mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
2c79de8018
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28976 91177308-0d34-0410-b5e6-96231b3b80d8
914 lines
30 KiB
C++
914 lines
30 KiB
C++
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the Evan Cheng and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a DAG pattern matching instruction selector for X86,
|
|
// converting from a legalized dag to a X86 dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Visibility.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <iostream>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Matcher Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
|
|
/// SDOperand's instead of register numbers for the leaves of the matched
|
|
/// tree.
|
|
struct X86ISelAddressMode {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
struct { // This is really a union, discriminated by BaseType!
|
|
SDOperand Reg;
|
|
int FrameIndex;
|
|
} Base;
|
|
|
|
unsigned Scale;
|
|
SDOperand IndexReg;
|
|
unsigned Disp;
|
|
GlobalValue *GV;
|
|
Constant *CP;
|
|
unsigned Align; // CP alignment.
|
|
|
|
X86ISelAddressMode()
|
|
: BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0),
|
|
CP(0), Align(0) {
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
Statistic<>
|
|
NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - X86 specific code to select X86 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
|
|
/// ContainsFPCode - Every instruction we select that uses or defines a FP
|
|
/// register should set this to true.
|
|
bool ContainsFPCode;
|
|
|
|
/// X86Lowering - This object fully describes how to lower LLVM code to an
|
|
/// X86-specific SelectionDAG.
|
|
X86TargetLowering X86Lowering;
|
|
|
|
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
|
|
unsigned GlobalBaseReg;
|
|
public:
|
|
X86DAGToDAGISel(X86TargetMachine &TM)
|
|
: SelectionDAGISel(X86Lowering),
|
|
X86Lowering(*TM.getTargetLowering()) {
|
|
Subtarget = &TM.getSubtarget<X86Subtarget>();
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &Fn) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseReg = 0;
|
|
return SelectionDAGISel::runOnFunction(Fn);
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 DAG->DAG Instruction Selection";
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "X86GenDAGISel.inc"
|
|
|
|
private:
|
|
void Select(SDOperand &Result, SDOperand N);
|
|
|
|
bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true);
|
|
bool SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
|
|
SDOperand &Index, SDOperand &Disp);
|
|
bool SelectLEAAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
|
|
SDOperand &Index, SDOperand &Disp);
|
|
bool TryFoldLoad(SDOperand P, SDOperand N,
|
|
SDOperand &Base, SDOperand &Scale,
|
|
SDOperand &Index, SDOperand &Disp);
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDOperand> &OutOps,
|
|
SelectionDAG &DAG);
|
|
|
|
void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
|
|
|
|
inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base,
|
|
SDOperand &Scale, SDOperand &Index,
|
|
SDOperand &Disp) {
|
|
Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
|
|
CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, MVT::i32) : AM.Base.Reg;
|
|
Scale = getI8Imm(AM.Scale);
|
|
Index = AM.IndexReg;
|
|
Disp = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp)
|
|
: (AM.CP ?
|
|
CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp)
|
|
: getI32Imm(AM.Disp));
|
|
}
|
|
|
|
/// getI8Imm - Return a target constant with the specified value, of type
|
|
/// i8.
|
|
inline SDOperand getI8Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i8);
|
|
}
|
|
|
|
/// getI16Imm - Return a target constant with the specified value, of type
|
|
/// i16.
|
|
inline SDOperand getI16Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i16);
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDOperand getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
|
|
/// base register. Return the virtual register that holds this value.
|
|
SDOperand getGlobalBaseReg();
|
|
|
|
#ifndef NDEBUG
|
|
unsigned Indent;
|
|
#endif
|
|
};
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
|
|
/// when it has created a SelectionDAG for us to codegen.
|
|
void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
MachineFunction::iterator FirstMBB = BB;
|
|
|
|
// Codegen the basic block.
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << "===== Instruction selection begins:\n");
|
|
Indent = 0;
|
|
#endif
|
|
DAG.setRoot(SelectRoot(DAG.getRoot()));
|
|
assert(InFlightSet.empty() && "ISel InFlightSet has not been emptied!");
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << "===== Instruction selection ends:\n");
|
|
#endif
|
|
CodeGenMap.clear();
|
|
HandleMap.clear();
|
|
ReplaceMap.clear();
|
|
DAG.RemoveDeadNodes();
|
|
|
|
// Emit machine code to BB.
|
|
ScheduleAndEmitDAG(DAG);
|
|
|
|
// If we are emitting FP stack code, scan the basic block to determine if this
|
|
// block defines any FP values. If so, put an FP_REG_KILL instruction before
|
|
// the terminator of the block.
|
|
if (!Subtarget->hasSSE2()) {
|
|
// Note that FP stack instructions *are* used in SSE code when returning
|
|
// values, but these are not live out of the basic block, so we don't need
|
|
// an FP_REG_KILL in this case either.
|
|
bool ContainsFPCode = false;
|
|
|
|
// Scan all of the machine instructions in these MBBs, checking for FP
|
|
// stores.
|
|
MachineFunction::iterator MBBI = FirstMBB;
|
|
do {
|
|
for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
|
|
!ContainsFPCode && I != E; ++I) {
|
|
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
|
|
if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
|
|
MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
|
|
RegMap->getRegClass(I->getOperand(0).getReg()) ==
|
|
X86::RFPRegisterClass) {
|
|
ContainsFPCode = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (!ContainsFPCode && &*(MBBI++) != BB);
|
|
|
|
// Check PHI nodes in successor blocks. These PHI's will be lowered to have
|
|
// a copy of the input value in this block.
|
|
if (!ContainsFPCode) {
|
|
// Final check, check LLVM BB's that are successors to the LLVM BB
|
|
// corresponding to BB for FP PHI nodes.
|
|
const BasicBlock *LLVMBB = BB->getBasicBlock();
|
|
const PHINode *PN;
|
|
for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
|
|
!ContainsFPCode && SI != E; ++SI) {
|
|
for (BasicBlock::const_iterator II = SI->begin();
|
|
(PN = dyn_cast<PHINode>(II)); ++II) {
|
|
if (PN->getType()->isFloatingPoint()) {
|
|
ContainsFPCode = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, if we found any FP code, emit the FP_REG_KILL instruction.
|
|
if (ContainsFPCode) {
|
|
BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
|
|
++NumFPKill;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
|
|
/// the main function.
|
|
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
|
|
MachineFrameInfo *MFI) {
|
|
if (Subtarget->TargetType == X86Subtarget::isCygwin)
|
|
BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("__main");
|
|
|
|
// Switch the FPU to 64-bit precision mode for better compatibility and speed.
|
|
int CWFrameIdx = MFI->CreateStackObject(2, 2);
|
|
addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
|
|
|
|
// Set the high part to be 64-bit precision.
|
|
addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
|
|
CWFrameIdx, 1).addImm(2);
|
|
|
|
// Reload the modified control word now.
|
|
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
|
|
}
|
|
|
|
void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
|
|
// If this is main, emit special code for main.
|
|
MachineBasicBlock *BB = MF.begin();
|
|
if (Fn.hasExternalLinkage() && Fn.getName() == "main")
|
|
EmitSpecialCodeForMain(BB, MF.getFrameInfo());
|
|
}
|
|
|
|
/// MatchAddress - Add the specified node to the specified addressing mode,
|
|
/// returning true if it cannot be done. This just pattern matches for the
|
|
/// addressing mode
|
|
bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
|
|
bool isRoot) {
|
|
bool Available = false;
|
|
// If N has already been selected, reuse the result unless in some very
|
|
// specific cases.
|
|
std::map<SDOperand, SDOperand>::iterator CGMI= CodeGenMap.find(N.getValue(0));
|
|
if (CGMI != CodeGenMap.end()) {
|
|
Available = true;
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant:
|
|
AM.Disp += cast<ConstantSDNode>(N)->getValue();
|
|
return false;
|
|
|
|
case X86ISD::Wrapper:
|
|
// If both base and index components have been picked, we can't fit
|
|
// the result available in the register in the addressing mode. Duplicate
|
|
// GlobalAddress or ConstantPool as displacement.
|
|
if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
|
|
if (ConstantPoolSDNode *CP =
|
|
dyn_cast<ConstantPoolSDNode>(N.getOperand(0))) {
|
|
if (AM.CP == 0) {
|
|
AM.CP = CP->get();
|
|
AM.Align = CP->getAlignment();
|
|
AM.Disp += CP->getOffset();
|
|
return false;
|
|
}
|
|
} else if (GlobalAddressSDNode *G =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(0))) {
|
|
if (AM.GV == 0) {
|
|
AM.GV = G->getGlobal();
|
|
AM.Disp += G->getOffset();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ISD::FrameIndex:
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
|
|
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::SHL:
|
|
if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
|
|
unsigned Val = CN->getValue();
|
|
if (Val == 1 || Val == 2 || Val == 3) {
|
|
AM.Scale = 1 << Val;
|
|
SDOperand ShVal = N.Val->getOperand(0);
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
|
|
AM.IndexReg = ShVal.Val->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(ShVal.Val->getOperand(1));
|
|
AM.Disp += AddVal->getValue() << Val;
|
|
} else {
|
|
AM.IndexReg = ShVal;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ISD::MUL:
|
|
// X*[3,5,9] -> X+X*[2,4,8]
|
|
if (!Available &&
|
|
AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base.Reg.Val == 0 &&
|
|
AM.IndexReg.Val == 0)
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
|
|
if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
|
|
AM.Scale = unsigned(CN->getValue())-1;
|
|
|
|
SDOperand MulVal = N.Val->getOperand(0);
|
|
SDOperand Reg;
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
|
|
Reg = MulVal.Val->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(MulVal.Val->getOperand(1));
|
|
AM.Disp += AddVal->getValue() * CN->getValue();
|
|
} else {
|
|
Reg = N.Val->getOperand(0);
|
|
}
|
|
|
|
AM.IndexReg = AM.Base.Reg = Reg;
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::ADD: {
|
|
if (!Available) {
|
|
X86ISelAddressMode Backup = AM;
|
|
if (!MatchAddress(N.Val->getOperand(0), AM, false) &&
|
|
!MatchAddress(N.Val->getOperand(1), AM, false))
|
|
return false;
|
|
AM = Backup;
|
|
if (!MatchAddress(N.Val->getOperand(1), AM, false) &&
|
|
!MatchAddress(N.Val->getOperand(0), AM, false))
|
|
return false;
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::OR: {
|
|
if (!Available) {
|
|
X86ISelAddressMode Backup = AM;
|
|
// Look for (x << c1) | c2 where (c2 < c1)
|
|
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(0));
|
|
if (CN && !MatchAddress(N.Val->getOperand(1), AM, false)) {
|
|
if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) {
|
|
AM.Disp = CN->getValue();
|
|
return false;
|
|
}
|
|
}
|
|
AM = Backup;
|
|
CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1));
|
|
if (CN && !MatchAddress(N.Val->getOperand(0), AM, false)) {
|
|
if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) {
|
|
AM.Disp = CN->getValue();
|
|
return false;
|
|
}
|
|
}
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Is the base register already occupied?
|
|
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
|
|
// If so, check to see if the scale index register is set.
|
|
if (AM.IndexReg.Val == 0) {
|
|
AM.IndexReg = N;
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot select it.
|
|
return true;
|
|
}
|
|
|
|
// Default, generate it as a register.
|
|
AM.BaseType = X86ISelAddressMode::RegBase;
|
|
AM.Base.Reg = N;
|
|
return false;
|
|
}
|
|
|
|
/// SelectAddr - returns true if it is able pattern match an addressing mode.
|
|
/// It returns the operands which make up the maximal addressing mode it can
|
|
/// match by reference.
|
|
bool X86DAGToDAGISel::SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
|
|
SDOperand &Index, SDOperand &Disp) {
|
|
X86ISelAddressMode AM;
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase) {
|
|
if (!AM.Base.Reg.Val)
|
|
AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
|
|
}
|
|
|
|
if (!AM.IndexReg.Val)
|
|
AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
getAddressOperands(AM, Base, Scale, Index, Disp);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
|
|
/// mode it matches can be cost effectively emitted as an LEA instruction.
|
|
bool X86DAGToDAGISel::SelectLEAAddr(SDOperand N, SDOperand &Base,
|
|
SDOperand &Scale,
|
|
SDOperand &Index, SDOperand &Disp) {
|
|
X86ISelAddressMode AM;
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
|
|
unsigned Complexity = 0;
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase)
|
|
if (AM.Base.Reg.Val)
|
|
Complexity = 1;
|
|
else
|
|
AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
|
|
else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
|
|
Complexity = 4;
|
|
|
|
if (AM.IndexReg.Val)
|
|
Complexity++;
|
|
else
|
|
AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
if (AM.Scale > 2)
|
|
Complexity += 2;
|
|
// Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg
|
|
else if (AM.Scale > 1)
|
|
Complexity++;
|
|
|
|
// FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
|
|
// to a LEA. This is determined with some expermentation but is by no means
|
|
// optimal (especially for code size consideration). LEA is nice because of
|
|
// its three-address nature. Tweak the cost function again when we can run
|
|
// convertToThreeAddress() at register allocation time.
|
|
if (AM.GV || AM.CP)
|
|
Complexity += 2;
|
|
|
|
if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
|
|
Complexity++;
|
|
|
|
if (Complexity > 2) {
|
|
getAddressOperands(AM, Base, Scale, Index, Disp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
|
|
SDOperand &Base, SDOperand &Scale,
|
|
SDOperand &Index, SDOperand &Disp) {
|
|
if (N.getOpcode() == ISD::LOAD &&
|
|
N.hasOneUse() &&
|
|
!CodeGenMap.count(N.getValue(0)) &&
|
|
(P.getNumOperands() == 1 || !isNonImmUse(P.Val, N.Val)))
|
|
return SelectAddr(N.getOperand(1), Base, Scale, Index, Disp);
|
|
return false;
|
|
}
|
|
|
|
static bool isRegister0(SDOperand Op) {
|
|
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op))
|
|
return (R->getReg() == 0);
|
|
return false;
|
|
}
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register.
|
|
///
|
|
SDOperand X86DAGToDAGISel::getGlobalBaseReg() {
|
|
if (!GlobalBaseReg) {
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = BB->getParent()->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
SSARegMap *RegMap = BB->getParent()->getSSARegMap();
|
|
// FIXME: when we get to LP64, we will need to create the appropriate
|
|
// type of register here.
|
|
GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
|
|
BuildMI(FirstMBB, MBBI, X86::MovePCtoStack, 0);
|
|
BuildMI(FirstMBB, MBBI, X86::POP32r, 1, GlobalBaseReg);
|
|
}
|
|
return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
|
|
}
|
|
|
|
static SDNode *FindCallStartFromCall(SDNode *Node) {
|
|
if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
|
|
assert(Node->getOperand(0).getValueType() == MVT::Other &&
|
|
"Node doesn't have a token chain argument!");
|
|
return FindCallStartFromCall(Node->getOperand(0).Val);
|
|
}
|
|
|
|
void X86DAGToDAGISel::Select(SDOperand &Result, SDOperand N) {
|
|
SDNode *Node = N.Val;
|
|
MVT::ValueType NVT = Node->getValueType(0);
|
|
unsigned Opc, MOpc;
|
|
unsigned Opcode = Node->getOpcode();
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent, ' '));
|
|
DEBUG(std::cerr << "Selecting: ");
|
|
DEBUG(Node->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent += 2;
|
|
#endif
|
|
|
|
if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
|
|
Result = N;
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent-2, ' '));
|
|
DEBUG(std::cerr << "== ");
|
|
DEBUG(Node->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent -= 2;
|
|
#endif
|
|
return; // Already selected.
|
|
}
|
|
|
|
std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);
|
|
if (CGMI != CodeGenMap.end()) {
|
|
Result = CGMI->second;
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent-2, ' '));
|
|
DEBUG(std::cerr << "== ");
|
|
DEBUG(Result.Val->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent -= 2;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case X86ISD::GlobalBaseReg:
|
|
Result = getGlobalBaseReg();
|
|
return;
|
|
|
|
case ISD::ADD: {
|
|
// Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
|
|
// code and is matched first so to prevent it from being turned into
|
|
// LEA32r X+c.
|
|
SDOperand N0 = N.getOperand(0);
|
|
SDOperand N1 = N.getOperand(1);
|
|
if (N.Val->getValueType(0) == MVT::i32 &&
|
|
N0.getOpcode() == X86ISD::Wrapper &&
|
|
N1.getOpcode() == ISD::Constant) {
|
|
unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
|
|
SDOperand C(0, 0);
|
|
// TODO: handle ExternalSymbolSDNode.
|
|
if (GlobalAddressSDNode *G =
|
|
dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
|
|
C = CurDAG->getTargetGlobalAddress(G->getGlobal(), MVT::i32,
|
|
G->getOffset() + Offset);
|
|
} else if (ConstantPoolSDNode *CP =
|
|
dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
|
|
C = CurDAG->getTargetConstantPool(CP->get(), MVT::i32,
|
|
CP->getAlignment(),
|
|
CP->getOffset()+Offset);
|
|
}
|
|
|
|
if (C.Val) {
|
|
if (N.Val->hasOneUse()) {
|
|
Result = CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, MVT::i32, C);
|
|
} else {
|
|
SDNode *ResNode = CurDAG->getTargetNode(X86::MOV32ri, MVT::i32, C);
|
|
Result = CodeGenMap[N] = SDOperand(ResNode, 0);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Other cases are handled by auto-generated code.
|
|
break;
|
|
}
|
|
|
|
case ISD::MULHU:
|
|
case ISD::MULHS: {
|
|
if (Opcode == ISD::MULHU)
|
|
switch (NVT) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
|
|
case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
|
|
case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
|
|
}
|
|
else
|
|
switch (NVT) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
|
|
case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
|
|
case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
|
|
}
|
|
|
|
unsigned LoReg, HiReg;
|
|
switch (NVT) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
|
|
case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
|
|
case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
|
|
}
|
|
|
|
SDOperand N0 = Node->getOperand(0);
|
|
SDOperand N1 = Node->getOperand(1);
|
|
|
|
bool foldedLoad = false;
|
|
SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
|
|
foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
|
|
// MULHU and MULHS are commmutative
|
|
if (!foldedLoad) {
|
|
foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
|
|
if (foldedLoad) {
|
|
N0 = Node->getOperand(1);
|
|
N1 = Node->getOperand(0);
|
|
}
|
|
}
|
|
|
|
SDOperand Chain;
|
|
if (foldedLoad)
|
|
Select(Chain, N1.getOperand(0));
|
|
else
|
|
Chain = CurDAG->getEntryNode();
|
|
|
|
SDOperand InFlag(0, 0);
|
|
Select(N0, N0);
|
|
Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
|
|
N0, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
if (foldedLoad) {
|
|
Select(Tmp0, Tmp0);
|
|
Select(Tmp1, Tmp1);
|
|
Select(Tmp2, Tmp2);
|
|
Select(Tmp3, Tmp3);
|
|
SDNode *CNode =
|
|
CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
|
|
Tmp2, Tmp3, Chain, InFlag);
|
|
Chain = SDOperand(CNode, 0);
|
|
InFlag = SDOperand(CNode, 1);
|
|
} else {
|
|
Select(N1, N1);
|
|
InFlag =
|
|
SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
|
|
}
|
|
|
|
Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
|
|
CodeGenMap[N.getValue(0)] = Result;
|
|
if (foldedLoad) {
|
|
CodeGenMap[N1.getValue(1)] = Result.getValue(1);
|
|
AddHandleReplacement(N1.Val, 1, Result.Val, 1);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent-2, ' '));
|
|
DEBUG(std::cerr << "== ");
|
|
DEBUG(Result.Val->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent -= 2;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM: {
|
|
bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
|
|
bool isDiv = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
|
|
if (!isSigned)
|
|
switch (NVT) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
|
|
case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
|
|
case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
|
|
}
|
|
else
|
|
switch (NVT) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
|
|
case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
|
|
case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
|
|
}
|
|
|
|
unsigned LoReg, HiReg;
|
|
unsigned ClrOpcode, SExtOpcode;
|
|
switch (NVT) {
|
|
default: assert(0 && "Unsupported VT!");
|
|
case MVT::i8:
|
|
LoReg = X86::AL; HiReg = X86::AH;
|
|
ClrOpcode = X86::MOV8r0;
|
|
SExtOpcode = X86::CBW;
|
|
break;
|
|
case MVT::i16:
|
|
LoReg = X86::AX; HiReg = X86::DX;
|
|
ClrOpcode = X86::MOV16r0;
|
|
SExtOpcode = X86::CWD;
|
|
break;
|
|
case MVT::i32:
|
|
LoReg = X86::EAX; HiReg = X86::EDX;
|
|
ClrOpcode = X86::MOV32r0;
|
|
SExtOpcode = X86::CDQ;
|
|
break;
|
|
}
|
|
|
|
SDOperand N0 = Node->getOperand(0);
|
|
SDOperand N1 = Node->getOperand(1);
|
|
|
|
bool foldedLoad = false;
|
|
SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
|
|
foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
|
|
SDOperand Chain;
|
|
if (foldedLoad)
|
|
Select(Chain, N1.getOperand(0));
|
|
else
|
|
Chain = CurDAG->getEntryNode();
|
|
|
|
SDOperand InFlag(0, 0);
|
|
Select(N0, N0);
|
|
Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
|
|
N0, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
if (isSigned) {
|
|
// Sign extend the low part into the high part.
|
|
InFlag =
|
|
SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
|
|
} else {
|
|
// Zero out the high part, effectively zero extending the input.
|
|
SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
|
|
Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(HiReg, NVT),
|
|
ClrNode, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (foldedLoad) {
|
|
Select(Tmp0, Tmp0);
|
|
Select(Tmp1, Tmp1);
|
|
Select(Tmp2, Tmp2);
|
|
Select(Tmp3, Tmp3);
|
|
SDNode *CNode =
|
|
CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
|
|
Tmp2, Tmp3, Chain, InFlag);
|
|
Chain = SDOperand(CNode, 0);
|
|
InFlag = SDOperand(CNode, 1);
|
|
} else {
|
|
Select(N1, N1);
|
|
InFlag =
|
|
SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
|
|
}
|
|
|
|
Result = CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg,
|
|
NVT, InFlag);
|
|
CodeGenMap[N.getValue(0)] = Result;
|
|
if (foldedLoad) {
|
|
CodeGenMap[N1.getValue(1)] = Result.getValue(1);
|
|
AddHandleReplacement(N1.Val, 1, Result.Val, 1);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent-2, ' '));
|
|
DEBUG(std::cerr << "== ");
|
|
DEBUG(Result.Val->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent -= 2;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
case ISD::TRUNCATE: {
|
|
if (NVT == MVT::i8) {
|
|
unsigned Opc2;
|
|
MVT::ValueType VT;
|
|
switch (Node->getOperand(0).getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i16:
|
|
Opc = X86::MOV16to16_;
|
|
VT = MVT::i16;
|
|
Opc2 = X86::TRUNC_GR16_GR8;
|
|
break;
|
|
case MVT::i32:
|
|
Opc = X86::MOV32to32_;
|
|
VT = MVT::i32;
|
|
Opc2 = X86::TRUNC_GR32_GR8;
|
|
break;
|
|
}
|
|
|
|
SDOperand Tmp0, Tmp1;
|
|
Select(Tmp0, Node->getOperand(0));
|
|
Tmp1 = SDOperand(CurDAG->getTargetNode(Opc, VT, Tmp0), 0);
|
|
Result = CodeGenMap[N] =
|
|
SDOperand(CurDAG->getTargetNode(Opc2, NVT, Tmp1), 0);
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent-2, ' '));
|
|
DEBUG(std::cerr << "== ");
|
|
DEBUG(Result.Val->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent -= 2;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
SelectCode(Result, N);
|
|
#ifndef NDEBUG
|
|
DEBUG(std::cerr << std::string(Indent-2, ' '));
|
|
DEBUG(std::cerr << "=> ");
|
|
DEBUG(Result.Val->dump(CurDAG));
|
|
DEBUG(std::cerr << "\n");
|
|
Indent -= 2;
|
|
#endif
|
|
}
|
|
|
|
bool X86DAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode,
|
|
std::vector<SDOperand> &OutOps, SelectionDAG &DAG){
|
|
SDOperand Op0, Op1, Op2, Op3;
|
|
switch (ConstraintCode) {
|
|
case 'o': // offsetable ??
|
|
case 'v': // not offsetable ??
|
|
default: return true;
|
|
case 'm': // memory
|
|
if (!SelectAddr(Op, Op0, Op1, Op2, Op3))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
OutOps.resize(4);
|
|
Select(OutOps[0], Op0);
|
|
Select(OutOps[1], Op1);
|
|
Select(OutOps[2], Op2);
|
|
Select(OutOps[3], Op3);
|
|
return false;
|
|
}
|
|
|
|
/// createX86ISelDag - This pass converts a legalized DAG into a
|
|
/// X86-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM) {
|
|
return new X86DAGToDAGISel(TM);
|
|
}
|