;
for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) {
unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3;
for (++i; NumVals; ++i, --NumVals) {
SDOperand Op = LegalizeOp(Ops[i]);
if (Op != Ops[i]) {
Changed = true;
Ops[i] = Op;
}
}
}
if (HasInFlag) {
Op = LegalizeOp(Ops.back());
Changed |= Op != Ops.back();
Ops.back() = Op;
}
if (Changed)
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
// INLINE asm returns a chain and flag, make sure to add both to the map.
AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result.getValue(Op.ResNo);
}
case ISD::BR:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case ISD::BRIND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
switch (getTypeAction(Node->getOperand(1).getValueType())) {
default: assert(0 && "Indirect target must be legal type (pointer)!");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
break;
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
break;
case ISD::BR_JT:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Expand: {
SDOperand Chain = Result.getOperand(0);
SDOperand Table = Result.getOperand(1);
SDOperand Index = Result.getOperand(2);
MVT::ValueType PTy = TLI.getPointerTy();
MachineFunction &MF = DAG.getMachineFunction();
unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy));
SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
SDOperand LD;
switch (EntrySize) {
default: assert(0 && "Size of jump table not supported yet."); break;
case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, NULL, 0); break;
case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, NULL, 0); break;
}
if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase is the JumpTable on PPC and X86, GOT on Alpha
SDOperand Reloc;
if (TLI.usesGlobalOffsetTable())
Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy);
else
Reloc = Table;
Addr = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD;
Addr = DAG.getNode(ISD::ADD, PTy, Addr, Reloc);
Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr);
} else {
Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD);
}
}
}
break;
case ISD::BRCOND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a return.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "It's impossible to expand bools");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition.
// The top bits of the promoted condition are not necessarily zero, ensure
// that the value is properly zero extended.
if (!TLI.MaskedValueIsZero(Tmp2,
MVT::getIntVTBitMask(Tmp2.getValueType())^1))
Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1);
break;
}
// Basic block destination (Op#2) is always legal.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Expand:
// Expand brcond's setcc into its constituent parts and create a BR_CC
// Node.
if (Tmp2.getOpcode() == ISD::SETCC) {
Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2),
Tmp2.getOperand(0), Tmp2.getOperand(1),
Node->getOperand(2));
} else {
Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1,
DAG.getCondCode(ISD::SETNE), Tmp2,
DAG.getConstant(0, Tmp2.getValueType()),
Node->getOperand(2));
}
break;
}
break;
case ISD::BR_CC:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = Node->getOperand(2); // LHS
Tmp3 = Node->getOperand(3); // RHS
Tmp4 = Node->getOperand(1); // CC
LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4);
LastCALLSEQ_END = DAG.getEntryNode();
// If we didn't get both a LHS and RHS back from LegalizeSetCCOperands,
// the LHS is a legal SETCC itself. In this case, we need to compare
// the result against zero to select between true and false values.
if (Tmp3.Val == 0) {
Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
Tmp4 = DAG.getCondCode(ISD::SETNE);
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3,
Node->getOperand(4));
switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) {
default: assert(0 && "Unexpected action for BR_CC!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp4 = TLI.LowerOperation(Result, DAG);
if (Tmp4.Val) Result = Tmp4;
break;
}
break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD) {
MVT::ValueType VT = Node->getValueType(0);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
Tmp3 = Result.getValue(0);
Tmp4 = Result.getValue(1);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Tmp3, DAG);
if (Tmp1.Val) {
Tmp3 = LegalizeOp(Tmp1);
Tmp4 = LegalizeOp(Tmp1.getValue(1));
}
break;
case TargetLowering::Promote: {
// Only promote a load of vector type to another.
assert(MVT::isVector(VT) && "Cannot promote this load!");
// Change base type to a different vector type.
MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset());
Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1));
Tmp4 = LegalizeOp(Tmp1.getValue(1));
break;
}
}
// Since loads produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDOperand(Node, 0), Tmp3);
AddLegalizedOperand(SDOperand(Node, 1), Tmp4);
return Op.ResNo ? Tmp4 : Tmp3;
} else {
MVT::ValueType SrcVT = LD->getLoadedVT();
switch (TLI.getLoadXAction(ExtType, SrcVT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Promote:
assert(SrcVT == MVT::i1 &&
"Can only promote extending LOAD from i1 -> i8!");
Result = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2,
LD->getSrcValue(), LD->getSrcValueOffset(),
MVT::i8);
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
break;
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
if (isCustom) {
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Tmp1 = LegalizeOp(Tmp3);
Tmp2 = LegalizeOp(Tmp3.getValue(1));
}
}
break;
case TargetLowering::Expand:
// f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset());
Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load);
Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
Tmp2 = LegalizeOp(Load.getValue(1));
break;
}
assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
// Turn the unsupported load into an EXTLOAD followed by an explicit
// zero/sign extend inreg.
Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0),
Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset(), SrcVT);
SDOperand ValRes;
if (ExtType == ISD::SEXTLOAD)
ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else
ValRes = DAG.getZeroExtendInReg(Result, SrcVT);
Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
break;
}
// Since loads produce two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
return Op.ResNo ? Tmp2 : Tmp1;
}
}
case ISD::EXTRACT_ELEMENT: {
MVT::ValueType OpTy = Node->getOperand(0).getValueType();
switch (getTypeAction(OpTy)) {
default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!");
case Legal:
if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) {
// 1 -> Hi
Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0),
DAG.getConstant(MVT::getSizeInBits(OpTy)/2,
TLI.getShiftAmountTy()));
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result);
} else {
// 0 -> Lo
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0),
Node->getOperand(0));
}
break;
case Expand:
// Get both the low and high parts.
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
if (cast<ConstantSDNode>(Node->getOperand(1))->getValue())
Result = Tmp2; // 1 -> Hi
else
Result = Tmp1; // 0 -> Lo
break;
}
break;
}
case ISD::CopyToReg:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
assert(isTypeLegal(Node->getOperand(2).getValueType()) &&
"Register type must be legal!");
// Legalize the incoming value (must be a legal type).
Tmp2 = LegalizeOp(Node->getOperand(2));
if (Node->getNumValues() == 1) {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2);
} else {
assert(Node->getNumValues() == 2 && "Unknown CopyToReg");
if (Node->getNumOperands() == 4) {
Tmp3 = LegalizeOp(Node->getOperand(3));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2,
Tmp3);
} else {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
}
// Since this produces two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result;
}
break;
case ISD::RET:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a return.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
switch (Node->getNumOperands()) {
case 3: // ret val
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2); // Signness
switch (getTypeAction(Tmp2.getValueType())) {
case Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3);
break;
case Expand:
if (Tmp2.getValueType() != MVT::Vector) {
SDOperand Lo, Hi;
ExpandOp(Tmp2, Lo, Hi);
// Big endian systems want the hi reg first.
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
if (Hi.Val)
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3);
else
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3);
Result = LegalizeOp(Result);
} else {
SDNode *InVal = Tmp2.Val;
unsigned NumElems =
cast<ConstantSDNode>(*(InVal->op_end()-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(*(InVal->op_end()-1))->getVT();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
// Turn this into a return of the vector type.
Tmp2 = PackVectorOp(Tmp2, TVT);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
} else if (NumElems == 1) {
// Turn this into a return of the scalar type.
Tmp2 = PackVectorOp(Tmp2, EVT);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
// FIXME: Returns of gcc generic vectors smaller than a legal type
// should be returned in integer registers!
// The scalarized value type may not be legal, e.g. it might require
// promotion or expansion. Relegalize the return.
Result = LegalizeOp(Result);
} else {
// FIXME: Returns of gcc generic vectors larger than a legal vector
// type should be returned by reference!
SDOperand Lo, Hi;
SplitVectorOp(Tmp2, Lo, Hi);
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3);
Result = LegalizeOp(Result);
}
}
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
Result = LegalizeOp(Result);
break;
}
break;
case 1: // ret void
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
default: { // ret <values>
SmallVector<SDOperand, 8> NewValues;
NewValues.push_back(Tmp1);
for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2)
switch (getTypeAction(Node->getOperand(i).getValueType())) {
case Legal:
NewValues.push_back(LegalizeOp(Node->getOperand(i)));
NewValues.push_back(Node->getOperand(i+1));
break;
case Expand: {
SDOperand Lo, Hi;
assert(Node->getOperand(i).getValueType() != MVT::Vector &&
"FIXME: TODO: implement returning non-legal vector types!");
ExpandOp(Node->getOperand(i), Lo, Hi);
NewValues.push_back(Lo);
NewValues.push_back(Node->getOperand(i+1));
if (Hi.Val) {
NewValues.push_back(Hi);
NewValues.push_back(Node->getOperand(i+1));
}
break;
}
case Promote:
assert(0 && "Can't promote multiple return value yet!");
}
if (NewValues.size() == Node->getNumOperands())
Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size());
else
Result = DAG.getNode(ISD::RET, MVT::Other,
&NewValues[0], NewValues.size());
break;
}
}
if (Result.getOpcode() == ISD::RET) {
switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
}
}
break;
case ISD::STORE: {
StoreSDNode *ST = cast<StoreSDNode>(Node);
Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
if (!ST->isTruncatingStore()) {
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
// FIXME: We shouldn't do this for TargetConstantFP's.
// FIXME: move this to the DAG Combiner! Note that we can't regress due
// to phase ordering between legalized code and the dag combiner. This
// probably means that we need to integrate dag combiner and legalizer
// together.
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
if (CFP->getValueType(0) == MVT::f32) {
Tmp3 = DAG.getConstant(FloatToBits(CFP->getValue()), MVT::i32);
} else {
assert(CFP->getValueType(0) == MVT::f64 && "Unknown FP type!");
Tmp3 = DAG.getConstant(DoubleToBits(CFP->getValue()), MVT::i64);
}
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset());
break;
}
switch (getTypeAction(ST->getStoredVT())) {
case Legal: {
Tmp3 = LegalizeOp(ST->getValue());
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
ST->getOffset());
MVT::ValueType VT = Tmp3.getValueType();
switch (TLI.getOperationAction(ISD::STORE, VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Promote:
assert(MVT::isVector(VT) && "Unknown legal promote case!");
Tmp3 = DAG.getNode(ISD::BIT_CONVERT,
TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2,
ST->getSrcValue(), ST->getSrcValueOffset());
break;
}
break;
}
case Promote:
// Truncate the value and store the result.
Tmp3 = PromoteOp(ST->getValue());
Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->getStoredVT());
break;
case Expand:
unsigned IncrementSize = 0;
SDOperand Lo, Hi;
// If this is a vector type, then we have to calculate the increment as
// the product of the element size in bytes, and the number of elements
// in the high half of the vector.
if (ST->getValue().getValueType() == MVT::Vector) {
SDNode *InVal = ST->getValue().Val;
unsigned NumElems =
cast<ConstantSDNode>(*(InVal->op_end()-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(*(InVal->op_end()-1))->getVT();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
// Turn this into a normal store of the vector type.
Tmp3 = PackVectorOp(Node->getOperand(1), TVT);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset());
Result = LegalizeOp(Result);
break;
} else if (NumElems == 1) {
// Turn this into a normal store of the scalar type.
Tmp3 = PackVectorOp(Node->getOperand(1), EVT);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset());
// The scalarized value type may not be legal, e.g. it might require
// promotion or expansion. Relegalize the scalar store.
Result = LegalizeOp(Result);
break;
} else {
SplitVectorOp(Node->getOperand(1), Lo, Hi);
IncrementSize = NumElems/2 * MVT::getSizeInBits(EVT)/8;
}
} else {
ExpandOp(Node->getOperand(1), Lo, Hi);
IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0;
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
}
Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(),
ST->getAlignment());
if (Hi.Val == NULL) {
// Must be int <-> float one-to-one expansion.
Result = Lo;
break;
}
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
getIntPtrConstant(IncrementSize));
assert(isTypeLegal(Tmp2.getValueType()) &&
"Pointers must be legal!");
// FIXME: This sets the srcvalue of both halves to be the same, which is
// wrong.
Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(),
std::min(ST->getAlignment(), IncrementSize));
Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
break;
}
} else {
// Truncating store
assert(isTypeLegal(ST->getValue().getValueType()) &&
"Cannot handle illegal TRUNCSTORE yet!");
Tmp3 = LegalizeOp(ST->getValue());
// The only promote case we handle is TRUNCSTORE:i1 X into
// -> TRUNCSTORE:i8 (and X, 1)
if (ST->getStoredVT() == MVT::i1 &&
TLI.getStoreXAction(MVT::i1) == TargetLowering::Promote) {
// Promote the bool to a mask then store.
Tmp3 = DAG.getNode(ISD::AND, Tmp3.getValueType(), Tmp3,
DAG.getConstant(1, Tmp3.getValueType()));
Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
ST->getSrcValueOffset(), MVT::i8);
} else if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
Tmp2 != ST->getBasePtr()) {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
ST->getOffset());
}
MVT::ValueType StVT = cast<StoreSDNode>(Result.Val)->getStoredVT();
switch (TLI.getStoreXAction(StVT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
}
}
break;
}
case ISD::PCMARKER:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case ISD::STACKSAVE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Result = DAG.UpdateNodeOperands(Result, Tmp1);
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.Val) {
Tmp1 = LegalizeOp(Tmp3);
Tmp2 = LegalizeOp(Tmp3.getValue(1));
}
break;
case TargetLowering::Expand:
// Expand to CopyFromReg if the target set
// StackPointerRegisterToSaveRestore.
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP,
Node->getValueType(0));
Tmp2 = Tmp1.getValue(1);
} else {
Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0));
Tmp2 = Node->getOperand(0);
}
break;
}
// Since stacksave produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
return Op.ResNo ? Tmp2 : Tmp1;
case ISD::STACKRESTORE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Expand:
// Expand to CopyToReg if the target set
// StackPointerRegisterToSaveRestore.
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
Result = DAG.getCopyToReg(Tmp1, SP, Tmp2);
} else {
Result = Tmp1;
}
break;
}
break;
case ISD::READCYCLECOUNTER:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain
Result = DAG.UpdateNodeOperands(Result, Tmp1);
switch (TLI.getOperationAction(ISD::READCYCLECOUNTER,
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Result, DAG);
Tmp1 = LegalizeOp(Result.getValue(0));
Tmp2 = LegalizeOp(Result.getValue(1));
break;
}
// Since rdcc produce two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
return Result;
case ISD::SELECT:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "It's impossible to expand bools");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition.
break;
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition.
// Make sure the condition is either zero or one.
if (!TLI.MaskedValueIsZero(Tmp1,
MVT::getIntVTBitMask(Tmp1.getValueType())^1))
Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1);
break;
}
Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal
Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom: {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
}
case TargetLowering::Expand:
if (Tmp1.getOpcode() == ISD::SETCC) {
Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1),
Tmp2, Tmp3,
cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
} else {
Result = DAG.getSelectCC(Tmp1,
DAG.getConstant(0, Tmp1.getValueType()),
Tmp2, Tmp3, ISD::SETNE);
}
break;
case TargetLowering::Promote: {
MVT::ValueType NVT =
TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType());
unsigned ExtOp, TruncOp;
if (MVT::isVector(Tmp2.getValueType())) {
ExtOp = ISD::BIT_CONVERT;
TruncOp = ISD::BIT_CONVERT;
} else if (MVT::isInteger(Tmp2.getValueType())) {
ExtOp = ISD::ANY_EXTEND;
TruncOp = ISD::TRUNCATE;
} else {
ExtOp = ISD::FP_EXTEND;
TruncOp = ISD::FP_ROUND;
}
// Promote each of the values to the new type.
Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2);
Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3);
// Perform the larger operation, then round down.
Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3);
Result = DAG.getNode(TruncOp, Node->getValueType(0), Result);
break;
}
}
break;
case ISD::SELECT_CC: {
Tmp1 = Node->getOperand(0); // LHS
Tmp2 = Node->getOperand(1); // RHS
Tmp3 = LegalizeOp(Node->getOperand(2)); // True
Tmp4 = LegalizeOp(Node->getOperand(3)); // False
SDOperand CC = Node->getOperand(4);
LegalizeSetCCOperands(Tmp1, Tmp2, CC);
// If we didn't get both a LHS and RHS back from LegalizeSetCCOperands,
// the LHS is a legal SETCC itself. In this case, we need to compare
// the result against zero to select between true and false values.
if (Tmp2.Val == 0) {
Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
CC = DAG.getCondCode(ISD::SETNE);
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC);
// Everything is legal, see if we should expand this op or something.
switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
}
break;
}
case ISD::SETCC:
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3);
// If we had to Expand the SetCC operands into a SELECT node, then it may
// not always be possible to return a true LHS & RHS. In this case, just
// return the value we legalized, returned in the LHS
if (Tmp2.Val == 0) {
Result = Tmp1;
break;
}
switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) {
default: assert(0 && "Cannot handle this action for SETCC yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH.
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
if (isCustom) {
Tmp4 = TLI.LowerOperation(Result, DAG);
if (Tmp4.Val) Result = Tmp4;
}
break;
case TargetLowering::Promote: {
// First step, figure out the appropriate operation to use.
// Allow SETCC to not be supported for all legal data types
// Mostly this targets FP
MVT::ValueType NewInTy = Node->getOperand(0).getValueType();
MVT::ValueType OldVT = NewInTy; OldVT = OldVT;
// Scan for the appropriate larger type to use.
while (1) {
NewInTy = (MVT::ValueType)(NewInTy+1);
assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) &&
"Fell off of the edge of the integer world");
assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) &&
"Fell off of the edge of the floating point world");
// If the target supports SETCC of this type, use it.
if (TLI.isOperationLegal(ISD::SETCC, NewInTy))
break;
}
if (MVT::isInteger(NewInTy))
assert(0 && "Cannot promote Legal Integer SETCC yet");
else {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1);
Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2);
}
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = LegalizeOp(Tmp2);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
Result = LegalizeOp(Result);
break;
}
case TargetLowering::Expand:
// Expand a setcc node into a select_cc of the same condition, lhs, and
// rhs that selects between const 1 (true) and const 0 (false).
MVT::ValueType VT = Node->getValueType(0);
Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2,
DAG.getConstant(1, VT), DAG.getConstant(0, VT),
Tmp3);
break;
}
break;
case ISD::MEMSET:
case ISD::MEMCPY:
case ISD::MEMMOVE: {
Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain
Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer
if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte
switch (getTypeAction(Node->getOperand(2).getValueType())) {
case Expand: assert(0 && "Cannot expand a byte!");
case Legal:
Tmp3 = LegalizeOp(Node->getOperand(2));
break;
case Promote:
Tmp3 = PromoteOp(Node->getOperand(2));
break;
}
} else {
Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer,
}
SDOperand Tmp4;
switch (getTypeAction(Node->getOperand(3).getValueType())) {
case Expand: {
// Length is too big, just take the lo-part of the length.
SDOperand HiPart;
ExpandOp(Node->getOperand(3), Tmp4, HiPart);
break;
}
case Legal:
Tmp4 = LegalizeOp(Node->getOperand(3));
break;
case Promote:
Tmp4 = PromoteOp(Node->getOperand(3));
break;
}
SDOperand Tmp5;
switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint
case Expand: assert(0 && "Cannot expand this yet!");
case Legal:
Tmp5 = LegalizeOp(Node->getOperand(4));
break;
case Promote:
Tmp5 = PromoteOp(Node->getOperand(4));
break;
}
switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, Tmp5);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Expand: {
// Otherwise, the target does not support this operation. Lower the
// operation to an explicit libcall as appropriate.
MVT::ValueType IntPtr = TLI.getPointerTy();
const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
const char *FnName = 0;
if (Node->getOpcode() == ISD::MEMSET) {
Entry.Node = Tmp2; Entry.Ty = IntPtrTy;
Args.push_back(Entry);
// Extend the (previously legalized) ubyte argument to be an int value
// for the call.
if (Tmp3.getValueType() > MVT::i32)
Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3);
else
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3);
Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
Args.push_back(Entry);
Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false;
Args.push_back(Entry);
FnName = "memset";
} else if (Node->getOpcode() == ISD::MEMCPY ||
Node->getOpcode() == ISD::MEMMOVE) {
Entry.Ty = IntPtrTy;
Entry.Node = Tmp2; Args.push_back(Entry);
Entry.Node = Tmp3; Args.push_back(Entry);
Entry.Node = Tmp4; Args.push_back(Entry);
FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy";
} else {
assert(0 && "Unknown op!");
}
std::pair<SDOperand,SDOperand> CallResult =
TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false,
DAG.getExternalSymbol(FnName, IntPtr), Args, DAG);
Result = CallResult.second;
break;
}
}
break;
}
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: {
SmallVector<SDOperand, 8> Ops;
bool Changed = false;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Changed |= Ops.back() != Node->getOperand(i);
}
if (Changed)
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
switch (TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) {
SDOperand Tmp2, RetVal(0, 0);
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
Tmp2 = LegalizeOp(Tmp1.getValue(i));
AddLegalizedOperand(SDOperand(Node, i), Tmp2);
if (i == Op.ResNo)
RetVal = Tmp2;
}
assert(RetVal.Val && "Illegal result number");
return RetVal;
}
break;
}
// Since these produce multiple values, make sure to remember that we
// legalized all of them.
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i));
return Result.getValue(Op.ResNo);
}
// Binary operators
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::UDIV:
case ISD::SDIV:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "Not possible");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS.
break;
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "BinOp legalize operation not supported");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Expand: {
if (Node->getValueType(0) == MVT::i32) {
switch (Node->getOpcode()) {
default: assert(0 && "Do not know how to expand this integer BinOp!");
case ISD::UDIV:
case ISD::SDIV:
RTLIB::Libcall LC = Node->getOpcode() == ISD::UDIV
? RTLIB::UDIV_I32 : RTLIB::SDIV_I32;
SDOperand Dummy;
bool isSigned = Node->getOpcode() == ISD::SDIV;
Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy);
};
break;
}
assert(MVT::isVector(Node->getValueType(0)) &&
"Cannot expand this binary operator!");
// Expand the operation into a bunch of nasty scalar code.
SmallVector<SDOperand, 8> Ops;
MVT::ValueType EltVT = MVT::getVectorBaseType(Node->getValueType(0));
MVT::ValueType PtrVT = TLI.getPointerTy();
for (unsigned i = 0, e = MVT::getVectorNumElements(Node->getValueType(0));
i != e; ++i) {
SDOperand Idx = DAG.getConstant(i, PtrVT);
SDOperand LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, Idx);
SDOperand RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, Idx);
Ops.push_back(DAG.getNode(Node->getOpcode(), EltVT, LHS, RHS));
}
Result = DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0),
&Ops[0], Ops.size());
break;
}
case TargetLowering::Promote: {
switch (Node->getOpcode()) {
default: assert(0 && "Do not know how to promote this BinOp!");
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
MVT::ValueType OVT = Node->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
assert(MVT::isVector(OVT) && "Cannot promote this BinOp!");
// Bit convert each of the values to the new type.
Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1);
Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Bit convert the result back the original type.
Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result);
break;
}
}
}
}
break;
case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type!
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "Not possible");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS.
break;
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "Operation not supported");
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Legal: break;
case TargetLowering::Expand: {
// If this target supports fabs/fneg natively and select is cheap,
// do this efficiently.
if (!TLI.isSelectExpensive() &&
TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) ==
TargetLowering::Legal &&
TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) ==
TargetLowering::Legal) {
// Get the sign bit of the RHS.
MVT::ValueType IVT =
Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64;
SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2);
SignBit = DAG.getSetCC(TLI.getSetCCResultTy(),
SignBit, DAG.getConstant(0, IVT), ISD::SETLT);
// Get the absolute value of the result.
SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1);
// Select between the nabs and abs value based on the sign bit of
// the input.
Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit,
DAG.getNode(ISD::FNEG, AbsVal.getValueType(),
AbsVal),
AbsVal);
Result = LegalizeOp(Result);
break;
}
// Otherwise, do bitwise ops!
MVT::ValueType NVT =
Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64;
Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result);
Result = LegalizeOp(Result);
break;
}
}
break;
case ISD::ADDC:
case ISD::SUBC:
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
// Since this produces two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result;
case ISD::ADDE:
case ISD::SUBE:
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Tmp3 = LegalizeOp(Node->getOperand(2));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
// Since this produces two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result;
case ISD::BUILD_PAIR: {
MVT::ValueType PairTy = Node->getValueType(0);
// TODO: handle the case where the Lo and Hi operands are not of legal type
Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo
Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi
switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) {
case TargetLowering::Promote:
case TargetLowering::Custom:
assert(0 && "Cannot promote/custom this yet!");
case TargetLowering::Legal:
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2);
break;
case TargetLowering::Expand:
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1);
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2);
Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2,
DAG.getConstant(MVT::getSizeInBits(PairTy)/2,
TLI.getShiftAmountTy()));
Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2);
break;
}
break;
}
case ISD::UREM:
case ISD::SREM:
case ISD::FREM:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Promote: assert(0 && "Cannot promote this yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Expand:
unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV;
bool isSigned = DivOpc == ISD::SDIV;
if (MVT::isInteger(Node->getValueType(0))) {
if (TLI.getOperationAction(DivOpc, Node->getValueType(0)) ==
TargetLowering::Legal) {
// X % Y -> X-X/Y*Y
MVT::ValueType VT = Node->getValueType(0);
Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2);
Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2);
Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result);
} else {
assert(Node->getValueType(0) == MVT::i32 &&
"Cannot expand this binary operator!");
RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM
? RTLIB::UREM_I32 : RTLIB::SREM_I32;
SDOperand Dummy;
Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy);
}
} else {
// Floating point mod -> fmod libcall.
RTLIB::Libcall LC = Node->getValueType(0) == MVT::f32
? RTLIB::REM_F32 : RTLIB::REM_F64;
SDOperand Dummy;
Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
false/*sign irrelevant*/, Dummy);
}
break;
}
break;
case ISD::VAARG: {
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
MVT::ValueType VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
Result = Result.getValue(0);
Tmp1 = Result.getValue(1);
if (isCustom) {
Tmp2 = TLI.LowerOperation(Result, DAG);
if (Tmp2.Val) {
Result = LegalizeOp(Tmp2);
Tmp1 = LegalizeOp(Tmp2.getValue(1));
}
}
break;
case TargetLowering::Expand: {
SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2));
SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2,
SV->getValue(), SV->getOffset());
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList,
DAG.getConstant(MVT::getSizeInBits(VT)/8,
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(),
SV->getOffset());
// Load the actual argument out of the pointer VAList
Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0);
Tmp1 = LegalizeOp(Result.getValue(1));
Result = LegalizeOp(Result);
break;
}
}
// Since VAARG produces two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDOperand(Node, 0), Result);
AddLegalizedOperand(SDOperand(Node, 1), Tmp1);
return Op.ResNo ? Tmp1 : Result;
}
case ISD::VACOPY:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer.
switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3,
Node->getOperand(3), Node->getOperand(4));
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Expand:
// This defaults to loading a pointer from the input and storing it to the
// output, returning the chain.
SrcValueSDNode *SVD = cast<SrcValueSDNode>(Node->getOperand(3));
SrcValueSDNode *SVS = cast<SrcValueSDNode>(Node->getOperand(4));
Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, SVD->getValue(),
SVD->getOffset());
Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, SVS->getValue(),
SVS->getOffset());
break;
}
break;
case ISD::VAEND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
if (isCustom) {
Tmp1 = TLI.LowerOperation(Tmp1, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Expand:
Result = Tmp1; // Default to a no-op, return the chain
break;
}
break;
case ISD::VASTART:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
}
break;
case ISD::ROTL:
case ISD::ROTR:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default:
assert(0 && "ROTL/ROTR legalize operation not supported");
break;
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
break;
case TargetLowering::Promote:
assert(0 && "Do not know how to promote ROTL/ROTR");
break;
case TargetLowering::Expand:
assert(0 && "Do not know how to expand ROTL/ROTR");
break;
}
break;
case ISD::BSWAP:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Op
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Custom:
assert(0 && "Cannot custom legalize this yet!");
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case TargetLowering::Promote: {
MVT::ValueType OVT = Tmp1.getValueType();
MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT);
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1);
Result = DAG.getNode(ISD::SRL, NVT, Tmp1,
DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
break;
}
case TargetLowering::Expand:
Result = ExpandBSWAP(Tmp1);
break;
}
break;
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTLZ:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Op
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Custom: assert(0 && "Cannot custom handle this yet!");
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case TargetLowering::Promote: {
MVT::ValueType OVT = Tmp1.getValueType();
MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
// Zero extend the argument.
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
// Perform the larger operation, then subtract if needed.
Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1);
switch (Node->getOpcode()) {
case ISD::CTPOP:
Result = Tmp1;
break;
case ISD::CTTZ:
//if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1,
DAG.getConstant(MVT::getSizeInBits(NVT), NVT),
ISD::SETEQ);
Result = DAG.getNode(ISD::SELECT, NVT, Tmp2,
DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1);
break;
case ISD::CTLZ:
// Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
Result = DAG.getNode(ISD::SUB, NVT, Tmp1,
DAG.getConstant(MVT::getSizeInBits(NVT) -
MVT::getSizeInBits(OVT), NVT));
break;
}
break;
}
case TargetLowering::Expand:
Result = ExpandBitCount(Node->getOpcode(), Tmp1);
break;
}
break;
// Unary operators
case ISD::FABS:
case ISD::FNEG:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
Tmp1 = LegalizeOp(Node->getOperand(0));
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Promote:
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Expand:
switch (Node->getOpcode()) {
default: assert(0 && "Unreachable!");
case ISD::FNEG:
// Expand Y = FNEG(X) -> Y = SUB -0.0, X
Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0));
Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1);
break;
case ISD::FABS: {
// Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
MVT::ValueType VT = Node->getValueType(0);
Tmp2 = DAG.getConstantFP(0.0, VT);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT);
Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1);
Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3);
break;
}
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS: {
MVT::ValueType VT = Node->getValueType(0);
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch(Node->getOpcode()) {
case ISD::FSQRT:
LC = VT == MVT::f32 ? RTLIB::SQRT_F32 : RTLIB::SQRT_F64;
break;
case ISD::FSIN:
LC = VT == MVT::f32 ? RTLIB::SIN_F32 : RTLIB::SIN_F64;
break;
case ISD::FCOS:
LC = VT == MVT::f32 ? RTLIB::COS_F32 : RTLIB::COS_F64;
break;
default: assert(0 && "Unreachable!");
}
SDOperand Dummy;
Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
false/*sign irrelevant*/, Dummy);
break;
}
}
break;
}
break;
case ISD::FPOWI: {
// We always lower FPOWI into a libcall. No target support it yet.
RTLIB::Libcall LC = Node->getValueType(0) == MVT::f32
? RTLIB::POWI_F32 : RTLIB::POWI_F64;
SDOperand Dummy;
Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
false/*sign irrelevant*/, Dummy);
break;
}
case ISD::BIT_CONVERT:
if (!isTypeLegal(Node->getOperand(0).getValueType())) {
Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0));
} else {
switch (TLI.getOperationAction(ISD::BIT_CONVERT,
Node->getOperand(0).getValueType())) {
default: assert(0 && "Unknown operation action!");
case TargetLowering::Expand:
Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0));
break;
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
}
}
break;
case ISD::VBIT_CONVERT: {
assert(Op.getOperand(0).getValueType() == MVT::Vector &&
"Can only have VBIT_CONVERT where input or output is MVT::Vector!");
// The input has to be a vector type, we have to either scalarize it, pack
// it, or convert it based on whether the input vector type is legal.
SDNode *InVal = Node->getOperand(0).Val;
unsigned NumElems =
cast<ConstantSDNode>(*(InVal->op_end()-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(*(InVal->op_end()-1))->getVT();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
// Turn this into a bit convert of the packed input.
Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0),
PackVectorOp(Node->getOperand(0), TVT));
break;
} else if (NumElems == 1) {
// Turn this into a bit convert of the scalar input.
Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0),
PackVectorOp(Node->getOperand(0), EVT));
break;
} else {
// FIXME: UNIMP! Store then reload
assert(0 && "Cast from unsupported vector type not implemented yet!");
}
}
// Conversion operators. The source and destination have different types.
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: {
bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
switch (TLI.getOperationAction(Node->getOpcode(),
Node->getOperand(0).getValueType())) {
default: assert(0 && "Unknown operation action!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Expand:
Result = ExpandLegalINT_TO_FP(isSigned,
LegalizeOp(Node->getOperand(0)),
Node->getValueType(0));
break;
case TargetLowering::Promote:
Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)),
Node->getValueType(0),
isSigned);
break;
}
break;
case Expand:
Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP,
Node->getValueType(0), Node->getOperand(0));
break;
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0));
if (isSigned) {
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(),
Tmp1, DAG.getValueType(Node->getOperand(0).getValueType()));
} else {
Tmp1 = DAG.getZeroExtendInReg(Tmp1,
Node->getOperand(0).getValueType());
}
Result = DAG.UpdateNodeOperands(Result, Tmp1);
Result = LegalizeOp(Result); // The 'op' is not necessarily legal!
break;
}
break;
}
case ISD::TRUNCATE:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case Expand:
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
// Since the result is legal, we should just be able to truncate the low
// part of the source.
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1);
break;
case Promote:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result);
break;
}
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){
default: assert(0 && "Unknown operation action!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.Val) Result = Tmp1;
}
break;
case TargetLowering::Promote:
Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0),
Node->getOpcode() == ISD::FP_TO_SINT);
break;
case TargetLowering::Expand:
if (Node->getOpcode() == ISD::FP_TO_UINT) {
SDOperand True, False;
MVT::ValueType VT = Node->getOperand(0).getValueType();
MVT::ValueType NVT = Node->getValueType(0);
unsigned ShiftAmt = MVT::getSizeInBits(Node->getValueType(0))-1;
Tmp2 = DAG.getConstantFP((double)(1ULL << ShiftAmt), VT);
Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(),
Node->getOperand(0), Tmp2, ISD::SETLT);
True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0));
False = DAG.getNode(ISD::FP_TO_SINT, NVT,
DAG.getNode(ISD::FSUB, VT, Node->getOperand(0),
Tmp2));
False = DAG.getNode(ISD::XOR, NVT, False,
DAG.getConstant(1ULL << ShiftAmt, NVT));
Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False);
break;
} else {
assert(0 && "Do not know how to expand FP_TO_SINT yet!");
}
break;
}
break;
case Expand: {
// Convert f32 / f64 to i32 / i64.
MVT::ValueType VT = Op.getValueType();
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch (Node->getOpcode()) {
case ISD::FP_TO_SINT:
if (Node->getOperand(0).getValueType() == MVT::f32)
LC = (VT == MVT::i32)
? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64;
else
LC = (VT == MVT::i32)
? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64;
break;
case ISD::FP_TO_UINT:
if (Node->getOperand(0).getValueType() == MVT::f32)
LC = (VT == MVT::i32)
? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64;
else
LC = (VT == MVT::i32)
? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64;
break;
default: assert(0 && "Unreachable!");
}
SDOperand Dummy;
Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
false/*sign irrelevant*/, Dummy);
break;
}
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1));
Result = LegalizeOp(Result);
break;
}
break;
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "Shouldn't need to expand other operators here!");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case Promote:
switch (Node->getOpcode()) {
case ISD::ANY_EXTEND:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1);
break;
case ISD::ZERO_EXTEND:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result);
Result = DAG.getZeroExtendInReg(Result,
Node->getOperand(0).getValueType());
break;
case ISD::SIGN_EXTEND:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result);
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result,
DAG.getValueType(Node->getOperand(0).getValueType()));
break;
case ISD::FP_EXTEND:
Result = PromoteOp(Node->getOperand(0));
if (Result.getValueType() != Op.getValueType())
// Dynamically dead while we have only 2 FP types.
Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Result);
break;
case ISD::FP_ROUND:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(Node->getOpcode(), Op.getValueType(), Result);
break;
}
}
break;
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG: {
Tmp1 = LegalizeOp(Node->getOperand(0));
MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
// If this operation is not supported, convert it to a shl/shr or load/store
// pair.
switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) {
default: assert(0 && "This action not supported for this op yet!");
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case TargetLowering::Expand:
// If this is an integer extend and shifts are supported, do that.
if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) {
// NOTE: we could fall back on load/store here too for targets without
// SAR. However, it is doubtful that any exist.
unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) -
MVT::getSizeInBits(ExtraVT);
SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
Result = DAG.getNode(ISD::SHL, Node->getValueType(0),
Node->getOperand(0), ShiftCst);
Result = DAG.getNode(ISD::SRA, Node->getValueType(0),
Result, ShiftCst);
} else if (Node->getOpcode() == ISD::FP_ROUND_INREG) {
// The only way we can lower this is to turn it into a TRUNCSTORE,
// EXTLOAD pair, targetting a temporary location (a stack slot).
// NOTE: there is a choice here between constantly creating new stack
// slots and always reusing the same one. We currently always create
// new ones, as reuse may inhibit scheduling.
const Type *Ty = MVT::getTypeForValueType(ExtraVT);
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
MachineFunction &MF = DAG.getMachineFunction();
int SSFI =
MF.getFrameInfo()->CreateStackObject(TySize, Align);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0),
StackSlot, NULL, 0, ExtraVT);
Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0),
Result, StackSlot, NULL, 0, ExtraVT);
} else {
assert(0 && "Unknown op");
}
break;
}
break;
}
}
assert(Result.getValueType() == Op.getValueType() &&
"Bad legalization!");
// Make sure that the generated code is itself legal.
if (Result != Op)
Result = LegalizeOp(Result);
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
AddLegalizedOperand(Op, Result);
return Result;
}
/// PromoteOp - Given an operation that produces a value in an invalid type,
/// promote it to compute the value into a larger type. The produced value will
/// have the correct bits for the low portion of the register, but no guarantee
/// is made about the top bits: it may be zero, sign-extended, or garbage.
SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) {
MVT::ValueType VT = Op.getValueType();
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
assert(getTypeAction(VT) == Promote &&
"Caller should expand or legalize operands that are not promotable!");
assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) &&
"Cannot promote to smaller type!");
SDOperand Tmp1, Tmp2, Tmp3;
SDOperand Result;
SDNode *Node = Op.Val;
DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op);
if (I != PromotedNodes.end()) return I->second;
switch (Node->getOpcode()) {
case ISD::CopyFromReg:
assert(0 && "CopyFromReg must be legal!");
default:
#ifndef NDEBUG
cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to promote this operator!");
abort();
case ISD::UNDEF:
Result = DAG.getNode(ISD::UNDEF, NVT);
break;
case ISD::Constant:
if (VT != MVT::i1)
Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op);
else
Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op);
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?");
break;
case ISD::ConstantFP:
Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op);
assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?");
break;
case ISD::SETCC:
assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??");
Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2));
break;
case ISD::TRUNCATE:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Result = LegalizeOp(Node->getOperand(0));
assert(Result.getValueType() >= NVT &&
"This truncation doesn't make sense!");
if (Result.getValueType() > NVT) // Truncate to NVT instead of VT
Result = DAG.getNode(ISD::TRUNCATE, NVT, Result);
break;
case Promote:
// The truncation is not required, because we don't guarantee anything
// about high bits anyway.
Result = PromoteOp(Node->getOperand(0));
break;
case Expand:
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
// Truncate the low part of the expanded value to the result type
Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1);
}
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "BUG: Smaller reg should have been promoted!");
case Legal:
// Input is legal? Just do extend all the way to the larger type.
Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0));
break;
case Promote:
// Promote the reg if it's smaller.
Result = PromoteOp(Node->getOperand(0));
// The high bits are not guaranteed to be anything. Insert an extend.
if (Node->getOpcode() == ISD::SIGN_EXTEND)
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result,
DAG.getValueType(Node->getOperand(0).getValueType()));
else if (Node->getOpcode() == ISD::ZERO_EXTEND)
Result = DAG.getZeroExtendInReg(Result,
Node->getOperand(0).getValueType());
break;
}
break;
case ISD::BIT_CONVERT:
Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0));
Result = PromoteOp(Result);
break;
case ISD::FP_EXTEND:
assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
case ISD::FP_ROUND:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "BUG: Cannot expand FP regs!");
case Promote: assert(0 && "Unreachable with 2 FP types!");
case Legal:
// Input is legal? Do an FP_ROUND_INREG.
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0),
DAG.getValueType(VT));
break;
}
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0));
break;
case Promote:
Result = PromoteOp(Node->getOperand(0));
if (Node->getOpcode() == ISD::SINT_TO_FP)
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result,
DAG.getValueType(Node->getOperand(0).getValueType()));
else
Result = DAG.getZeroExtendInReg(Result,
Node->getOperand(0).getValueType());
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Result);
break;
case Expand:
Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT,
Node->getOperand(0));
// Round if we cannot tolerate excess precision.
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
}
break;
case ISD::SIGN_EXTEND_INREG:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result,
Node->getOperand(1));
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
case Expand:
Tmp1 = Node->getOperand(0);
break;
case Promote:
// The input result is prerounded, so we don't have to do anything
// special.
Tmp1 = PromoteOp(Node->getOperand(0));
break;
}
// If we're promoting a UINT to a larger size, check to see if the new node
// will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
// we can use that instead. This allows us to generate better code for
// FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
// legal, such as PowerPC.
if (Node->getOpcode() == ISD::FP_TO_UINT &&
!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
(TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) ||
TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){
Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1);
} else {
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
}
break;
case ISD::FABS:
case ISD::FNEG:
Tmp1 = PromoteOp(Node->getOperand(0));
assert(Tmp1.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
// NOTE: we do not have to do any extra rounding here for
// NoExcessFPPrecision, because we know the input will have the appropriate
// precision, and these operations don't modify precision at all.
break;
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
Tmp1 = PromoteOp(Node->getOperand(0));
assert(Tmp1.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::FPOWI: {
// Promote f32 powi to f64 powi. Note that this could insert a libcall
// directly as well, which may be better.
Tmp1 = PromoteOp(Node->getOperand(0));
assert(Tmp1.getValueType() == NVT);
Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1));
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Floating point operations will give excess precision that we may not be
// able to tolerate. If we DO allow excess precision, just leave it,
// otherwise excise it.
// FIXME: Why would we need to round FP ops more than integer ones?
// Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C))
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::SDIV:
case ISD::SREM:
// These operators require that their input be sign extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
if (MVT::isInteger(NVT)) {
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
DAG.getValueType(VT));
Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2,
DAG.getValueType(VT));
}
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Perform FP_ROUND: this is probably overly pessimistic.
if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::FDIV:
case ISD::FREM:
case ISD::FCOPYSIGN:
// These operators require that their input be fp extended.
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
break;
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0));
break;
case Expand:
assert(0 && "not implemented");
}
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1));
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1));
break;
case Expand:
assert(0 && "not implemented");
}
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Perform FP_ROUND: this is probably overly pessimistic.
if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::UDIV:
case ISD::UREM:
// These operators require that their input be zero extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
assert(MVT::isInteger(NVT) && "Operators don't apply to FP!");
Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
break;
case ISD::SHL:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1));
break;
case ISD::SRA:
// The input value must be properly sign extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
DAG.getValueType(VT));
Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1));
break;
case ISD::SRL:
// The input value must be properly zero extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1));
break;
case ISD::VAARG:
Tmp1 = Node->getOperand(0); // Get the chain.
Tmp2 = Node->getOperand(1); // Get the pointer.
if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) {
Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2));
Result = TLI.CustomPromoteOperation(Tmp3, DAG);
} else {
SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2));
SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2,
SV->getValue(), SV->getOffset());
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList,
DAG.getConstant(MVT::getSizeInBits(VT)/8,
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(),
SV->getOffset());
// Load the actual argument out of the pointer VAList
Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT);
}
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node)
? ISD::EXTLOAD : LD->getExtensionType();
Result = DAG.getExtLoad(ExtType, NVT,
LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->getLoadedVT());
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
}
case ISD::SELECT:
Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0
Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1
Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3);
break;
case ISD::SELECT_CC:
Tmp2 = PromoteOp(Node->getOperand(2)); // True
Tmp3 = PromoteOp(Node->getOperand(3)); // False
Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4));
break;
case ISD::BSWAP:
Tmp1 = Node->getOperand(0);
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1);
Result = DAG.getNode(ISD::SRL, NVT, Tmp1,
DAG.getConstant(MVT::getSizeInBits(NVT) -
MVT::getSizeInBits(VT),
TLI.getShiftAmountTy()));
break;
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTLZ:
// Zero extend the argument
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0));
// Perform the larger operation, then subtract if needed.
Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
switch(Node->getOpcode()) {
case ISD::CTPOP:
Result = Tmp1;
break;
case ISD::CTTZ:
// if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1,
DAG.getConstant(MVT::getSizeInBits(NVT), NVT),
ISD::SETEQ);
Result = DAG.getNode(ISD::SELECT, NVT, Tmp2,
DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1);
break;
case ISD::CTLZ:
//Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
Result = DAG.getNode(ISD::SUB, NVT, Tmp1,
DAG.getConstant(MVT::getSizeInBits(NVT) -
MVT::getSizeInBits(VT), NVT));
break;
}
break;
case ISD::VEXTRACT_VECTOR_ELT:
Result = PromoteOp(LowerVEXTRACT_VECTOR_ELT(Op));
break;
case ISD::EXTRACT_VECTOR_ELT:
Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op));
break;
}
assert(Result.Val && "Didn't set a result!");
// Make sure the result is itself legal.
Result = LegalizeOp(Result);
// Remember that we promoted this!
AddPromotedOperand(Op, Result);
return Result;
}
/// LowerVEXTRACT_VECTOR_ELT - Lower a VEXTRACT_VECTOR_ELT operation into a
/// EXTRACT_VECTOR_ELT operation, to memory operations, or to scalar code based
/// on the vector type. The return type of this matches the element type of the
/// vector, which may not be legal for the target.
SDOperand SelectionDAGLegalize::LowerVEXTRACT_VECTOR_ELT(SDOperand Op) {
// We know that operand #0 is the Vec vector. If the index is a constant
// or if the invec is a supported hardware type, we can use it. Otherwise,
// lower to a store then an indexed load.
SDOperand Vec = Op.getOperand(0);
SDOperand Idx = LegalizeOp(Op.getOperand(1));
SDNode *InVal = Vec.Val;
unsigned NumElems = cast<ConstantSDNode>(*(InVal->op_end()-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(*(InVal->op_end()-1))->getVT();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
// Turn this into a packed extract_vector_elt operation.
Vec = PackVectorOp(Vec, TVT);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, Op.getValueType(), Vec, Idx);
} else if (NumElems == 1) {
// This must be an access of the only element. Return it.
return PackVectorOp(Vec, EVT);
} else if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
SDOperand Lo, Hi;
SplitVectorOp(Vec, Lo, Hi);
if (CIdx->getValue() < NumElems/2) {
Vec = Lo;
} else {
Vec = Hi;
Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType());
}
// It's now an extract from the appropriate high or low part. Recurse.
Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
return LowerVEXTRACT_VECTOR_ELT(Op);
} else {
// Variable index case for extract element.
// FIXME: IMPLEMENT STORE/LOAD lowering. Need alignment of stack slot!!
assert(0 && "unimp!");
return SDOperand();
}
}
/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into
/// memory traffic.
SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) {
SDOperand Vector = Op.getOperand(0);
SDOperand Idx = Op.getOperand(1);
// If the target doesn't support this, store the value to a temporary
// stack slot, then LOAD the scalar element back out.
SDOperand StackPtr = CreateStackTemporary(Vector.getValueType());
SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vector, StackPtr, NULL, 0);
// Add the offset to the index.
unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8;
Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, Idx.getValueType()));
StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr);
return DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0);
}
/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
/// with condition CC on the current target. This usually involves legalizing
/// or promoting the arguments. In the case where LHS and RHS must be expanded,
/// there may be no choice but to create a new SetCC node to represent the
/// legalized value of setcc lhs, rhs. In this case, the value is returned in
/// LHS, and the SDOperand returned in RHS has a nil SDNode value.
void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS,
SDOperand &RHS,
SDOperand &CC) {
SDOperand Tmp1, Tmp2, Result;
switch (getTypeAction(LHS.getValueType())) {
case Legal:
Tmp1 = LegalizeOp(LHS); // LHS
Tmp2 = LegalizeOp(RHS); // RHS
break;
case Promote:
Tmp1 = PromoteOp(LHS); // LHS
Tmp2 = PromoteOp(RHS); // RHS
// If this is an FP compare, the operands have already been extended.
if (MVT::isInteger(LHS.getValueType())) {
MVT::ValueType VT = LHS.getValueType();
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
// Otherwise, we have to insert explicit sign or zero extends. Note
// that we could insert sign extends for ALL conditions, but zero extend
// is cheaper on many machines (an AND instead of two shifts), so prefer
// it.
switch (cast<CondCodeSDNode>(CC)->get()) {
default: assert(0 && "Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
// ALL of these operations will work if we either sign or zero extend
// the operands (including the unsigned comparisons!). Zero extend is
// usually a simpler/cheaper operation, so prefer it.
Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT);
break;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
DAG.getValueType(VT));
Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2,
DAG.getValueType(VT));
break;
}
}
break;
case Expand: {
MVT::ValueType VT = LHS.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
// Expand into one or more soft-fp libcall(s).
RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL;
switch (cast<CondCodeSDNode>(CC)->get()) {
case ISD::SETEQ:
case ISD::SETOEQ:
LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
break;
case ISD::SETNE:
case ISD::SETUNE:
LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64;
break;
case ISD::SETGE:
case ISD::SETOGE:
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
break;
case ISD::SETLT:
case ISD::SETOLT:
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
break;
case ISD::SETLE:
case ISD::SETOLE:
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
break;
case ISD::SETGT:
case ISD::SETOGT:
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
break;
case ISD::SETUO:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
break;
case ISD::SETO:
LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64;
break;
default:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
switch (cast<CondCodeSDNode>(CC)->get()) {
case ISD::SETONE:
// SETONE = SETOLT | SETOGT
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
// Fallthrough
case ISD::SETUGT:
LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
break;
case ISD::SETUGE:
LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
break;
case ISD::SETULT:
LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
break;
case ISD::SETULE:
LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
break;
case ISD::SETUEQ:
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
break;
default: assert(0 && "Unsupported FP setcc!");
}
}
SDOperand Dummy;
Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1),
DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val,
false /*sign irrelevant*/, Dummy);
Tmp2 = DAG.getConstant(0, MVT::i32);
CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1));
if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC);
LHS = ExpandLibCall(TLI.getLibcallName(LC2),
DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val,
false /*sign irrelevant*/, Dummy);
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2,
DAG.getCondCode(TLI.getCmpLibcallCC(LC2)));
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp2 = SDOperand();
}
LHS = Tmp1;
RHS = Tmp2;
return;
}
SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
ExpandOp(LHS, LHSLo, LHSHi);
ExpandOp(RHS, RHSLo, RHSHi);
switch (cast<CondCodeSDNode>(CC)->get()) {
case ISD::SETEQ:
case ISD::SETNE:
if (RHSLo == RHSHi)
if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
if (RHSCST->isAllOnesValue()) {
// Comparison to -1.
Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
Tmp2 = RHSLo;
break;
}
Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
break;
default:
// If this is a comparison of the sign bit, just look at the top part.
// X > -1, x < 0
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS))
if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT &&
CST->getValue() == 0) || // X < 0
(cast<CondCodeSDNode>(CC)->get() == ISD::SETGT &&
CST->isAllOnesValue())) { // X > -1
Tmp1 = LHSHi;
Tmp2 = RHSHi;
break;
}
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
switch (CCCode) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC,
false, DagCombineInfo);
if (!Tmp1.Val)
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC);
Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
CCCode, false, DagCombineInfo);
if (!Tmp2.Val)
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi, CC);
ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val);
ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val);
if ((Tmp1C && Tmp1C->getValue() == 0) ||
(Tmp2C && Tmp2C->getValue() == 0 &&
(CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
(Tmp2C && Tmp2C->getValue() == 1 &&
(CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
// low part is known false, returns high part.
// For LE / GE, if high part is known false, ignore the low part.
// For LT / GT, if high part is known true, ignore the low part.
Tmp1 = Tmp2;
Tmp2 = SDOperand();
} else {
Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
ISD::SETEQ, false, DagCombineInfo);
if (!Result.Val)
Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
Result, Tmp1, Tmp2));
Tmp1 = Result;
Tmp2 = SDOperand();
}
}
}
}
LHS = Tmp1;
RHS = Tmp2;
}
/// ExpandBIT_CONVERT - Expand a BIT_CONVERT node into a store/load combination.
/// The resultant code need not be legal. Note that SrcOp is the input operand
/// to the BIT_CONVERT, not the BIT_CONVERT node itself.
SDOperand SelectionDAGLegalize::ExpandBIT_CONVERT(MVT::ValueType DestVT,
SDOperand SrcOp) {
// Create the stack frame object.
SDOperand FIPtr = CreateStackTemporary(DestVT);
// Emit a store to the stack slot.
SDOperand Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0);
// Result is a load from the stack slot.
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}
SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
// Create a vector sized/aligned stack slot, store the value to element #0,
// then load the whole vector back out.
SDOperand StackPtr = CreateStackTemporary(Node->getValueType(0));
SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr,
NULL, 0);
return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, NULL, 0);
}
/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant packed vector type.
SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
// If the only non-undef value is the low element, turn this into a
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
unsigned NumElems = Node->getNumOperands();
bool isOnlyLowElement = true;
SDOperand SplatValue = Node->getOperand(0);
std::map<SDOperand, std::vector<unsigned> > Values;
Values[SplatValue].push_back(0);
bool isConstant = true;
if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
SplatValue.getOpcode() != ISD::UNDEF)
isConstant = false;
for (unsigned i = 1; i < NumElems; ++i) {
SDOperand V = Node->getOperand(i);
Values[V].push_back(i);
if (V.getOpcode() != ISD::UNDEF)
isOnlyLowElement = false;
if (SplatValue != V)
SplatValue = SDOperand(0,0);
// If this isn't a constant element or an undef, we can't use a constant
// pool load.
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
V.getOpcode() != ISD::UNDEF)
isConstant = false;
}
if (isOnlyLowElement) {
// If the low element is an undef too, then this whole things is an undef.
if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
return DAG.getNode(ISD::UNDEF, Node->getValueType(0));
// Otherwise, turn this into a scalar_to_vector node.
return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0),
Node->getOperand(0));
}
// If all elements are constants, create a load from the constant pool.
if (isConstant) {
MVT::ValueType VT = Node->getValueType(0);
const Type *OpNTy =
MVT::getTypeForValueType(Node->getOperand(0).getValueType());
std::vector<Constant*> CV;
for (unsigned i = 0, e = NumElems; i != e; ++i) {
if (ConstantFPSDNode *V =
dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
CV.push_back(ConstantFP::get(OpNTy, V->getValue()));
} else if (ConstantSDNode *V =
dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
CV.push_back(ConstantInt::get(OpNTy, V->getValue()));
} else {
assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
CV.push_back(UndefValue::get(OpNTy));
}
}
Constant *CP = ConstantVector::get(CV);
SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0);
}
if (SplatValue.Val) { // Splat of one value?
// Build the shuffle constant vector: <0, 0, 0, 0>
MVT::ValueType MaskVT =
MVT::getIntVectorWithNumElements(NumElems);
SDOperand Zero = DAG.getConstant(0, MVT::getVectorBaseType(MaskVT));
std::vector<SDOperand> ZeroVec(NumElems, Zero);
SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&ZeroVec[0], ZeroVec.size());
// If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
if (isShuffleLegal(Node->getValueType(0), SplatMask)) {
// Get the splatted value into the low element of a vector register.
SDOperand LowValVec =
DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue);
// Return shuffle(LowValVec, undef, <0,0,0,0>)
return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec,
DAG.getNode(ISD::UNDEF, Node->getValueType(0)),
SplatMask);
}
}
// If there are only two unique elements, we may be able to turn this into a
// vector shuffle.
if (Values.size() == 2) {
// Build the shuffle constant vector: e.g. <0, 4, 0, 4>
MVT::ValueType MaskVT =
MVT::getIntVectorWithNumElements(NumElems);
std::vector<SDOperand> MaskVec(NumElems);
unsigned i = 0;
for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(),
E = Values.end(); I != E; ++I) {
for (std::vector<unsigned>::iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
MaskVec[*II] = DAG.getConstant(i, MVT::getVectorBaseType(MaskVT));
i += NumElems;
}
SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
// If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) &&
isShuffleLegal(Node->getValueType(0), ShuffleMask)) {
SmallVector<SDOperand, 8> Ops;
for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(),
E = Values.end(); I != E; ++I) {
SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0),
I->first);
Ops.push_back(Op);
}
Ops.push_back(ShuffleMask);
// Return shuffle(LoValVec, HiValVec, <0,1,0,1>)
return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0),
&Ops[0], Ops.size());
}
}
// Otherwise, we can't handle this case efficiently. Allocate a sufficiently
// aligned object on the stack, store each element into it, then load
// the result as a vector.
MVT::ValueType VT = Node->getValueType(0);
// Create the stack frame object.
SDOperand FIPtr = CreateStackTemporary(VT);
// Emit a store of each element to the stack slot.
SmallVector<SDOperand, 8> Stores;
unsigned TypeByteSize =
MVT::getSizeInBits(Node->getOperand(0).getValueType())/8;
// Store (in the right endianness) the elements to memory.
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
// Ignore undef elements.
if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
unsigned Offset = TypeByteSize*i;
SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType());
Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx);
Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx,
NULL, 0));
}
SDOperand StoreChain;
if (!Stores.empty()) // Not all undef elements?
StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&Stores[0], Stores.size());
else
StoreChain = DAG.getEntryNode();
// Result is a load from the stack slot.
return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0);
}
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type.
SDOperand SelectionDAGLegalize::CreateStackTemporary(MVT::ValueType VT) {
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
unsigned ByteSize = MVT::getSizeInBits(VT)/8;
const Type *Ty = MVT::getTypeForValueType(VT);
unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
return DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
}
void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp,
SDOperand Op, SDOperand Amt,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH;
ExpandOp(Op, LHSL, LHSH);
SDOperand Ops[] = { LHSL, LHSH, Amt };
MVT::ValueType VT = LHSL.getValueType();
Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
Hi = Lo.getValue(1);
}
/// ExpandShift - Try to find a clever way to expand this shift operation out to
/// smaller elements. If we can't find a way that is more efficient than a
/// libcall on this target, return false. Otherwise, return true with the
/// low-parts expanded into Lo and Hi.
bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt,
SDOperand &Lo, SDOperand &Hi) {
assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) &&
"This is not a shift!");
MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType());
SDOperand ShAmt = LegalizeOp(Amt);
MVT::ValueType ShTy = ShAmt.getValueType();
unsigned VTBits = MVT::getSizeInBits(Op.getValueType());
unsigned NVTBits = MVT::getSizeInBits(NVT);
// Handle the case when Amt is an immediate. Other cases are currently broken
// and are disabled.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) {
unsigned Cst = CN->getValue();
// Expand the incoming operand to be shifted, so that we have its parts
SDOperand InL, InH;
ExpandOp(Op, InL, InH);
switch(Opc) {
case ISD::SHL:
if (Cst > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Cst > NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy));
} else if (Cst == NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy));
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)),
DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy)));
}
return true;
case ISD::SRL:
if (Cst > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Cst > NVTBits) {
Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy));
Hi = DAG.getConstant(0, NVT);
} else if (Cst == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, NVT);
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy));
}
return true;
case ISD::SRA:
if (Cst > VTBits) {
Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Cst > NVTBits) {
Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(Cst-NVTBits, ShTy));
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Cst == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy));
}
return true;
}
}
// Okay, the shift amount isn't constant. However, if we can tell that it is
// >= 32 or < 32, we can still simplify it, without knowing the actual value.
uint64_t Mask = NVTBits, KnownZero, KnownOne;
TLI.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne);
// If we know that the high bit of the shift amount is one, then we can do
// this as a couple of simple shifts.
if (KnownOne & Mask) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt,
DAG.getConstant(NVTBits-1, Amt.getValueType()));
// Expand the incoming operand to be shifted, so that we have its parts
SDOperand InL, InH;
ExpandOp(Op, InL, InH);
switch(Opc) {
case ISD::SHL:
Lo = DAG.getConstant(0, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits-1, Amt.getValueType()));
Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that the high bit of the shift amount is zero, then we can do
// this as a couple of simple shifts.
if (KnownZero & Mask) {
// Compute 32-amt.
SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(),
DAG.getConstant(NVTBits, Amt.getValueType()),
Amt);
// Expand the incoming operand to be shifted, so that we have its parts
SDOperand InL, InH;
ExpandOp(Op, InL, InH);
switch(Opc) {
case ISD::SHL:
Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH, Amt),
DAG.getNode(ISD::SRL, NVT, InL, Amt2));
return true;
case ISD::SRL:
Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt);
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, Amt),
DAG.getNode(ISD::SHL, NVT, InH, Amt2));
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt);
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, Amt),
DAG.getNode(ISD::SHL, NVT, InH, Amt2));
return true;
}
}
return false;
}
// ExpandLibCall - Expand a node into a call to a libcall. If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument. If it does fit into a single register, return the result
// and leave the Hi part unset.
SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node,
bool isSigned, SDOperand &Hi) {
assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
// The input chain to this libcall is the entry node of the function.
// Legalizing the call will automatically add the previous call to the
// dependence.
SDOperand InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
MVT::ValueType ArgVT = Node->getOperand(i).getValueType();
const Type *ArgTy = MVT::getTypeForValueType(ArgVT);
Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Args.push_back(Entry);
}
SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy());
// Splice the libcall in wherever FindInputOutputChains tells us to.
const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0));
std::pair<SDOperand,SDOperand> CallInfo =
TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false,
Callee, Args, DAG);
// Legalize the call sequence, starting with the chain. This will advance
// the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
// was added by LowerCallTo (guaranteeing proper serialization of calls).
LegalizeOp(CallInfo.second);
SDOperand Result;
switch (getTypeAction(CallInfo.first.getValueType())) {
default: assert(0 && "Unknown thing");
case Legal:
Result = CallInfo.first;
break;
case Expand:
ExpandOp(CallInfo.first, Result, Hi);
break;
}
return Result;
}
/// ExpandIntToFP - Expand a [US]INT_TO_FP operation.
///
SDOperand SelectionDAGLegalize::
ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) {
assert(getTypeAction(Source.getValueType()) == Expand &&
"This is not an expansion!");
assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
if (!isSigned) {
assert(Source.getValueType() == MVT::i64 &&
"This only works for 64-bit -> FP");
// The 64-bit value loaded will be incorrectly if the 'sign bit' of the
// incoming integer is set. To handle this, we dynamically test to see if
// it is set, and, if so, add a fudge factor.
SDOperand Lo, Hi;
ExpandOp(Source, Lo, Hi);
// If this is unsigned, and not supported, first perform the conversion to
// signed, then adjust the result if the sign bit is set.
SDOperand SignedConv = ExpandIntToFP(true, DestTy,
DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi));
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi,
DAG.getConstant(0, Hi.getValueType()),
ISD::SETLT);
SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
uint64_t FF = 0x5f800000ULL;
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestTy == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0);
else {
assert(DestTy == MVT::f64 && "Unexpected conversion");
// FIXME: Avoid the extend by construction the right constantpool?
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(),
CPIdx, NULL, 0, MVT::f32);
}
MVT::ValueType SCVT = SignedConv.getValueType();
if (SCVT != DestTy) {
// Destination type needs to be expanded as well. The FADD now we are
// constructing will be expanded into a libcall.
if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) {
assert(SCVT == MVT::i32 && DestTy == MVT::f64);
SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64,
SignedConv, SignedConv.getValue(1));
}
SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv);
}
return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
}
// Check to see if the target has a custom way to lower this. If so, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Legal:
case TargetLowering::Expand:
break; // This case is handled below.
case TargetLowering::Custom: {
SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
Source), DAG);
if (NV.Val)
return LegalizeOp(NV);
break; // The target decided this was legal after all
}
}
// Expand the source, then glue it back together for the call. We must expand
// the source in case it is shared (this pass of legalize must traverse it).
SDOperand SrcLo, SrcHi;
ExpandOp(Source, SrcLo, SrcHi);
Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi);
RTLIB::Libcall LC;
if (DestTy == MVT::f32)
LC = RTLIB::SINTTOFP_I64_F32;
else {
assert(DestTy == MVT::f64 && "Unknown fp value type!");
LC = RTLIB::SINTTOFP_I64_F64;
}
assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!");
Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source);
SDOperand UnusedHiPart;
return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned,
UnusedHiPart);
}
/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it. At this point, we know that the result and operand types are
/// legal for the target.
SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDOperand Op0,
MVT::ValueType DestVT) {
if (Op0.getValueType() == MVT::i32) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
// get the stack frame index of a 8 byte buffer, pessimistically aligned
MachineFunction &MF = DAG.getMachineFunction();
const Type *F64Type = MVT::getTypeForValueType(MVT::f64);
unsigned StackAlign =
(unsigned)TLI.getTargetData()->getPrefTypeAlignment(F64Type);
int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign);
// get address of 8 byte buffer
SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
// word offset constant for Hi/Lo address computation
SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
// set up Hi and Lo (into buffer) address based on endian
SDOperand Hi = StackSlot;
SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
// if signed map to unsigned space
SDOperand Op0Mapped;
if (isSigned) {
// constant used to invert sign bit (signed to unsigned mapping)
SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit);
} else {
Op0Mapped = Op0;
}
// store the lo of the constructed double - based on integer input
SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
Op0Mapped, Lo, NULL, 0);
// initial hi portion of constructed double
SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
// store the hi of the constructed double - biased exponent
SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
// load the constructed double
SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
// FP constant to bias correct the final result
SDOperand Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL)
: BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// subtract the bias
SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
// final result
SDOperand Result;
// handle final rounding
if (DestVT == MVT::f64) {
// do nothing
Result = Sub;
} else {
// if f32 then cast to f32
Result = DAG.getNode(ISD::FP_ROUND, MVT::f32, Sub);
}
return Result;
}
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0,
DAG.getConstant(0, Op0.getValueType()),
ISD::SETLT);
SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
switch (Op0.getValueType()) {
default: assert(0 && "Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0);
else {
assert(DestVT == MVT::f64 && "Unexpected conversion");
FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, MVT::f64,
DAG.getEntryNode(), CPIdx,
NULL, 0, MVT::f32));
}
return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg);
}
/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp,
MVT::ValueType DestVT,
bool isSigned) {
// First step, figure out the appropriate *INT_TO_FP operation to use.
MVT::ValueType NewInTy = LegalOp.getValueType();
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
NewInTy = (MVT::ValueType)(NewInTy+1);
assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!");
// If the target supports SINT_TO_FP of this type, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewInTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::SINT_TO_FP;
break;
}
if (OpToUse) break;
if (isSigned) continue;
// If the target supports UINT_TO_FP of this type, use it.
switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewInTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::UINT_TO_FP;
break;
}
if (OpToUse) break;
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use. Zero extend our input to the
// desired type then run the operation on it.
return DAG.getNode(OpToUse, DestVT,
DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
NewInTy, LegalOp));
}
/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp,
MVT::ValueType DestVT,
bool isSigned) {
// First step, figure out the appropriate FP_TO*INT operation to use.
MVT::ValueType NewOutTy = DestVT;
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
NewOutTy = (MVT::ValueType)(NewOutTy+1);
assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!");
// If the target supports FP_TO_SINT returning this type, use it.
switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewOutTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::FP_TO_SINT;
break;
}
if (OpToUse) break;
// If the target supports FP_TO_UINT of this type, use it.
switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewOutTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::FP_TO_UINT;
break;
}
if (OpToUse) break;
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use. Truncate the result of the
// extended FP_TO_*INT operation to the desired size.
return DAG.getNode(ISD::TRUNCATE, DestVT,
DAG.getNode(OpToUse, NewOutTy, LegalOp));
}
/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
///
SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) {
MVT::ValueType VT = Op.getValueType();
MVT::ValueType SHVT = TLI.getShiftAmountTy();
SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
switch (VT) {
default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
case MVT::i16:
Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2);
case MVT::i32:
Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT));
Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT));
Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT));
Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3);
Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1);
return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2);
case MVT::i64:
Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT));
Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT));
Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT));
Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT));
Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT));
Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7);
Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5);
Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3);
Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1);
Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6);
Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2);
return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4);
}
}
/// ExpandBitCount - Expand the specified bitcount instruction into operations.
///
SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) {
switch (Opc) {
default: assert(0 && "Cannot expand this yet!");
case ISD::CTPOP: {
static const uint64_t mask[6] = {
0x5555555555555555ULL, 0x3333333333333333ULL,
0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
};
MVT::ValueType VT = Op.getValueType();
MVT::ValueType ShVT = TLI.getShiftAmountTy();
unsigned len = MVT::getSizeInBits(VT);
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
//x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
SDOperand Tmp2 = DAG.getConstant(mask[i], VT);
SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT);
Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2),
DAG.getNode(ISD::AND, VT,
DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2));
}
return Op;
}
case ISD::CTLZ: {
// for now, we do this:
// x = x | (x >> 1);
// x = x | (x >> 2);
// ...
// x = x | (x >>16);
// x = x | (x >>32); // for 64-bit input
// return popcount(~x);
//
// but see also: http://www.hackersdelight.org/HDcode/nlz.cc
MVT::ValueType VT = Op.getValueType();
MVT::ValueType ShVT = TLI.getShiftAmountTy();
unsigned len = MVT::getSizeInBits(VT);
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT);
Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3));
}
Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT));
return DAG.getNode(ISD::CTPOP, VT, Op);
}
case ISD::CTTZ: {
// for now, we use: { return popcount(~x & (x - 1)); }
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
// see also http://www.hackersdelight.org/HDcode/ntz.cc
MVT::ValueType VT = Op.getValueType();
SDOperand Tmp2 = DAG.getConstant(~0ULL, VT);
SDOperand Tmp3 = DAG.getNode(ISD::AND, VT,
DAG.getNode(ISD::XOR, VT, Op, Tmp2),
DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT)));
// If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
if (!TLI.isOperationLegal(ISD::CTPOP, VT) &&
TLI.isOperationLegal(ISD::CTLZ, VT))
return DAG.getNode(ISD::SUB, VT,
DAG.getConstant(MVT::getSizeInBits(VT), VT),
DAG.getNode(ISD::CTLZ, VT, Tmp3));
return DAG.getNode(ISD::CTPOP, VT, Tmp3);
}
}
}
/// ExpandOp - Expand the specified SDOperand into its two component pieces
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
/// LegalizeNodes map is filled in for any results that are not expanded, the
/// ExpandedNodes map is filled in for any results that are expanded, and the
/// Lo/Hi values are returned.
void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
MVT::ValueType VT = Op.getValueType();
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
SDNode *Node = Op.Val;
assert(getTypeAction(VT) == Expand && "Not an expanded type!");
assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) ||
VT == MVT::Vector) &&
"Cannot expand to FP value or to larger int value!");
// See if we already expanded it.
DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I
= ExpandedNodes.find(Op);
if (I != ExpandedNodes.end()) {
Lo = I->second.first;
Hi = I->second.second;
return;
}
switch (Node->getOpcode()) {
case ISD::CopyFromReg:
assert(0 && "CopyFromReg must be legal!");
default:
#ifndef NDEBUG
cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator!");
abort();
case ISD::UNDEF:
NVT = TLI.getTypeToExpandTo(VT);
Lo = DAG.getNode(ISD::UNDEF, NVT);
Hi = DAG.getNode(ISD::UNDEF, NVT);
break;
case ISD::Constant: {
uint64_t Cst = cast<ConstantSDNode>(Node)->getValue();
Lo = DAG.getConstant(Cst, NVT);
Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
break;
}
case ISD::ConstantFP: {
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
Lo = ExpandConstantFP(CFP, false, DAG, TLI);
if (getTypeAction(Lo.getValueType()) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::BUILD_PAIR:
// Return the operands.
Lo = Node->getOperand(0);
Hi = Node->getOperand(1);
break;
case ISD::SIGN_EXTEND_INREG:
ExpandOp(Node->getOperand(0), Lo, Hi);
// sext_inreg the low part if needed.
Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1));
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(MVT::getSizeInBits(NVT)-1,
TLI.getShiftAmountTy()));
break;
case ISD::BSWAP: {
ExpandOp(Node->getOperand(0), Lo, Hi);
SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi);
Hi = DAG.getNode(ISD::BSWAP, NVT, Lo);
Lo = TempLo;
break;
}
case ISD::CTPOP:
ExpandOp(Node->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L)
DAG.getNode(ISD::CTPOP, NVT, Lo),
DAG.getNode(ISD::CTPOP, NVT, Hi));
Hi = DAG.getConstant(0, NVT);
break;
case ISD::CTLZ: {
// ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32)
ExpandOp(Node->getOperand(0), Lo, Hi);
SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT);
SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi);
SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC,
ISD::SETNE);
SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo);
LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC);
Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart);
Hi = DAG.getConstant(0, NVT);
break;
}
case ISD::CTTZ: {
// cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32)
ExpandOp(Node->getOperand(0), Lo, Hi);
SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT);
SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo);
SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC,
ISD::SETNE);
SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi);
HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC);
Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart);
Hi = DAG.getConstant(0, NVT);
break;
}
case ISD::VAARG: {
SDOperand Ch = Node->getOperand(0); // Legalize the chain.
SDOperand Ptr = Node->getOperand(1); // Legalize the pointer.
Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2));
Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2));
// Remember that we legalized the chain.
Hi = LegalizeOp(Hi);
AddLegalizedOperand(Op.getValue(1), Hi.getValue(1));
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDOperand Ch = LD->getChain(); // Legalize the chain.
SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer.
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD) {
Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(),LD->getSrcValueOffset());
if (VT == MVT::f32 || VT == MVT::f64) {
// f32->i32 or f64->i64 one to one expansion.
// Remember that we legalized the chain.
AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1)));
// Recursively expand the new load.
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
// Increment the pointer to the other half.
unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
// FIXME: This creates a bogus srcvalue!
Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(),LD->getSrcValueOffset());
// Build a factor node to remember that this load is independent of the
// other one.
SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
} else {
MVT::ValueType EVT = LD->getLoadedVT();
if (VT == MVT::f64 && EVT == MVT::f32) {
// f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(),
LD->getSrcValueOffset());
// Remember that we legalized the chain.
AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1)));
ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi);
break;
}
if (EVT == NVT)
Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(),
LD->getSrcValueOffset());
else
Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(),
LD->getSrcValueOffset(), EVT);
// Remember that we legalized the chain.
AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1)));
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else if (ExtType == ISD::ZEXTLOAD) {
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
} else /* if (ExtType == ISD::EXTLOAD) */ {
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
}
}
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR: { // Simple logical operators -> two trivial pieces.
SDOperand LL, LH, RL, RH;
ExpandOp(Node->getOperand(0), LL, LH);
ExpandOp(Node->getOperand(1), RL, RH);
Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL);
Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH);
break;
}
case ISD::SELECT: {
SDOperand LL, LH, RL, RH;
ExpandOp(Node->getOperand(1), LL, LH);
ExpandOp(Node->getOperand(2), RL, RH);
if (getTypeAction(NVT) == Expand)
NVT = TLI.getTypeToExpandTo(NVT);
Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL);
if (VT != MVT::f32)
Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH);
break;
}
case ISD::SELECT_CC: {
SDOperand TL, TH, FL, FH;
ExpandOp(Node->getOperand(2), TL, TH);
ExpandOp(Node->getOperand(3), FL, FH);
if (getTypeAction(NVT) == Expand)
NVT = TLI.getTypeToExpandTo(NVT);
Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
Node->getOperand(1), TL, FL, Node->getOperand(4));
if (VT != MVT::f32)
Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
Node->getOperand(1), TH, FH, Node->getOperand(4));
break;
}
case ISD::ANY_EXTEND:
// The low part is any extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0));
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
break;
case ISD::SIGN_EXTEND: {
// The low part is just a sign extension of the input (which degenerates to
// a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0));
// The high part is obtained by SRA'ing all but one of the bits of the lo
// part.
unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
break;
}
case ISD::ZERO_EXTEND:
// The low part is just a zero extension of the input (which degenerates to
// a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0));
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
break;
case ISD::TRUNCATE: {
// The input value must be larger than this value. Expand *it*.
SDOperand NewLo;
ExpandOp(Node->getOperand(0), NewLo, Hi);
// The low part is now either the right size, or it is closer. If not the
// right size, make an illegal truncate so we recursively expand it.
if (NewLo.getValueType() != Node->getValueType(0))
NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo);
ExpandOp(NewLo, Lo, Hi);
break;
}
case ISD::BIT_CONVERT: {
SDOperand Tmp;
if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){
// If the target wants to, allow it to lower this itself.
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "cannot expand FP!");
case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break;
case Promote: Tmp = PromoteOp (Node->getOperand(0)); break;
}
Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG);
}
// f32 / f64 must be expanded to i32 / i64.
if (VT == MVT::f32 || VT == MVT::f64) {
Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
// If source operand will be expanded to the same type as VT, i.e.
// i64 <- f64, i32 <- f32, expand the source operand instead.
MVT::ValueType VT0 = Node->getOperand(0).getValueType();
if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) {
ExpandOp(Node->getOperand(0), Lo, Hi);
break;
}
// Turn this into a load/store pair by default.
if (Tmp.Val == 0)
Tmp = ExpandBIT_CONVERT(VT, Node->getOperand(0));
ExpandOp(Tmp, Lo, Hi);
break;
}
case ISD::READCYCLECOUNTER:
assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) ==
TargetLowering::Custom &&
"Must custom expand ReadCycleCounter");
Lo = TLI.LowerOperation(Op, DAG);
assert(Lo.Val && "Node must be custom expanded!");
Hi = Lo.getValue(1);
AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain.
LegalizeOp(Lo.getValue(2)));
break;
// These operators cannot be expanded directly, emit them as calls to
// library functions.
case ISD::FP_TO_SINT: {
if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) {
SDOperand Op;
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "cannot expand FP!");
case Legal: Op = LegalizeOp(Node->getOperand(0)); break;
case Promote: Op = PromoteOp (Node->getOperand(0)); break;
}
Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG);
// Now that the custom expander is done, expand the result, which is still
// VT.
if (Op.Val) {
ExpandOp(Op, Lo, Hi);
break;
}
}
RTLIB::Libcall LC;
if (Node->getOperand(0).getValueType() == MVT::f32)
LC = RTLIB::FPTOSINT_F32_I64;
else
LC = RTLIB::FPTOSINT_F64_I64;
Lo = ExpandLibCall(TLI.getLibcallName(LC), Node,
false/*sign irrelevant*/, Hi);
break;
}
case ISD::FP_TO_UINT: {
if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) {
SDOperand Op;
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "cannot expand FP!");
case Legal: Op = LegalizeOp(Node->getOperand(0)); break;
case Promote: Op = PromoteOp (Node->getOperand(0)); break;
}
Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG);
// Now that the custom expander is done, expand the result.
if (Op.Val) {
ExpandOp(Op, Lo, Hi);
break;
}
}
RTLIB::Libcall LC;
if (Node->getOperand(0).getValueType() == MVT::f32)
LC = RTLIB::FPTOUINT_F32_I64;
else
LC = RTLIB::FPTOUINT_F64_I64;
Lo = ExpandLibCall(TLI.getLibcallName(LC), Node,
false/*sign irrelevant*/, Hi);
break;
}
case ISD::SHL: {
// If the target wants custom lowering, do so.
SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1));
if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) {
SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt);
Op = TLI.LowerOperation(Op, DAG);
if (Op.Val) {
// Now that the custom expander is done, expand the result, which is
// still VT.
ExpandOp(Op, Lo, Hi);
break;
}
}
// If ADDC/ADDE are supported and if the shift amount is a constant 1, emit
// this X << 1 as X+X.
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) {
if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) &&
TLI.isOperationLegal(ISD::ADDE, NVT)) {
SDOperand LoOps[2], HiOps[3];
ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]);
SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag);
LoOps[1] = LoOps[0];
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[1] = HiOps[0];
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
break;
}
}
// If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi))
break;
// If this target supports SHL_PARTS, use it.
TargetLowering::LegalizeAction Action =
TLI.getOperationAction(ISD::SHL_PARTS, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
break;
}
// Otherwise, emit a libcall.
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node,
false/*left shift=unsigned*/, Hi);
break;
}
case ISD::SRA: {
// If the target wants custom lowering, do so.
SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1));
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) {
SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt);
Op = TLI.LowerOperation(Op, DAG);
if (Op.Val) {
// Now that the custom expander is done, expand the result, which is
// still VT.
ExpandOp(Op, Lo, Hi);
break;
}
}
// If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi))
break;
// If this target supports SRA_PARTS, use it.
TargetLowering::LegalizeAction Action =
TLI.getOperationAction(ISD::SRA_PARTS, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
break;
}
// Otherwise, emit a libcall.
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node,
true/*ashr is signed*/, Hi);
break;
}
case ISD::SRL: {
// If the target wants custom lowering, do so.
SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1));
if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) {
SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt);
Op = TLI.LowerOperation(Op, DAG);
if (Op.Val) {
// Now that the custom expander is done, expand the result, which is
// still VT.
ExpandOp(Op, Lo, Hi);
break;
}
}
// If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi))
break;
// If this target supports SRL_PARTS, use it.
TargetLowering::LegalizeAction Action =
TLI.getOperationAction(ISD::SRL_PARTS, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
break;
}
// Otherwise, emit a libcall.
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node,
false/*lshr is unsigned*/, Hi);
break;
}
case ISD::ADD:
case ISD::SUB: {
// If the target wants to custom expand this, let them.
if (TLI.getOperationAction(Node->getOpcode(), VT) ==
TargetLowering::Custom) {
Op = TLI.LowerOperation(Op, DAG);
if (Op.Val) {
ExpandOp(Op, Lo, Hi);
break;
}
}
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
ExpandOp(Node->getOperand(0), LHSL, LHSH);
ExpandOp(Node->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2], HiOps[3];
LoOps[0] = LHSL;
LoOps[1] = RHSL;
HiOps[0] = LHSH;
HiOps[1] = RHSH;
if (Node->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
break;
}
case ISD::ADDC:
case ISD::SUBC: {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
ExpandOp(Node->getOperand(0), LHSL, LHSH);
ExpandOp(Node->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (Node->getOpcode() == ISD::ADDC) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
// Remember that we legalized the flag.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
break;
}
case ISD::ADDE:
case ISD::SUBE: {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
ExpandOp(Node->getOperand(0), LHSL, LHSH);
ExpandOp(Node->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) };
SDOperand HiOps[3] = { LHSH, RHSH };
Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3);
// Remember that we legalized the flag.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
break;
}
case ISD::MUL: {
// If the target wants to custom expand this, let them.
if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) {
SDOperand New = TLI.LowerOperation(Op, DAG);
if (New.Val) {
ExpandOp(New, Lo, Hi);
break;
}
}
bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
if (HasMULHS || HasMULHU) {
SDOperand LL, LH, RL, RH;
ExpandOp(Node->getOperand(0), LL, LH);
ExpandOp(Node->getOperand(1), RL, RH);
unsigned SH = MVT::getSizeInBits(RH.getValueType())-1;
// FIXME: Move this to the dag combiner.
// MULHS implicitly sign extends its inputs. Check to see if ExpandOp
// extended the sign bit of the low half through the upper half, and if so
// emit a MULHS instead of the alternate sequence that is valid for any
// i64 x i64 multiply.
if (HasMULHS &&
// is RH an extension of the sign bit of RL?
RH.getOpcode() == ISD::SRA && RH.getOperand(0) == RL &&
RH.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(RH.getOperand(1))->getValue() == SH &&
// is LH an extension of the sign bit of LL?
LH.getOpcode() == ISD::SRA && LH.getOperand(0) == LL &&
LH.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(LH.getOperand(1))->getValue() == SH) {
// Low part:
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
// High part:
Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
break;
} else if (HasMULHU) {
// Low part:
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
// High part:
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
break;
}
}
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node,
false/*sign irrelevant*/, Hi);
break;
}
case ISD::SDIV:
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi);
break;
case ISD::UDIV:
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi);
break;
case ISD::SREM:
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi);
break;
case ISD::UREM:
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi);
break;
case ISD::FADD:
Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32)
? RTLIB::ADD_F32 : RTLIB::ADD_F64),
Node, false, Hi);
break;
case ISD::FSUB:
Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32)
? RTLIB::SUB_F32 : RTLIB::SUB_F64),
Node, false, Hi);
break;
case ISD::FMUL:
Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32)
? RTLIB::MUL_F32 : RTLIB::MUL_F64),
Node, false, Hi);
break;
case ISD::FDIV:
Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32)
? RTLIB::DIV_F32 : RTLIB::DIV_F64),
Node, false, Hi);
break;
case ISD::FP_EXTEND:
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi);
break;
case ISD::FP_ROUND:
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi);
break;
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS: {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch(Node->getOpcode()) {
case ISD::FSQRT:
LC = (VT == MVT::f32) ? RTLIB::SQRT_F32 : RTLIB::SQRT_F64;
break;
case ISD::FSIN:
LC = (VT == MVT::f32) ? RTLIB::SIN_F32 : RTLIB::SIN_F64;
break;
case ISD::FCOS:
LC = (VT == MVT::f32) ? RTLIB::COS_F32 : RTLIB::COS_F64;
break;
default: assert(0 && "Unreachable!");
}
Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi);
break;
}
case ISD::FABS: {
SDOperand Mask = (VT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
: DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask);
Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask);
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::FNEG: {
SDOperand Mask = (VT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT)
: DAG.getConstantFP(BitsToFloat(1U << 31), VT);
Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask);
Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask);
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::FCOPYSIGN: {
Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: {
bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
MVT::ValueType SrcVT = Node->getOperand(0).getValueType();
RTLIB::Libcall LC;
if (Node->getOperand(0).getValueType() == MVT::i64) {
if (VT == MVT::f32)
LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32;
else
LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64;
} else {
if (VT == MVT::f32)
LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32;
else
LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64;
}
// Promote the operand if needed.
if (getTypeAction(SrcVT) == Promote) {
SDOperand Tmp = PromoteOp(Node->getOperand(0));
Tmp = isSigned
? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp,
DAG.getValueType(SrcVT))
: DAG.getZeroExtendInReg(Tmp, SrcVT);
Node = DAG.UpdateNodeOperands(Op, Tmp).Val;
}
const char *LibCall = TLI.getLibcallName(LC);
if (LibCall)
Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi);
else {
Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT,
Node->getOperand(0));
if (getTypeAction(Lo.getValueType()) == Expand)
ExpandOp(Lo, Lo, Hi);
}
break;
}
}
// Make sure the resultant values have been legalized themselves, unless this
// is a type that requires multi-step expansion.
if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) {
Lo = LegalizeOp(Lo);
if (Hi.Val)
// Don't legalize the high part if it is expanded to a single node.
Hi = LegalizeOp(Hi);
}
// Remember in a map if the values will be reused later.
bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi)));
assert(isNew && "Value already expanded?!?");
}
/// SplitVectorOp - Given an operand of MVT::Vector type, break it down into
/// two smaller values of MVT::Vector type.
void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
assert(Op.getValueType() == MVT::Vector && "Cannot split non-vector type!");
SDNode *Node = Op.Val;
unsigned NumElements = cast<ConstantSDNode>(*(Node->op_end()-2))->getValue();
assert(NumElements > 1 && "Cannot split a single element vector!");
unsigned NewNumElts = NumElements/2;
SDOperand NewNumEltsNode = DAG.getConstant(NewNumElts, MVT::i32);
SDOperand TypeNode = *(Node->op_end()-1);
// See if we already split it.
std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I
= SplitNodes.find(Op);
if (I != SplitNodes.end()) {
Lo = I->second.first;
Hi = I->second.second;
return;
}
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump(&DAG);
#endif
assert(0 && "Unhandled operation in SplitVectorOp!");
case ISD::VBUILD_VECTOR: {
SmallVector<SDOperand, 8> LoOps(Node->op_begin(),
Node->op_begin()+NewNumElts);
LoOps.push_back(NewNumEltsNode);
LoOps.push_back(TypeNode);
Lo = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &LoOps[0], LoOps.size());
SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts,
Node->op_end()-2);
HiOps.push_back(NewNumEltsNode);
HiOps.push_back(TypeNode);
Hi = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &HiOps[0], HiOps.size());
break;
}
case ISD::VADD:
case ISD::VSUB:
case ISD::VMUL:
case ISD::VSDIV:
case ISD::VUDIV:
case ISD::VAND:
case ISD::VOR:
case ISD::VXOR: {
SDOperand LL, LH, RL, RH;
SplitVectorOp(Node->getOperand(0), LL, LH);
SplitVectorOp(Node->getOperand(1), RL, RH);
Lo = DAG.getNode(Node->getOpcode(), MVT::Vector, LL, RL,
NewNumEltsNode, TypeNode);
Hi = DAG.getNode(Node->getOpcode(), MVT::Vector, LH, RH,
NewNumEltsNode, TypeNode);
break;
}
case ISD::VLOAD: {
SDOperand Ch = Node->getOperand(0); // Legalize the chain.
SDOperand Ptr = Node->getOperand(1); // Legalize the pointer.
MVT::ValueType EVT = cast<VTSDNode>(TypeNode)->getVT();
Lo = DAG.getVecLoad(NewNumElts, EVT, Ch, Ptr, Node->getOperand(2));
unsigned IncrementSize = NewNumElts * MVT::getSizeInBits(EVT)/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
// FIXME: This creates a bogus srcvalue!
Hi = DAG.getVecLoad(NewNumElts, EVT, Ch, Ptr, Node->getOperand(2));
// Build a factor node to remember that this load is independent of the
// other one.
SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
break;
}
case ISD::VBIT_CONVERT: {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
if (Op.getOperand(0).getValueType() != MVT::Vector) {
// Lower to a store/load. FIXME: this could be improved probably.
SDOperand Ptr = CreateStackTemporary(Op.getOperand(0).getValueType());
SDOperand St = DAG.getStore(DAG.getEntryNode(),
Op.getOperand(0), Ptr, NULL, 0);
MVT::ValueType EVT = cast<VTSDNode>(TypeNode)->getVT();
St = DAG.getVecLoad(NumElements, EVT, St, Ptr, DAG.getSrcValue(0));
SplitVectorOp(St, Lo, Hi);
} else {
// If the input is a vector type, we have to either scalarize it, pack it
// or convert it based on whether the input vector type is legal.
SDNode *InVal = Node->getOperand(0).Val;
unsigned NumElems =
cast<ConstantSDNode>(*(InVal->op_end()-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(*(InVal->op_end()-1))->getVT();
// If the input is from a single element vector, scalarize the vector,
// then treat like a scalar.
if (NumElems == 1) {
SDOperand Scalar = PackVectorOp(Op.getOperand(0), EVT);
Scalar = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Scalar,
Op.getOperand(1), Op.getOperand(2));
SplitVectorOp(Scalar, Lo, Hi);
} else {
// Split the input vector.
SplitVectorOp(Op.getOperand(0), Lo, Hi);
// Convert each of the pieces now.
Lo = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Lo,
NewNumEltsNode, TypeNode);
Hi = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Hi,
NewNumEltsNode, TypeNode);
}
break;
}
}
}
// Remember in a map if the values will be reused later.
bool isNew =
SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second;
assert(isNew && "Value already expanded?!?");
}
/// PackVectorOp - Given an operand of MVT::Vector type, convert it into the
/// equivalent operation that returns a scalar (e.g. F32) or packed value
/// (e.g. MVT::V4F32). When this is called, we know that PackedVT is the right
/// type for the result.
SDOperand SelectionDAGLegalize::PackVectorOp(SDOperand Op,
MVT::ValueType NewVT) {
assert(Op.getValueType() == MVT::Vector && "Bad PackVectorOp invocation!");
SDNode *Node = Op.Val;
// See if we already packed it.
std::map<SDOperand, SDOperand>::iterator I = PackedNodes.find(Op);
if (I != PackedNodes.end()) return I->second;
SDOperand Result;
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Unknown vector operation in PackVectorOp!");
case ISD::VADD:
case ISD::VSUB:
case ISD::VMUL:
case ISD::VSDIV:
case ISD::VUDIV:
case ISD::VAND:
case ISD::VOR:
case ISD::VXOR:
Result = DAG.getNode(getScalarizedOpcode(Node->getOpcode(), NewVT),
NewVT,
PackVectorOp(Node->getOperand(0), NewVT),
PackVectorOp(Node->getOperand(1), NewVT));
break;
case ISD::VLOAD: {
SDOperand Ch = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
SDOperand Ptr = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2));
Result = DAG.getLoad(NewVT, Ch, Ptr, SV->getValue(), SV->getOffset());
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
}
case ISD::VBUILD_VECTOR:
if (Node->getOperand(0).getValueType() == NewVT) {
// Returning a scalar?
Result = Node->getOperand(0);
} else {
// Returning a BUILD_VECTOR?
// If all elements of the build_vector are undefs, return an undef.
bool AllUndef = true;
for (unsigned i = 0, e = Node->getNumOperands()-2; i != e; ++i)
if (Node->getOperand(i).getOpcode() != ISD::UNDEF) {
AllUndef = false;
break;
}
if (AllUndef) {
Result = DAG.getNode(ISD::UNDEF, NewVT);
} else {
Result = DAG.getNode(ISD::BUILD_VECTOR, NewVT, Node->op_begin(),
Node->getNumOperands()-2);
}
}
break;
case ISD::VINSERT_VECTOR_ELT:
if (!MVT::isVector(NewVT)) {
// Returning a scalar? Must be the inserted element.
Result = Node->getOperand(1);
} else {
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT,
PackVectorOp(Node->getOperand(0), NewVT),
Node->getOperand(1), Node->getOperand(2));
}
break;
case ISD::VVECTOR_SHUFFLE:
if (!MVT::isVector(NewVT)) {
// Returning a scalar? Figure out if it is the LHS or RHS and return it.
SDOperand EltNum = Node->getOperand(2).getOperand(0);
if (cast<ConstantSDNode>(EltNum)->getValue())
Result = PackVectorOp(Node->getOperand(1), NewVT);
else
Result = PackVectorOp(Node->getOperand(0), NewVT);
} else {
// Otherwise, return a VECTOR_SHUFFLE node. First convert the index
// vector from a VBUILD_VECTOR to a BUILD_VECTOR.
std::vector<SDOperand> BuildVecIdx(Node->getOperand(2).Val->op_begin(),
Node->getOperand(2).Val->op_end()-2);
MVT::ValueType BVT = MVT::getIntVectorWithNumElements(BuildVecIdx.size());
SDOperand BV = DAG.getNode(ISD::BUILD_VECTOR, BVT,
Node->getOperand(2).Val->op_begin(),
Node->getOperand(2).Val->getNumOperands()-2);
Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT,
PackVectorOp(Node->getOperand(0), NewVT),
PackVectorOp(Node->getOperand(1), NewVT), BV);
}
break;
case ISD::VBIT_CONVERT:
if (Op.getOperand(0).getValueType() != MVT::Vector)
Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0));
else {
// If the input is a vector type, we have to either scalarize it, pack it
// or convert it based on whether the input vector type is legal.
SDNode *InVal = Node->getOperand(0).Val;
unsigned NumElems =
cast<ConstantSDNode>(*(InVal->op_end()-2))->getValue();
MVT::ValueType EVT = cast<VTSDNode>(*(InVal->op_end()-1))->getVT();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
// Turn this into a bit convert of the packed input.
Result = DAG.getNode(ISD::BIT_CONVERT, NewVT,
PackVectorOp(Node->getOperand(0), TVT));
break;
} else if (NumElems == 1) {
// Turn this into a bit convert of the scalar input.
Result = DAG.getNode(ISD::BIT_CONVERT, NewVT,
PackVectorOp(Node->getOperand(0), EVT));
break;
} else {
// If the input vector type isn't legal, then go through memory.
SDOperand Ptr = CreateStackTemporary(NewVT);
// Get the alignment for the store.
const TargetData &TD = *TLI.getTargetData();
unsigned Align =
TD.getABITypeAlignment(MVT::getTypeForValueType(NewVT));
SDOperand St = DAG.getStore(DAG.getEntryNode(),
Node->getOperand(0), Ptr, NULL, 0, false,
Align);
Result = DAG.getLoad(NewVT, St, Ptr, 0, 0);
break;
}
}
break;
case ISD::VSELECT:
Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0),
PackVectorOp(Op.getOperand(1), NewVT),
PackVectorOp(Op.getOperand(2), NewVT));
break;
}
if (TLI.isTypeLegal(NewVT))
Result = LegalizeOp(Result);
bool isNew = PackedNodes.insert(std::make_pair(Op, Result)).second;
assert(isNew && "Value already packed?");
return Result;
}
// SelectionDAG::Legalize - This is the entry point for the file.
//
void SelectionDAG::Legalize() {
if (ViewLegalizeDAGs) viewGraph();
/// run - This is the main entry point to this class.
///
SelectionDAGLegalize(*this).LegalizeDAG();
}