mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-15 20:06:46 +00:00
2c5c111b6c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36318 91177308-0d34-0410-b5e6-96231b3b80d8
1664 lines
62 KiB
C++
1664 lines
62 KiB
C++
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the SDNode class and derived classes, which are used to
|
|
// represent the nodes and operations present in a SelectionDAG. These nodes
|
|
// and operations are machine code level operations, with some similarities to
|
|
// the GCC RTL representation.
|
|
//
|
|
// Clients should include the SelectionDAG.h file instead of this file directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
|
|
#include "llvm/Value.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/iterator"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <cassert>
|
|
|
|
namespace llvm {
|
|
|
|
class SelectionDAG;
|
|
class GlobalValue;
|
|
class MachineBasicBlock;
|
|
class MachineConstantPoolValue;
|
|
class SDNode;
|
|
template <typename T> struct simplify_type;
|
|
template <typename T> struct ilist_traits;
|
|
template<typename NodeTy, typename Traits> class iplist;
|
|
template<typename NodeTy> class ilist_iterator;
|
|
|
|
/// SDVTList - This represents a list of ValueType's that has been intern'd by
|
|
/// a SelectionDAG. Instances of this simple value class are returned by
|
|
/// SelectionDAG::getVTList(...).
|
|
///
|
|
struct SDVTList {
|
|
const MVT::ValueType *VTs;
|
|
unsigned short NumVTs;
|
|
};
|
|
|
|
/// ISD namespace - This namespace contains an enum which represents all of the
|
|
/// SelectionDAG node types and value types.
|
|
///
|
|
namespace ISD {
|
|
namespace ParamFlags {
|
|
enum Flags {
|
|
NoFlagSet = 0,
|
|
ZExt = 1<<0, ///< Parameter should be zero extended
|
|
ZExtOffs = 0,
|
|
SExt = 1<<1, ///< Parameter should be sign extended
|
|
SExtOffs = 1,
|
|
InReg = 1<<2, ///< Parameter should be passed in register
|
|
InRegOffs = 2,
|
|
StructReturn = 1<<3, ///< Hidden struct-return pointer
|
|
StructReturnOffs = 3,
|
|
OrigAlignment = 0x1F<<27,
|
|
OrigAlignmentOffs = 27
|
|
};
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::NodeType enum - This enum defines all of the operators valid in a
|
|
/// SelectionDAG.
|
|
///
|
|
enum NodeType {
|
|
// DELETED_NODE - This is an illegal flag value that is used to catch
|
|
// errors. This opcode is not a legal opcode for any node.
|
|
DELETED_NODE,
|
|
|
|
// EntryToken - This is the marker used to indicate the start of the region.
|
|
EntryToken,
|
|
|
|
// Token factor - This node takes multiple tokens as input and produces a
|
|
// single token result. This is used to represent the fact that the operand
|
|
// operators are independent of each other.
|
|
TokenFactor,
|
|
|
|
// AssertSext, AssertZext - These nodes record if a register contains a
|
|
// value that has already been zero or sign extended from a narrower type.
|
|
// These nodes take two operands. The first is the node that has already
|
|
// been extended, and the second is a value type node indicating the width
|
|
// of the extension
|
|
AssertSext, AssertZext,
|
|
|
|
// Various leaf nodes.
|
|
STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
|
|
Constant, ConstantFP,
|
|
GlobalAddress, GlobalTLSAddress, FrameIndex,
|
|
JumpTable, ConstantPool, ExternalSymbol,
|
|
|
|
// The address of the GOT
|
|
GLOBAL_OFFSET_TABLE,
|
|
|
|
// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
|
|
// llvm.returnaddress on the DAG. These nodes take one operand, the index
|
|
// of the frame or return address to return. An index of zero corresponds
|
|
// to the current function's frame or return address, an index of one to the
|
|
// parent's frame or return address, and so on.
|
|
FRAMEADDR, RETURNADDR,
|
|
|
|
// RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
|
|
// address of the exception block on entry to an landing pad block.
|
|
EXCEPTIONADDR,
|
|
|
|
// RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
|
|
// the selection index of the exception thrown.
|
|
EHSELECTION,
|
|
|
|
// TargetConstant* - Like Constant*, but the DAG does not do any folding or
|
|
// simplification of the constant.
|
|
TargetConstant,
|
|
TargetConstantFP,
|
|
|
|
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
|
|
// anything else with this node, and this is valid in the target-specific
|
|
// dag, turning into a GlobalAddress operand.
|
|
TargetGlobalAddress,
|
|
TargetGlobalTLSAddress,
|
|
TargetFrameIndex,
|
|
TargetJumpTable,
|
|
TargetConstantPool,
|
|
TargetExternalSymbol,
|
|
|
|
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with no side effects.
|
|
/// The first operand is the ID number of the intrinsic from the
|
|
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
|
|
/// node has returns the result of the intrinsic.
|
|
INTRINSIC_WO_CHAIN,
|
|
|
|
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// returns a result. The first operand is a chain pointer. The second is
|
|
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
|
|
/// operands to the intrinsic follow. The node has two results, the result
|
|
/// of the intrinsic and an output chain.
|
|
INTRINSIC_W_CHAIN,
|
|
|
|
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// does not return a result. The first operand is a chain pointer. The
|
|
/// second is the ID number of the intrinsic from the llvm::Intrinsic
|
|
/// namespace. The operands to the intrinsic follow.
|
|
INTRINSIC_VOID,
|
|
|
|
// CopyToReg - This node has three operands: a chain, a register number to
|
|
// set to this value, and a value.
|
|
CopyToReg,
|
|
|
|
// CopyFromReg - This node indicates that the input value is a virtual or
|
|
// physical register that is defined outside of the scope of this
|
|
// SelectionDAG. The register is available from the RegSDNode object.
|
|
CopyFromReg,
|
|
|
|
// UNDEF - An undefined node
|
|
UNDEF,
|
|
|
|
/// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
|
|
/// represents the formal arguments for a function. CC# is a Constant value
|
|
/// indicating the calling convention of the function, and ISVARARG is a
|
|
/// flag that indicates whether the function is varargs or not. This node
|
|
/// has one result value for each incoming argument, plus one for the output
|
|
/// chain. It must be custom legalized. See description of CALL node for
|
|
/// FLAG argument contents explanation.
|
|
///
|
|
FORMAL_ARGUMENTS,
|
|
|
|
/// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
|
|
/// ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
|
|
/// This node represents a fully general function call, before the legalizer
|
|
/// runs. This has one result value for each argument / flag pair, plus
|
|
/// a chain result. It must be custom legalized. Flag argument indicates
|
|
/// misc. argument attributes. Currently:
|
|
/// Bit 0 - signness
|
|
/// Bit 1 - 'inreg' attribute
|
|
/// Bit 2 - 'sret' attribute
|
|
/// Bits 31:27 - argument ABI alignment in the first argument piece and
|
|
/// alignment '1' in other argument pieces.
|
|
CALL,
|
|
|
|
// EXTRACT_ELEMENT - This is used to get the first or second (determined by
|
|
// a Constant, which is required to be operand #1), element of the aggregate
|
|
// value specified as operand #0. This is only for use before legalization,
|
|
// for values that will be broken into multiple registers.
|
|
EXTRACT_ELEMENT,
|
|
|
|
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
|
|
// two values of the same integer value type, this produces a value twice as
|
|
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
|
|
BUILD_PAIR,
|
|
|
|
// MERGE_VALUES - This node takes multiple discrete operands and returns
|
|
// them all as its individual results. This nodes has exactly the same
|
|
// number of inputs and outputs, and is only valid before legalization.
|
|
// This node is useful for some pieces of the code generator that want to
|
|
// think about a single node with multiple results, not multiple nodes.
|
|
MERGE_VALUES,
|
|
|
|
// Simple integer binary arithmetic operators.
|
|
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
|
|
|
|
// CARRY_FALSE - This node is used when folding other nodes,
|
|
// like ADDC/SUBC, which indicate the carry result is always false.
|
|
CARRY_FALSE,
|
|
|
|
// Carry-setting nodes for multiple precision addition and subtraction.
|
|
// These nodes take two operands of the same value type, and produce two
|
|
// results. The first result is the normal add or sub result, the second
|
|
// result is the carry flag result.
|
|
ADDC, SUBC,
|
|
|
|
// Carry-using nodes for multiple precision addition and subtraction. These
|
|
// nodes take three operands: The first two are the normal lhs and rhs to
|
|
// the add or sub, and the third is the input carry flag. These nodes
|
|
// produce two results; the normal result of the add or sub, and the output
|
|
// carry flag. These nodes both read and write a carry flag to allow them
|
|
// to them to be chained together for add and sub of arbitrarily large
|
|
// values.
|
|
ADDE, SUBE,
|
|
|
|
// Simple binary floating point operators.
|
|
FADD, FSUB, FMUL, FDIV, FREM,
|
|
|
|
// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
|
|
// DAG node does not require that X and Y have the same type, just that they
|
|
// are both floating point. X and the result must have the same type.
|
|
// FCOPYSIGN(f32, f64) is allowed.
|
|
FCOPYSIGN,
|
|
|
|
/// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,..., COUNT,TYPE) - Return a vector
|
|
/// with the specified, possibly variable, elements. The number of elements
|
|
/// is required to be a power of two.
|
|
VBUILD_VECTOR,
|
|
|
|
/// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
|
|
/// with the specified, possibly variable, elements. The number of elements
|
|
/// is required to be a power of two.
|
|
BUILD_VECTOR,
|
|
|
|
/// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX, COUNT,TYPE) - Given a vector
|
|
/// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
|
|
/// return an vector with the specified element of VECTOR replaced with VAL.
|
|
/// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
|
|
VINSERT_VECTOR_ELT,
|
|
|
|
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
|
|
/// type) with the element at IDX replaced with VAL.
|
|
INSERT_VECTOR_ELT,
|
|
|
|
/// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
|
|
/// (an MVT::Vector value) identified by the (potentially variable) element
|
|
/// number IDX.
|
|
VEXTRACT_VECTOR_ELT,
|
|
|
|
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
|
|
/// (a legal vector type vector) identified by the (potentially variable)
|
|
/// element number IDX.
|
|
EXTRACT_VECTOR_ELT,
|
|
|
|
/// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
|
|
/// of the same type as VEC1/VEC2. SHUFFLEVEC is a VBUILD_VECTOR of
|
|
/// constant int values that indicate which value each result element will
|
|
/// get. The elements of VEC1/VEC2 are enumerated in order. This is quite
|
|
/// similar to the Altivec 'vperm' instruction, except that the indices must
|
|
/// be constants and are in terms of the element size of VEC1/VEC2, not in
|
|
/// terms of bytes.
|
|
VVECTOR_SHUFFLE,
|
|
|
|
/// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
|
|
/// type as VEC1/VEC2. SHUFFLEVEC is a BUILD_VECTOR of constant int values
|
|
/// (regardless of whether its datatype is legal or not) that indicate
|
|
/// which value each result element will get. The elements of VEC1/VEC2 are
|
|
/// enumerated in order. This is quite similar to the Altivec 'vperm'
|
|
/// instruction, except that the indices must be constants and are in terms
|
|
/// of the element size of VEC1/VEC2, not in terms of bytes.
|
|
VECTOR_SHUFFLE,
|
|
|
|
/// X = VBIT_CONVERT(Y) and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
|
|
/// represents a conversion from or to an ISD::Vector type.
|
|
///
|
|
/// This is lowered to a BIT_CONVERT of the appropriate input/output types.
|
|
/// The input and output are required to have the same size and at least one
|
|
/// is required to be a vector (if neither is a vector, just use
|
|
/// BIT_CONVERT).
|
|
///
|
|
/// If the result is a vector, this takes three operands (like any other
|
|
/// vector producer) which indicate the size and type of the vector result.
|
|
/// Otherwise it takes one input.
|
|
VBIT_CONVERT,
|
|
|
|
/// BINOP(LHS, RHS, COUNT,TYPE)
|
|
/// Simple abstract vector operators. Unlike the integer and floating point
|
|
/// binary operators, these nodes also take two additional operands:
|
|
/// a constant element count, and a value type node indicating the type of
|
|
/// the elements. The order is count, type, op0, op1. All vector opcodes,
|
|
/// including VLOAD and VConstant must currently have count and type as
|
|
/// their last two operands.
|
|
VADD, VSUB, VMUL, VSDIV, VUDIV,
|
|
VAND, VOR, VXOR,
|
|
|
|
/// VSELECT(COND,LHS,RHS, COUNT,TYPE) - Select for MVT::Vector values.
|
|
/// COND is a boolean value. This node return LHS if COND is true, RHS if
|
|
/// COND is false.
|
|
VSELECT,
|
|
|
|
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
|
|
/// scalar value into the low element of the resultant vector type. The top
|
|
/// elements of the vector are undefined.
|
|
SCALAR_TO_VECTOR,
|
|
|
|
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
|
|
// an unsigned/signed value of type i[2*n], then return the top part.
|
|
MULHU, MULHS,
|
|
|
|
// Bitwise operators - logical and, logical or, logical xor, shift left,
|
|
// shift right algebraic (shift in sign bits), shift right logical (shift in
|
|
// zeroes), rotate left, rotate right, and byteswap.
|
|
AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
|
|
|
|
// Counting operators
|
|
CTTZ, CTLZ, CTPOP,
|
|
|
|
// Select(COND, TRUEVAL, FALSEVAL)
|
|
SELECT,
|
|
|
|
// Select with condition operator - This selects between a true value and
|
|
// a false value (ops #2 and #3) based on the boolean result of comparing
|
|
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
|
|
// condition code in op #4, a CondCodeSDNode.
|
|
SELECT_CC,
|
|
|
|
// SetCC operator - This evaluates to a boolean (i1) true value if the
|
|
// condition is true. The operands to this are the left and right operands
|
|
// to compare (ops #0, and #1) and the condition code to compare them with
|
|
// (op #2) as a CondCodeSDNode.
|
|
SETCC,
|
|
|
|
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
|
|
// integer shift operations, just like ADD/SUB_PARTS. The operation
|
|
// ordering is:
|
|
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
|
|
SHL_PARTS, SRA_PARTS, SRL_PARTS,
|
|
|
|
// Conversion operators. These are all single input single output
|
|
// operations. For all of these, the result type must be strictly
|
|
// wider or narrower (depending on the operation) than the source
|
|
// type.
|
|
|
|
// SIGN_EXTEND - Used for integer types, replicating the sign bit
|
|
// into new bits.
|
|
SIGN_EXTEND,
|
|
|
|
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
|
|
ZERO_EXTEND,
|
|
|
|
// ANY_EXTEND - Used for integer types. The high bits are undefined.
|
|
ANY_EXTEND,
|
|
|
|
// TRUNCATE - Completely drop the high bits.
|
|
TRUNCATE,
|
|
|
|
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
|
|
// depends on the first letter) to floating point.
|
|
SINT_TO_FP,
|
|
UINT_TO_FP,
|
|
|
|
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
|
|
// sign extend a small value in a large integer register (e.g. sign
|
|
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
|
|
// with the 7th bit). The size of the smaller type is indicated by the 1th
|
|
// operand, a ValueType node.
|
|
SIGN_EXTEND_INREG,
|
|
|
|
// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
|
|
// integer.
|
|
FP_TO_SINT,
|
|
FP_TO_UINT,
|
|
|
|
// FP_ROUND - Perform a rounding operation from the current
|
|
// precision down to the specified precision (currently always 64->32).
|
|
FP_ROUND,
|
|
|
|
// FP_ROUND_INREG - This operator takes a floating point register, and
|
|
// rounds it to a floating point value. It then promotes it and returns it
|
|
// in a register of the same size. This operation effectively just discards
|
|
// excess precision. The type to round down to is specified by the 1th
|
|
// operation, a VTSDNode (currently always 64->32->64).
|
|
FP_ROUND_INREG,
|
|
|
|
// FP_EXTEND - Extend a smaller FP type into a larger FP type.
|
|
FP_EXTEND,
|
|
|
|
// BIT_CONVERT - Theis operator converts between integer and FP values, as
|
|
// if one was stored to memory as integer and the other was loaded from the
|
|
// same address (or equivalently for vector format conversions, etc). The
|
|
// source and result are required to have the same bit size (e.g.
|
|
// f32 <-> i32). This can also be used for int-to-int or fp-to-fp
|
|
// conversions, but that is a noop, deleted by getNode().
|
|
BIT_CONVERT,
|
|
|
|
// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
|
|
// negation, absolute value, square root, sine and cosine, and powi
|
|
// operations.
|
|
FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
|
|
|
|
// LOAD and STORE have token chains as their first operand, then the same
|
|
// operands as an LLVM load/store instruction, then an offset node that
|
|
// is added / subtracted from the base pointer to form the address (for
|
|
// indexed memory ops).
|
|
LOAD, STORE,
|
|
|
|
// Abstract vector version of LOAD. VLOAD has a constant element count as
|
|
// the first operand, followed by a value type node indicating the type of
|
|
// the elements, a token chain, a pointer operand, and a SRCVALUE node.
|
|
VLOAD,
|
|
|
|
// TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
|
|
// value and stores it to memory in one operation. This can be used for
|
|
// either integer or floating point operands. The first four operands of
|
|
// this are the same as a standard store. The fifth is the ValueType to
|
|
// store it as (which will be smaller than the source value).
|
|
TRUNCSTORE,
|
|
|
|
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
|
|
// to a specified boundary. This node always has two return values: a new
|
|
// stack pointer value and a chain. The first operand is the token chain,
|
|
// the second is the number of bytes to allocate, and the third is the
|
|
// alignment boundary. The size is guaranteed to be a multiple of the stack
|
|
// alignment, and the alignment is guaranteed to be bigger than the stack
|
|
// alignment (if required) or 0 to get standard stack alignment.
|
|
DYNAMIC_STACKALLOC,
|
|
|
|
// Control flow instructions. These all have token chains.
|
|
|
|
// BR - Unconditional branch. The first operand is the chain
|
|
// operand, the second is the MBB to branch to.
|
|
BR,
|
|
|
|
// BRIND - Indirect branch. The first operand is the chain, the second
|
|
// is the value to branch to, which must be of the same type as the target's
|
|
// pointer type.
|
|
BRIND,
|
|
|
|
// BR_JT - Jumptable branch. The first operand is the chain, the second
|
|
// is the jumptable index, the last one is the jumptable entry index.
|
|
BR_JT,
|
|
|
|
// BRCOND - Conditional branch. The first operand is the chain,
|
|
// the second is the condition, the third is the block to branch
|
|
// to if the condition is true.
|
|
BRCOND,
|
|
|
|
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
|
|
// that the condition is represented as condition code, and two nodes to
|
|
// compare, rather than as a combined SetCC node. The operands in order are
|
|
// chain, cc, lhs, rhs, block to branch to if condition is true.
|
|
BR_CC,
|
|
|
|
// RET - Return from function. The first operand is the chain,
|
|
// and any subsequent operands are pairs of return value and return value
|
|
// signness for the function. This operation can have variable number of
|
|
// operands.
|
|
RET,
|
|
|
|
// INLINEASM - Represents an inline asm block. This node always has two
|
|
// return values: a chain and a flag result. The inputs are as follows:
|
|
// Operand #0 : Input chain.
|
|
// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
|
|
// Operand #2n+2: A RegisterNode.
|
|
// Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
|
|
// Operand #last: Optional, an incoming flag.
|
|
INLINEASM,
|
|
|
|
// LABEL - Represents a label in mid basic block used to track
|
|
// locations needed for debug and exception handling tables. This node
|
|
// returns a chain.
|
|
// Operand #0 : input chain.
|
|
// Operand #1 : module unique number use to identify the label.
|
|
LABEL,
|
|
|
|
// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
|
|
// value, the same type as the pointer type for the system, and an output
|
|
// chain.
|
|
STACKSAVE,
|
|
|
|
// STACKRESTORE has two operands, an input chain and a pointer to restore to
|
|
// it returns an output chain.
|
|
STACKRESTORE,
|
|
|
|
// MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
|
|
// correspond to the operands of the LLVM intrinsic functions. The only
|
|
// result is a token chain. The alignment argument is guaranteed to be a
|
|
// Constant node.
|
|
MEMSET,
|
|
MEMMOVE,
|
|
MEMCPY,
|
|
|
|
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
|
|
// a call sequence, and carry arbitrary information that target might want
|
|
// to know. The first operand is a chain, the rest are specified by the
|
|
// target and not touched by the DAG optimizers.
|
|
CALLSEQ_START, // Beginning of a call sequence
|
|
CALLSEQ_END, // End of a call sequence
|
|
|
|
// VAARG - VAARG has three operands: an input chain, a pointer, and a
|
|
// SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
|
|
VAARG,
|
|
|
|
// VACOPY - VACOPY has five operands: an input chain, a destination pointer,
|
|
// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
|
|
// source.
|
|
VACOPY,
|
|
|
|
// VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
|
|
// pointer, and a SRCVALUE.
|
|
VAEND, VASTART,
|
|
|
|
// SRCVALUE - This corresponds to a Value*, and is used to associate memory
|
|
// locations with their value. This allows one use alias analysis
|
|
// information in the backend.
|
|
SRCVALUE,
|
|
|
|
// PCMARKER - This corresponds to the pcmarker intrinsic.
|
|
PCMARKER,
|
|
|
|
// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
|
|
// The only operand is a chain and a value and a chain are produced. The
|
|
// value is the contents of the architecture specific cycle counter like
|
|
// register (or other high accuracy low latency clock source)
|
|
READCYCLECOUNTER,
|
|
|
|
// HANDLENODE node - Used as a handle for various purposes.
|
|
HANDLENODE,
|
|
|
|
// LOCATION - This node is used to represent a source location for debug
|
|
// info. It takes token chain as input, then a line number, then a column
|
|
// number, then a filename, then a working dir. It produces a token chain
|
|
// as output.
|
|
LOCATION,
|
|
|
|
// DEBUG_LOC - This node is used to represent source line information
|
|
// embedded in the code. It takes a token chain as input, then a line
|
|
// number, then a column then a file id (provided by MachineModuleInfo.) It
|
|
// produces a token chain as output.
|
|
DEBUG_LOC,
|
|
|
|
// BUILTIN_OP_END - This must be the last enum value in this list.
|
|
BUILTIN_OP_END
|
|
};
|
|
|
|
/// Node predicates
|
|
|
|
/// isBuildVectorAllOnes - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are ~0 or undef.
|
|
bool isBuildVectorAllOnes(const SDNode *N);
|
|
|
|
/// isBuildVectorAllZeros - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are 0 or undef.
|
|
bool isBuildVectorAllZeros(const SDNode *N);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// MemIndexedMode enum - This enum defines the load / store indexed
|
|
/// addressing modes.
|
|
///
|
|
/// UNINDEXED "Normal" load / store. The effective address is already
|
|
/// computed and is available in the base pointer. The offset
|
|
/// operand is always undefined. In addition to producing a
|
|
/// chain, an unindexed load produces one value (result of the
|
|
/// load); an unindexed store does not produces a value.
|
|
///
|
|
/// PRE_INC Similar to the unindexed mode where the effective address is
|
|
/// PRE_DEC the value of the base pointer add / subtract the offset.
|
|
/// It considers the computation as being folded into the load /
|
|
/// store operation (i.e. the load / store does the address
|
|
/// computation as well as performing the memory transaction).
|
|
/// The base operand is always undefined. In addition to
|
|
/// producing a chain, pre-indexed load produces two values
|
|
/// (result of the load and the result of the address
|
|
/// computation); a pre-indexed store produces one value (result
|
|
/// of the address computation).
|
|
///
|
|
/// POST_INC The effective address is the value of the base pointer. The
|
|
/// POST_DEC value of the offset operand is then added to / subtracted
|
|
/// from the base after memory transaction. In addition to
|
|
/// producing a chain, post-indexed load produces two values
|
|
/// (the result of the load and the result of the base +/- offset
|
|
/// computation); a post-indexed store produces one value (the
|
|
/// the result of the base +/- offset computation).
|
|
///
|
|
enum MemIndexedMode {
|
|
UNINDEXED = 0,
|
|
PRE_INC,
|
|
PRE_DEC,
|
|
POST_INC,
|
|
POST_DEC,
|
|
LAST_INDEXED_MODE
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// LoadExtType enum - This enum defines the three variants of LOADEXT
|
|
/// (load with extension).
|
|
///
|
|
/// SEXTLOAD loads the integer operand and sign extends it to a larger
|
|
/// integer result type.
|
|
/// ZEXTLOAD loads the integer operand and zero extends it to a larger
|
|
/// integer result type.
|
|
/// EXTLOAD is used for three things: floating point extending loads,
|
|
/// integer extending loads [the top bits are undefined], and vector
|
|
/// extending loads [load into low elt].
|
|
///
|
|
enum LoadExtType {
|
|
NON_EXTLOAD = 0,
|
|
EXTLOAD,
|
|
SEXTLOAD,
|
|
ZEXTLOAD,
|
|
LAST_LOADX_TYPE
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
|
|
/// below work out, when considering SETFALSE (something that never exists
|
|
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
|
|
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
|
|
/// to. If the "N" column is 1, the result of the comparison is undefined if
|
|
/// the input is a NAN.
|
|
///
|
|
/// All of these (except for the 'always folded ops') should be handled for
|
|
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
|
|
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
|
|
///
|
|
/// Note that these are laid out in a specific order to allow bit-twiddling
|
|
/// to transform conditions.
|
|
enum CondCode {
|
|
// Opcode N U L G E Intuitive operation
|
|
SETFALSE, // 0 0 0 0 Always false (always folded)
|
|
SETOEQ, // 0 0 0 1 True if ordered and equal
|
|
SETOGT, // 0 0 1 0 True if ordered and greater than
|
|
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
|
|
SETOLT, // 0 1 0 0 True if ordered and less than
|
|
SETOLE, // 0 1 0 1 True if ordered and less than or equal
|
|
SETONE, // 0 1 1 0 True if ordered and operands are unequal
|
|
SETO, // 0 1 1 1 True if ordered (no nans)
|
|
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
|
|
SETUEQ, // 1 0 0 1 True if unordered or equal
|
|
SETUGT, // 1 0 1 0 True if unordered or greater than
|
|
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
|
|
SETULT, // 1 1 0 0 True if unordered or less than
|
|
SETULE, // 1 1 0 1 True if unordered, less than, or equal
|
|
SETUNE, // 1 1 1 0 True if unordered or not equal
|
|
SETTRUE, // 1 1 1 1 Always true (always folded)
|
|
// Don't care operations: undefined if the input is a nan.
|
|
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
|
|
SETEQ, // 1 X 0 0 1 True if equal
|
|
SETGT, // 1 X 0 1 0 True if greater than
|
|
SETGE, // 1 X 0 1 1 True if greater than or equal
|
|
SETLT, // 1 X 1 0 0 True if less than
|
|
SETLE, // 1 X 1 0 1 True if less than or equal
|
|
SETNE, // 1 X 1 1 0 True if not equal
|
|
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
|
|
|
|
SETCC_INVALID // Marker value.
|
|
};
|
|
|
|
/// isSignedIntSetCC - Return true if this is a setcc instruction that
|
|
/// performs a signed comparison when used with integer operands.
|
|
inline bool isSignedIntSetCC(CondCode Code) {
|
|
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
|
|
}
|
|
|
|
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
|
|
/// performs an unsigned comparison when used with integer operands.
|
|
inline bool isUnsignedIntSetCC(CondCode Code) {
|
|
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
|
|
}
|
|
|
|
/// isTrueWhenEqual - Return true if the specified condition returns true if
|
|
/// the two operands to the condition are equal. Note that if one of the two
|
|
/// operands is a NaN, this value is meaningless.
|
|
inline bool isTrueWhenEqual(CondCode Cond) {
|
|
return ((int)Cond & 1) != 0;
|
|
}
|
|
|
|
/// getUnorderedFlavor - This function returns 0 if the condition is always
|
|
/// false if an operand is a NaN, 1 if the condition is always true if the
|
|
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
|
|
/// NaN.
|
|
inline unsigned getUnorderedFlavor(CondCode Cond) {
|
|
return ((int)Cond >> 3) & 3;
|
|
}
|
|
|
|
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
|
|
/// 'op' is a valid SetCC operation.
|
|
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
|
|
|
|
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
|
|
/// when given the operation for (X op Y).
|
|
CondCode getSetCCSwappedOperands(CondCode Operation);
|
|
|
|
/// getSetCCOrOperation - Return the result of a logical OR between different
|
|
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
|
|
/// function returns SETCC_INVALID if it is not possible to represent the
|
|
/// resultant comparison.
|
|
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
|
|
/// getSetCCAndOperation - Return the result of a logical AND between
|
|
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
|
|
/// function returns SETCC_INVALID if it is not possible to represent the
|
|
/// resultant comparison.
|
|
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
} // end llvm::ISD namespace
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
|
|
/// values as the result of a computation. Many nodes return multiple values,
|
|
/// from loads (which define a token and a return value) to ADDC (which returns
|
|
/// a result and a carry value), to calls (which may return an arbitrary number
|
|
/// of values).
|
|
///
|
|
/// As such, each use of a SelectionDAG computation must indicate the node that
|
|
/// computes it as well as which return value to use from that node. This pair
|
|
/// of information is represented with the SDOperand value type.
|
|
///
|
|
class SDOperand {
|
|
public:
|
|
SDNode *Val; // The node defining the value we are using.
|
|
unsigned ResNo; // Which return value of the node we are using.
|
|
|
|
SDOperand() : Val(0), ResNo(0) {}
|
|
SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
|
|
|
|
bool operator==(const SDOperand &O) const {
|
|
return Val == O.Val && ResNo == O.ResNo;
|
|
}
|
|
bool operator!=(const SDOperand &O) const {
|
|
return !operator==(O);
|
|
}
|
|
bool operator<(const SDOperand &O) const {
|
|
return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
|
|
}
|
|
|
|
SDOperand getValue(unsigned R) const {
|
|
return SDOperand(Val, R);
|
|
}
|
|
|
|
// isOperand - Return true if this node is an operand of N.
|
|
bool isOperand(SDNode *N) const;
|
|
|
|
/// getValueType - Return the ValueType of the referenced return value.
|
|
///
|
|
inline MVT::ValueType getValueType() const;
|
|
|
|
// Forwarding methods - These forward to the corresponding methods in SDNode.
|
|
inline unsigned getOpcode() const;
|
|
inline unsigned getNumOperands() const;
|
|
inline const SDOperand &getOperand(unsigned i) const;
|
|
inline uint64_t getConstantOperandVal(unsigned i) const;
|
|
inline bool isTargetOpcode() const;
|
|
inline unsigned getTargetOpcode() const;
|
|
|
|
/// hasOneUse - Return true if there is exactly one operation using this
|
|
/// result value of the defining operator.
|
|
inline bool hasOneUse() const;
|
|
};
|
|
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDOperands as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDOperand> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDOperand &Val) {
|
|
return static_cast<SimpleType>(Val.Val);
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDOperand> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDOperand &Val) {
|
|
return static_cast<SimpleType>(Val.Val);
|
|
}
|
|
};
|
|
|
|
|
|
/// SDNode - Represents one node in the SelectionDAG.
|
|
///
|
|
class SDNode : public FoldingSetNode {
|
|
/// NodeType - The operation that this node performs.
|
|
///
|
|
unsigned short NodeType;
|
|
|
|
/// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
|
|
/// then they will be delete[]'d when the node is destroyed.
|
|
bool OperandsNeedDelete : 1;
|
|
|
|
/// NodeId - Unique id per SDNode in the DAG.
|
|
int NodeId;
|
|
|
|
/// OperandList - The values that are used by this operation.
|
|
///
|
|
SDOperand *OperandList;
|
|
|
|
/// ValueList - The types of the values this node defines. SDNode's may
|
|
/// define multiple values simultaneously.
|
|
const MVT::ValueType *ValueList;
|
|
|
|
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
|
|
unsigned short NumOperands, NumValues;
|
|
|
|
/// Prev/Next pointers - These pointers form the linked list of of the
|
|
/// AllNodes list in the current DAG.
|
|
SDNode *Prev, *Next;
|
|
friend struct ilist_traits<SDNode>;
|
|
|
|
/// Uses - These are all of the SDNode's that use a value produced by this
|
|
/// node.
|
|
SmallVector<SDNode*,3> Uses;
|
|
|
|
// Out-of-line virtual method to give class a home.
|
|
virtual void ANCHOR();
|
|
public:
|
|
virtual ~SDNode() {
|
|
assert(NumOperands == 0 && "Operand list not cleared before deletion");
|
|
NodeType = ISD::DELETED_NODE;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors
|
|
//
|
|
unsigned getOpcode() const { return NodeType; }
|
|
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
|
|
unsigned getTargetOpcode() const {
|
|
assert(isTargetOpcode() && "Not a target opcode!");
|
|
return NodeType - ISD::BUILTIN_OP_END;
|
|
}
|
|
|
|
size_t use_size() const { return Uses.size(); }
|
|
bool use_empty() const { return Uses.empty(); }
|
|
bool hasOneUse() const { return Uses.size() == 1; }
|
|
|
|
/// getNodeId - Return the unique node id.
|
|
///
|
|
int getNodeId() const { return NodeId; }
|
|
|
|
typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
|
|
use_iterator use_begin() const { return Uses.begin(); }
|
|
use_iterator use_end() const { return Uses.end(); }
|
|
|
|
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
|
|
/// indicated value. This method ignores uses of other values defined by this
|
|
/// operation.
|
|
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
|
|
|
|
/// isOnlyUse - Return true if this node is the only use of N.
|
|
///
|
|
bool isOnlyUse(SDNode *N) const;
|
|
|
|
/// isOperand - Return true if this node is an operand of N.
|
|
///
|
|
bool isOperand(SDNode *N) const;
|
|
|
|
/// isPredecessor - Return true if this node is a predecessor of N. This node
|
|
/// is either an operand of N or it can be reached by recursively traversing
|
|
/// up the operands.
|
|
/// NOTE: this is an expensive method. Use it carefully.
|
|
bool isPredecessor(SDNode *N) const;
|
|
|
|
/// getNumOperands - Return the number of values used by this operation.
|
|
///
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// getConstantOperandVal - Helper method returns the integer value of a
|
|
/// ConstantSDNode operand.
|
|
uint64_t getConstantOperandVal(unsigned Num) const;
|
|
|
|
const SDOperand &getOperand(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return OperandList[Num];
|
|
}
|
|
|
|
typedef const SDOperand* op_iterator;
|
|
op_iterator op_begin() const { return OperandList; }
|
|
op_iterator op_end() const { return OperandList+NumOperands; }
|
|
|
|
|
|
SDVTList getVTList() const {
|
|
SDVTList X = { ValueList, NumValues };
|
|
return X;
|
|
};
|
|
|
|
/// getNumValues - Return the number of values defined/returned by this
|
|
/// operator.
|
|
///
|
|
unsigned getNumValues() const { return NumValues; }
|
|
|
|
/// getValueType - Return the type of a specified result.
|
|
///
|
|
MVT::ValueType getValueType(unsigned ResNo) const {
|
|
assert(ResNo < NumValues && "Illegal result number!");
|
|
return ValueList[ResNo];
|
|
}
|
|
|
|
typedef const MVT::ValueType* value_iterator;
|
|
value_iterator value_begin() const { return ValueList; }
|
|
value_iterator value_end() const { return ValueList+NumValues; }
|
|
|
|
/// getOperationName - Return the opcode of this operation for printing.
|
|
///
|
|
std::string getOperationName(const SelectionDAG *G = 0) const;
|
|
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
|
|
void dump() const;
|
|
void dump(const SelectionDAG *G) const;
|
|
|
|
static bool classof(const SDNode *) { return true; }
|
|
|
|
/// Profile - Gather unique data for the node.
|
|
///
|
|
void Profile(FoldingSetNodeID &ID);
|
|
|
|
protected:
|
|
friend class SelectionDAG;
|
|
|
|
/// getValueTypeList - Return a pointer to the specified value type.
|
|
///
|
|
static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
|
|
static SDVTList getSDVTList(MVT::ValueType VT) {
|
|
SDVTList Ret = { getValueTypeList(VT), 1 };
|
|
return Ret;
|
|
}
|
|
|
|
SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
|
|
: NodeType(Opc), NodeId(-1) {
|
|
OperandsNeedDelete = true;
|
|
NumOperands = NumOps;
|
|
OperandList = NumOps ? new SDOperand[NumOperands] : 0;
|
|
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
OperandList[i] = Ops[i];
|
|
Ops[i].Val->Uses.push_back(this);
|
|
}
|
|
|
|
ValueList = VTs.VTs;
|
|
NumValues = VTs.NumVTs;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
|
|
OperandsNeedDelete = false; // Operands set with InitOperands.
|
|
NumOperands = 0;
|
|
OperandList = 0;
|
|
|
|
ValueList = VTs.VTs;
|
|
NumValues = VTs.NumVTs;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
|
|
/// InitOperands - Initialize the operands list of this node with the
|
|
/// specified values, which are part of the node (thus they don't need to be
|
|
/// copied in or allocated).
|
|
void InitOperands(SDOperand *Ops, unsigned NumOps) {
|
|
assert(OperandList == 0 && "Operands already set!");
|
|
NumOperands = NumOps;
|
|
OperandList = Ops;
|
|
|
|
for (unsigned i = 0; i != NumOps; ++i)
|
|
Ops[i].Val->Uses.push_back(this);
|
|
}
|
|
|
|
/// MorphNodeTo - This frees the operands of the current node, resets the
|
|
/// opcode, types, and operands to the specified value. This should only be
|
|
/// used by the SelectionDAG class.
|
|
void MorphNodeTo(unsigned Opc, SDVTList L,
|
|
const SDOperand *Ops, unsigned NumOps);
|
|
|
|
void addUser(SDNode *User) {
|
|
Uses.push_back(User);
|
|
}
|
|
void removeUser(SDNode *User) {
|
|
// Remove this user from the operand's use list.
|
|
for (unsigned i = Uses.size(); ; --i) {
|
|
assert(i != 0 && "Didn't find user!");
|
|
if (Uses[i-1] == User) {
|
|
Uses[i-1] = Uses.back();
|
|
Uses.pop_back();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void setNodeId(int Id) {
|
|
NodeId = Id;
|
|
}
|
|
};
|
|
|
|
|
|
// Define inline functions from the SDOperand class.
|
|
|
|
inline unsigned SDOperand::getOpcode() const {
|
|
return Val->getOpcode();
|
|
}
|
|
inline MVT::ValueType SDOperand::getValueType() const {
|
|
return Val->getValueType(ResNo);
|
|
}
|
|
inline unsigned SDOperand::getNumOperands() const {
|
|
return Val->getNumOperands();
|
|
}
|
|
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
|
|
return Val->getOperand(i);
|
|
}
|
|
inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
|
|
return Val->getConstantOperandVal(i);
|
|
}
|
|
inline bool SDOperand::isTargetOpcode() const {
|
|
return Val->isTargetOpcode();
|
|
}
|
|
inline unsigned SDOperand::getTargetOpcode() const {
|
|
return Val->getTargetOpcode();
|
|
}
|
|
inline bool SDOperand::hasOneUse() const {
|
|
return Val->hasNUsesOfValue(1, ResNo);
|
|
}
|
|
|
|
/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class UnarySDNode : public SDNode {
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
SDOperand Op;
|
|
public:
|
|
UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
|
|
: SDNode(Opc, VTs), Op(X) {
|
|
InitOperands(&Op, 1);
|
|
}
|
|
};
|
|
|
|
/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class BinarySDNode : public SDNode {
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
SDOperand Ops[2];
|
|
public:
|
|
BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
|
|
: SDNode(Opc, VTs) {
|
|
Ops[0] = X;
|
|
Ops[1] = Y;
|
|
InitOperands(Ops, 2);
|
|
}
|
|
};
|
|
|
|
/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class TernarySDNode : public SDNode {
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
SDOperand Ops[3];
|
|
public:
|
|
TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
|
|
SDOperand Z)
|
|
: SDNode(Opc, VTs) {
|
|
Ops[0] = X;
|
|
Ops[1] = Y;
|
|
Ops[2] = Z;
|
|
InitOperands(Ops, 3);
|
|
}
|
|
};
|
|
|
|
|
|
/// HandleSDNode - This class is used to form a handle around another node that
|
|
/// is persistant and is updated across invocations of replaceAllUsesWith on its
|
|
/// operand. This node should be directly created by end-users and not added to
|
|
/// the AllNodes list.
|
|
class HandleSDNode : public SDNode {
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
SDOperand Op;
|
|
public:
|
|
explicit HandleSDNode(SDOperand X)
|
|
: SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
|
|
InitOperands(&Op, 1);
|
|
}
|
|
~HandleSDNode();
|
|
SDOperand getValue() const { return Op; }
|
|
};
|
|
|
|
class StringSDNode : public SDNode {
|
|
std::string Value;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
explicit StringSDNode(const std::string &val)
|
|
: SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
|
|
}
|
|
public:
|
|
const std::string &getValue() const { return Value; }
|
|
static bool classof(const StringSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STRING;
|
|
}
|
|
};
|
|
|
|
class ConstantSDNode : public SDNode {
|
|
uint64_t Value;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
|
|
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
|
|
Value(val) {
|
|
}
|
|
public:
|
|
|
|
uint64_t getValue() const { return Value; }
|
|
|
|
int64_t getSignExtended() const {
|
|
unsigned Bits = MVT::getSizeInBits(getValueType(0));
|
|
return ((int64_t)Value << (64-Bits)) >> (64-Bits);
|
|
}
|
|
|
|
bool isNullValue() const { return Value == 0; }
|
|
bool isAllOnesValue() const {
|
|
return Value == MVT::getIntVTBitMask(getValueType(0));
|
|
}
|
|
|
|
static bool classof(const ConstantSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Constant ||
|
|
N->getOpcode() == ISD::TargetConstant;
|
|
}
|
|
};
|
|
|
|
class ConstantFPSDNode : public SDNode {
|
|
double Value;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
|
|
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
|
|
getSDVTList(VT)), Value(val) {
|
|
}
|
|
public:
|
|
|
|
double getValue() const { return Value; }
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
bool isExactlyValue(double V) const;
|
|
|
|
static bool classof(const ConstantFPSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantFP ||
|
|
N->getOpcode() == ISD::TargetConstantFP;
|
|
}
|
|
};
|
|
|
|
class GlobalAddressSDNode : public SDNode {
|
|
GlobalValue *TheGlobal;
|
|
int Offset;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
|
|
int o = 0);
|
|
public:
|
|
|
|
GlobalValue *getGlobal() const { return TheGlobal; }
|
|
int getOffset() const { return Offset; }
|
|
|
|
static bool classof(const GlobalAddressSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::GlobalAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalAddress ||
|
|
N->getOpcode() == ISD::GlobalTLSAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalTLSAddress;
|
|
}
|
|
};
|
|
|
|
class FrameIndexSDNode : public SDNode {
|
|
int FI;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
|
|
FI(fi) {
|
|
}
|
|
public:
|
|
|
|
int getIndex() const { return FI; }
|
|
|
|
static bool classof(const FrameIndexSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::FrameIndex ||
|
|
N->getOpcode() == ISD::TargetFrameIndex;
|
|
}
|
|
};
|
|
|
|
class JumpTableSDNode : public SDNode {
|
|
int JTI;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
|
|
JTI(jti) {
|
|
}
|
|
public:
|
|
|
|
int getIndex() const { return JTI; }
|
|
|
|
static bool classof(const JumpTableSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::JumpTable ||
|
|
N->getOpcode() == ISD::TargetJumpTable;
|
|
}
|
|
};
|
|
|
|
class ConstantPoolSDNode : public SDNode {
|
|
union {
|
|
Constant *ConstVal;
|
|
MachineConstantPoolValue *MachineCPVal;
|
|
} Val;
|
|
int Offset; // It's a MachineConstantPoolValue if top bit is set.
|
|
unsigned Alignment;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
|
|
int o=0)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
getSDVTList(VT)), Offset(o), Alignment(0) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
|
|
unsigned Align)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
getSDVTList(VT)), Offset(o), Alignment(Align) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
|
|
MVT::ValueType VT, int o=0)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
getSDVTList(VT)), Offset(o), Alignment(0) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*8-1);
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
|
|
MVT::ValueType VT, int o, unsigned Align)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
|
|
getSDVTList(VT)), Offset(o), Alignment(Align) {
|
|
assert((int)Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*8-1);
|
|
}
|
|
public:
|
|
|
|
bool isMachineConstantPoolEntry() const {
|
|
return (int)Offset < 0;
|
|
}
|
|
|
|
Constant *getConstVal() const {
|
|
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.ConstVal;
|
|
}
|
|
|
|
MachineConstantPoolValue *getMachineCPVal() const {
|
|
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.MachineCPVal;
|
|
}
|
|
|
|
int getOffset() const {
|
|
return Offset & ~(1 << (sizeof(unsigned)*8-1));
|
|
}
|
|
|
|
// Return the alignment of this constant pool object, which is either 0 (for
|
|
// default alignment) or log2 of the desired value.
|
|
unsigned getAlignment() const { return Alignment; }
|
|
|
|
const Type *getType() const;
|
|
|
|
static bool classof(const ConstantPoolSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantPool ||
|
|
N->getOpcode() == ISD::TargetConstantPool;
|
|
}
|
|
};
|
|
|
|
class BasicBlockSDNode : public SDNode {
|
|
MachineBasicBlock *MBB;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
|
|
: SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
|
|
}
|
|
public:
|
|
|
|
MachineBasicBlock *getBasicBlock() const { return MBB; }
|
|
|
|
static bool classof(const BasicBlockSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BasicBlock;
|
|
}
|
|
};
|
|
|
|
class SrcValueSDNode : public SDNode {
|
|
const Value *V;
|
|
int offset;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
SrcValueSDNode(const Value* v, int o)
|
|
: SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) {
|
|
}
|
|
|
|
public:
|
|
const Value *getValue() const { return V; }
|
|
int getOffset() const { return offset; }
|
|
|
|
static bool classof(const SrcValueSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::SRCVALUE;
|
|
}
|
|
};
|
|
|
|
|
|
class RegisterSDNode : public SDNode {
|
|
unsigned Reg;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
RegisterSDNode(unsigned reg, MVT::ValueType VT)
|
|
: SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
|
|
}
|
|
public:
|
|
|
|
unsigned getReg() const { return Reg; }
|
|
|
|
static bool classof(const RegisterSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Register;
|
|
}
|
|
};
|
|
|
|
class ExternalSymbolSDNode : public SDNode {
|
|
const char *Symbol;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
|
|
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
|
|
getSDVTList(VT)), Symbol(Sym) {
|
|
}
|
|
public:
|
|
|
|
const char *getSymbol() const { return Symbol; }
|
|
|
|
static bool classof(const ExternalSymbolSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ExternalSymbol ||
|
|
N->getOpcode() == ISD::TargetExternalSymbol;
|
|
}
|
|
};
|
|
|
|
class CondCodeSDNode : public SDNode {
|
|
ISD::CondCode Condition;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
explicit CondCodeSDNode(ISD::CondCode Cond)
|
|
: SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
|
|
}
|
|
public:
|
|
|
|
ISD::CondCode get() const { return Condition; }
|
|
|
|
static bool classof(const CondCodeSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONDCODE;
|
|
}
|
|
};
|
|
|
|
/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
|
|
/// to parameterize some operations.
|
|
class VTSDNode : public SDNode {
|
|
MVT::ValueType ValueType;
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
protected:
|
|
friend class SelectionDAG;
|
|
explicit VTSDNode(MVT::ValueType VT)
|
|
: SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
|
|
}
|
|
public:
|
|
|
|
MVT::ValueType getVT() const { return ValueType; }
|
|
|
|
static bool classof(const VTSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VALUETYPE;
|
|
}
|
|
};
|
|
|
|
/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
|
|
///
|
|
class LoadSDNode : public SDNode {
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
SDOperand Ops[3];
|
|
|
|
// AddrMode - unindexed, pre-indexed, post-indexed.
|
|
ISD::MemIndexedMode AddrMode;
|
|
|
|
// ExtType - non-ext, anyext, sext, zext.
|
|
ISD::LoadExtType ExtType;
|
|
|
|
// LoadedVT - VT of loaded value before extension.
|
|
MVT::ValueType LoadedVT;
|
|
|
|
// SrcValue - Memory location for alias analysis.
|
|
const Value *SrcValue;
|
|
|
|
// SVOffset - Memory location offset.
|
|
int SVOffset;
|
|
|
|
// Alignment - Alignment of memory location in bytes.
|
|
unsigned Alignment;
|
|
|
|
// IsVolatile - True if the load is volatile.
|
|
bool IsVolatile;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
|
|
const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
|
|
: SDNode(ISD::LOAD, VTs),
|
|
AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
|
|
Alignment(Align), IsVolatile(Vol) {
|
|
Ops[0] = ChainPtrOff[0]; // Chain
|
|
Ops[1] = ChainPtrOff[1]; // Ptr
|
|
Ops[2] = ChainPtrOff[2]; // Off
|
|
InitOperands(Ops, 3);
|
|
assert((getOffset().getOpcode() == ISD::UNDEF ||
|
|
AddrMode != ISD::UNINDEXED) &&
|
|
"Only indexed load has a non-undef offset operand");
|
|
}
|
|
public:
|
|
|
|
const SDOperand getChain() const { return getOperand(0); }
|
|
const SDOperand getBasePtr() const { return getOperand(1); }
|
|
const SDOperand getOffset() const { return getOperand(2); }
|
|
ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
|
|
ISD::LoadExtType getExtensionType() const { return ExtType; }
|
|
MVT::ValueType getLoadedVT() const { return LoadedVT; }
|
|
const Value *getSrcValue() const { return SrcValue; }
|
|
int getSrcValueOffset() const { return SVOffset; }
|
|
unsigned getAlignment() const { return Alignment; }
|
|
bool isVolatile() const { return IsVolatile; }
|
|
|
|
static bool classof(const LoadSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD;
|
|
}
|
|
};
|
|
|
|
/// StoreSDNode - This class is used to represent ISD::STORE nodes.
|
|
///
|
|
class StoreSDNode : public SDNode {
|
|
virtual void ANCHOR(); // Out-of-line virtual method to give class a home.
|
|
SDOperand Ops[4];
|
|
|
|
// AddrMode - unindexed, pre-indexed, post-indexed.
|
|
ISD::MemIndexedMode AddrMode;
|
|
|
|
// IsTruncStore - True is the op does a truncation before store.
|
|
bool IsTruncStore;
|
|
|
|
// StoredVT - VT of the value after truncation.
|
|
MVT::ValueType StoredVT;
|
|
|
|
// SrcValue - Memory location for alias analysis.
|
|
const Value *SrcValue;
|
|
|
|
// SVOffset - Memory location offset.
|
|
int SVOffset;
|
|
|
|
// Alignment - Alignment of memory location in bytes.
|
|
unsigned Alignment;
|
|
|
|
// IsVolatile - True if the store is volatile.
|
|
bool IsVolatile;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
|
|
const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
|
|
: SDNode(ISD::STORE, VTs),
|
|
AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
|
|
SVOffset(O), Alignment(Align), IsVolatile(Vol) {
|
|
Ops[0] = ChainValuePtrOff[0]; // Chain
|
|
Ops[1] = ChainValuePtrOff[1]; // Value
|
|
Ops[2] = ChainValuePtrOff[2]; // Ptr
|
|
Ops[3] = ChainValuePtrOff[3]; // Off
|
|
InitOperands(Ops, 4);
|
|
assert((getOffset().getOpcode() == ISD::UNDEF ||
|
|
AddrMode != ISD::UNINDEXED) &&
|
|
"Only indexed store has a non-undef offset operand");
|
|
}
|
|
public:
|
|
|
|
const SDOperand getChain() const { return getOperand(0); }
|
|
const SDOperand getValue() const { return getOperand(1); }
|
|
const SDOperand getBasePtr() const { return getOperand(2); }
|
|
const SDOperand getOffset() const { return getOperand(3); }
|
|
ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
|
|
bool isTruncatingStore() const { return IsTruncStore; }
|
|
MVT::ValueType getStoredVT() const { return StoredVT; }
|
|
const Value *getSrcValue() const { return SrcValue; }
|
|
int getSrcValueOffset() const { return SVOffset; }
|
|
unsigned getAlignment() const { return Alignment; }
|
|
bool isVolatile() const { return IsVolatile; }
|
|
|
|
static bool classof(const StoreSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
|
|
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
|
|
SDNode *Node;
|
|
unsigned Operand;
|
|
|
|
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
public:
|
|
bool operator==(const SDNodeIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
|
|
|
|
const SDNodeIterator &operator=(const SDNodeIterator &I) {
|
|
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
|
|
Operand = I.Operand;
|
|
return *this;
|
|
}
|
|
|
|
pointer operator*() const {
|
|
return Node->getOperand(Operand).Val;
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SDNodeIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SDNodeIterator operator++(int) { // Postincrement
|
|
SDNodeIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
|
|
static SDNodeIterator end (SDNode *N) {
|
|
return SDNodeIterator(N, N->getNumOperands());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SDNode *getNode() const { return Node; }
|
|
};
|
|
|
|
template <> struct GraphTraits<SDNode*> {
|
|
typedef SDNode NodeType;
|
|
typedef SDNodeIterator ChildIteratorType;
|
|
static inline NodeType *getEntryNode(SDNode *N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return SDNodeIterator::begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return SDNodeIterator::end(N);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ilist_traits<SDNode> {
|
|
static SDNode *getPrev(const SDNode *N) { return N->Prev; }
|
|
static SDNode *getNext(const SDNode *N) { return N->Next; }
|
|
|
|
static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
|
|
static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
|
|
|
|
static SDNode *createSentinel() {
|
|
return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
|
|
}
|
|
static void destroySentinel(SDNode *N) { delete N; }
|
|
//static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
|
|
|
|
|
|
void addNodeToList(SDNode *NTy) {}
|
|
void removeNodeFromList(SDNode *NTy) {}
|
|
void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
|
|
const ilist_iterator<SDNode> &X,
|
|
const ilist_iterator<SDNode> &Y) {}
|
|
};
|
|
|
|
namespace ISD {
|
|
/// isNON_EXTLoad - Returns true if the specified node is a non-extending
|
|
/// load.
|
|
inline bool isNON_EXTLoad(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
|
|
}
|
|
|
|
/// isEXTLoad - Returns true if the specified node is a EXTLOAD.
|
|
///
|
|
inline bool isEXTLoad(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
|
|
}
|
|
|
|
/// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
|
|
///
|
|
inline bool isSEXTLoad(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
|
|
}
|
|
|
|
/// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
|
|
///
|
|
inline bool isZEXTLoad(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
|
|
}
|
|
|
|
/// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
|
|
///
|
|
inline bool isUNINDEXEDLoad(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD &&
|
|
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
|
|
/// store.
|
|
inline bool isNON_TRUNCStore(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE &&
|
|
!cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// isTRUNCStore - Returns true if the specified node is a truncating
|
|
/// store.
|
|
inline bool isTRUNCStore(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE &&
|
|
cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
}
|
|
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|