llvm-6502/lib/Transforms/Scalar/SimplifyLibCalls.cpp

2325 lines
81 KiB
C++

//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). Any optimization that takes the very simple form
// "replace call to library function with simpler code that provides the same
// result" belongs in this file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Config/config.h"
using namespace llvm;
STATISTIC(NumSimplified, "Number of library calls simplified");
STATISTIC(NumAnnotated, "Number of attributes added to library functions");
//===----------------------------------------------------------------------===//
// Optimizer Base Class
//===----------------------------------------------------------------------===//
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class LibCallOptimization {
protected:
Function *Caller;
const TargetData *TD;
LLVMContext* Context;
public:
LibCallOptimization() { }
virtual ~LibCallOptimization() {}
/// CallOptimizer - This pure virtual method is implemented by base classes to
/// do various optimizations. If this returns null then no transformation was
/// performed. If it returns CI, then it transformed the call and CI is to be
/// deleted. If it returns something else, replace CI with the new value and
/// delete CI.
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
Value *OptimizeCall(CallInst *CI, const TargetData *TD, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
this->TD = TD;
if (CI->getCalledFunction())
Context = &CI->getCalledFunction()->getContext();
// We never change the calling convention.
if (CI->getCallingConv() != llvm::CallingConv::C)
return NULL;
return CallOptimizer(CI->getCalledFunction(), CI, B);
}
};
} // End anonymous namespace.
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero.
static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
// Unknown instruction.
return false;
}
return true;
}
/// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
/// comparisons with With.
static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality() && IC->getOperand(1) == With)
continue;
// Unknown instruction.
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// String and Memory LibCall Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'strcat' Optimizations
namespace {
struct StrCatOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
--Len; // Unbias length.
// Handle the simple, do-nothing case: strcat(x, "") -> x
if (Len == 0)
return Dst;
// These optimizations require TargetData.
if (!TD) return 0;
EmitStrLenMemCpy(Src, Dst, Len, B);
return Dst;
}
void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
Value *DstLen = EmitStrLen(Dst, B, TD);
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(CpyDst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len+1),
1, false, B, TD);
}
};
//===---------------------------------------===//
// 'strncat' Optimizations
struct StrNCatOpt : public StrCatOpt {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncat" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
uint64_t Len;
// We don't do anything if length is not constant
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Len = LengthArg->getZExtValue();
else
return 0;
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen; // Unbias length.
// Handle the simple, do-nothing cases:
// strncat(x, "", c) -> x
// strncat(x, c, 0) -> x
if (SrcLen == 0 || Len == 0) return Dst;
// These optimizations require TargetData.
if (!TD) return 0;
// We don't optimize this case
if (Len < SrcLen) return 0;
// strncat(x, s, c) -> strcat(x, s)
// s is constant so the strcat can be optimized further
EmitStrLenMemCpy(Src, Dst, SrcLen, B);
return Dst;
}
};
//===---------------------------------------===//
// 'strchr' Optimizations
struct StrChrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
// If the second operand is non-constant, see if we can compute the length
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (CharC == 0) {
// These optimizations require TargetData.
if (!TD) return 0;
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
return 0;
return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
ConstantInt::get(TD->getIntPtrType(*Context), Len),
B, TD);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
std::string Str;
if (!GetConstantStringInfo(SrcStr, Str))
return 0;
// strchr can find the nul character.
Str += '\0';
// Compute the offset.
size_t I = Str.find(CharC->getSExtValue());
if (I == std::string::npos) // Didn't find the char. strchr returns null.
return Constant::getNullValue(CI->getType());
// strchr(s+n,c) -> gep(s+n+i,c)
Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), I);
return B.CreateGEP(SrcStr, Idx, "strchr");
}
};
//===---------------------------------------===//
// 'strrchr' Optimizations
struct StrRChrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strrchr" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
// Cannot fold anything if we're not looking for a constant.
if (!CharC)
return 0;
std::string Str;
if (!GetConstantStringInfo(SrcStr, Str)) {
// strrchr(s, 0) -> strchr(s, 0)
if (TD && CharC->isZero())
return EmitStrChr(SrcStr, '\0', B, TD);
return 0;
}
// strrchr can find the nul character.
Str += '\0';
// Compute the offset.
size_t I = Str.rfind(CharC->getSExtValue());
if (I == std::string::npos) // Didn't find the char. Return null.
return Constant::getNullValue(CI->getType());
// strrchr(s+n,c) -> gep(s+n+i,c)
Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), I);
return B.CreateGEP(SrcStr, Idx, "strrchr");
}
};
//===---------------------------------------===//
// 'strcmp' Optimizations
struct StrCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context))
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ConstantInt::get(CI->getType(), 0);
std::string Str1, Str2;
bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strcmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(),
strcmp(Str1.c_str(),Str2.c_str()));
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
// These optimizations require TargetData.
if (!TD) return 0;
return EmitMemCmp(Str1P, Str2P,
ConstantInt::get(TD->getIntPtrType(*Context),
std::min(Len1, Len2)), B, TD);
}
return 0;
}
};
//===---------------------------------------===//
// 'strncmp' Optimizations
struct StrNCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strncmp(x,x,n) -> 0
return ConstantInt::get(CI->getType(), 0);
// Get the length argument if it is constant.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Length = LengthArg->getZExtValue();
else
return 0;
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD);
std::string Str1, Str2;
bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strncmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(),
strncmp(Str1.c_str(), Str2.c_str(), Length));
return 0;
}
};
//===---------------------------------------===//
// 'strcpy' Optimizations
struct StrCpyOpt : public LibCallOptimization {
bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall.
StrCpyOpt(bool c) : OptChkCall(c) {}
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
unsigned NumParams = OptChkCall ? 3 : 2;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != NumParams ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
// These optimizations require TargetData.
if (!TD) return 0;
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
if (OptChkCall)
EmitMemCpyChk(Dst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len),
CI->getArgOperand(2), B, TD);
else
EmitMemCpy(Dst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len),
1, false, B, TD);
return Dst;
}
};
//===---------------------------------------===//
// 'strncpy' Optimizations
struct StrNCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
Value *LenOp = CI->getArgOperand(2);
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen;
if (SrcLen == 0) {
// strncpy(x, "", y) -> memset(x, '\0', y, 1)
EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'),
LenOp, false, B, TD);
return Dst;
}
uint64_t Len;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
Len = LengthArg->getZExtValue();
else
return 0;
if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
// These optimizations require TargetData.
if (!TD) return 0;
// Let strncpy handle the zero padding
if (Len > SrcLen+1) return 0;
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
EmitMemCpy(Dst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len),
1, false, B, TD);
return Dst;
}
};
//===---------------------------------------===//
// 'strlen' Optimizations
struct StrLenOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!FT->getReturnType()->isIntegerTy())
return 0;
Value *Src = CI->getArgOperand(0);
// Constant folding: strlen("xyz") -> 3
if (uint64_t Len = GetStringLength(Src))
return ConstantInt::get(CI->getType(), Len-1);
// strlen(x) != 0 --> *x != 0
// strlen(x) == 0 --> *x == 0
if (IsOnlyUsedInZeroEqualityComparison(CI))
return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
return 0;
}
};
//===---------------------------------------===//
// 'strpbrk' Optimizations
struct StrPBrkOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
FT->getParamType(1) != FT->getParamType(0) ||
FT->getReturnType() != FT->getParamType(0))
return 0;
std::string S1, S2;
bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
// strpbrk(s, "") -> NULL
// strpbrk("", s) -> NULL
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t I = S1.find_first_of(S2);
if (I == std::string::npos) // No match.
return Constant::getNullValue(CI->getType());
Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), I);
return B.CreateGEP(CI->getArgOperand(0), Idx, "strpbrk");
}
// strpbrk(s, "a") -> strchr(s, 'a')
if (TD && HasS2 && S2.size() == 1)
return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD);
return 0;
}
};
//===---------------------------------------===//
// 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc.
struct StrToOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy())
return 0;
Value *EndPtr = CI->getArgOperand(1);
if (isa<ConstantPointerNull>(EndPtr)) {
CI->setOnlyReadsMemory();
CI->addAttribute(1, Attribute::NoCapture);
}
return 0;
}
};
//===---------------------------------------===//
// 'strspn' Optimizations
struct StrSpnOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
FT->getParamType(1) != FT->getParamType(0) ||
!FT->getReturnType()->isIntegerTy())
return 0;
std::string S1, S2;
bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
// strspn(s, "") -> 0
// strspn("", s) -> 0
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2)
return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str()));
return 0;
}
};
//===---------------------------------------===//
// 'strcspn' Optimizations
struct StrCSpnOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
FT->getParamType(1) != FT->getParamType(0) ||
!FT->getReturnType()->isIntegerTy())
return 0;
std::string S1, S2;
bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2);
// strcspn("", s) -> 0
if (HasS1 && S1.empty())
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2)
return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str()));
// strcspn(s, "") -> strlen(s)
if (TD && HasS2 && S2.empty())
return EmitStrLen(CI->getArgOperand(0), B, TD);
return 0;
}
};
//===---------------------------------------===//
// 'strstr' Optimizations
struct StrStrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isPointerTy())
return 0;
// fold strstr(x, x) -> x.
if (CI->getArgOperand(0) == CI->getArgOperand(1))
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
// fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD);
Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
StrLen, B, TD);
for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
UI != UE; ) {
ICmpInst *Old = cast<ICmpInst>(*UI++);
Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
ConstantInt::getNullValue(StrNCmp->getType()),
"cmp");
Old->replaceAllUsesWith(Cmp);
Old->eraseFromParent();
}
return CI;
}
// See if either input string is a constant string.
std::string SearchStr, ToFindStr;
bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr);
bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr);
// fold strstr(x, "") -> x.
if (HasStr2 && ToFindStr.empty())
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
// If both strings are known, constant fold it.
if (HasStr1 && HasStr2) {
std::string::size_type Offset = SearchStr.find(ToFindStr);
if (Offset == std::string::npos) // strstr("foo", "bar") -> null
return Constant::getNullValue(CI->getType());
// strstr("abcd", "bc") -> gep((char*)"abcd", 1)
Value *Result = CastToCStr(CI->getArgOperand(0), B);
Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
return B.CreateBitCast(Result, CI->getType());
}
// fold strstr(x, "y") -> strchr(x, 'y').
if (HasStr2 && ToFindStr.size() == 1)
return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0),
ToFindStr[0], B, TD), CI->getType());
return 0;
}
};
//===---------------------------------------===//
// 'memcmp' Optimizations
struct MemCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy(32))
return 0;
Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
if (LHS == RHS) // memcmp(s,s,x) -> 0
return Constant::getNullValue(CI->getType());
// Make sure we have a constant length.
ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
if (!LenC) return 0;
uint64_t Len = LenC->getZExtValue();
if (Len == 0) // memcmp(s1,s2,0) -> 0
return Constant::getNullValue(CI->getType());
// memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
if (Len == 1) {
Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
CI->getType(), "lhsv");
Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
CI->getType(), "rhsv");
return B.CreateSub(LHSV, RHSV, "chardiff");
}
// Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
std::string LHSStr, RHSStr;
if (GetConstantStringInfo(LHS, LHSStr) &&
GetConstantStringInfo(RHS, RHSStr)) {
// Make sure we're not reading out-of-bounds memory.
if (Len > LHSStr.length() || Len > RHSStr.length())
return 0;
uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
return ConstantInt::get(CI->getType(), Ret);
}
return 0;
}
};
//===---------------------------------------===//
// 'memcpy' Optimizations
struct MemCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1, false, B, TD);
return CI->getArgOperand(0);
}
};
//===---------------------------------------===//
// 'memmove' Optimizations
struct MemMoveOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
EmitMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1, false, B, TD);
return CI->getArgOperand(0);
}
};
//===---------------------------------------===//
// 'memset' Optimizations
struct MemSetOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
Value *Val = B.CreateIntCast(CI->getArgOperand(1),
Type::getInt8Ty(*Context), false);
EmitMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), false, B, TD);
return CI->getArgOperand(0);
}
};
//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'pow*' Optimizations
struct PowOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPointTy())
return 0;
Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
return Op1C;
if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
}
ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
if (Op2C == 0) return 0;
if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
return ConstantFP::get(CI->getType(), 1.0);
if (Op2C->isExactlyValue(0.5)) {
// Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
// This is faster than calling pow, and still handles negative zero
// and negative infinite correctly.
// TODO: In fast-math mode, this could be just sqrt(x).
// TODO: In finite-only mode, this could be just fabs(sqrt(x)).
Value *Inf = ConstantFP::getInfinity(CI->getType());
Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
Callee->getAttributes());
Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
Callee->getAttributes());
Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp");
Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp");
return Sel;
}
if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
return Op1;
if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
return B.CreateFMul(Op1, Op1, "pow2");
if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
Op1, "powrecip");
return 0;
}
};
//===---------------------------------------===//
// 'exp2' Optimizations
struct Exp2Opt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
// result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPointTy())
return 0;
Value *Op = CI->getArgOperand(0);
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
Value *LdExpArg = 0;
if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
LdExpArg = B.CreateSExt(OpC->getOperand(0),
Type::getInt32Ty(*Context), "tmp");
} else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
LdExpArg = B.CreateZExt(OpC->getOperand(0),
Type::getInt32Ty(*Context), "tmp");
}
if (LdExpArg) {
const char *Name;
if (Op->getType()->isFloatTy())
Name = "ldexpf";
else if (Op->getType()->isDoubleTy())
Name = "ldexp";
else
Name = "ldexpl";
Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
if (!Op->getType()->isFloatTy())
One = ConstantExpr::getFPExtend(One, Op->getType());
Module *M = Caller->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
Op->getType(),
Type::getInt32Ty(*Context),NULL);
CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
}
return 0;
}
};
//===---------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
struct UnaryDoubleFPOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
!FT->getParamType(0)->isDoubleTy())
return 0;
// If this is something like 'floor((double)floatval)', convert to floorf.
FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
return 0;
// floor((double)floatval) -> (double)floorf(floatval)
Value *V = Cast->getOperand(0);
V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B,
Callee->getAttributes());
return B.CreateFPExt(V, Type::getDoubleTy(*Context));
}
};
//===----------------------------------------------------------------------===//
// Integer Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'ffs*' Optimizations
struct FFSOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 1 ||
!FT->getReturnType()->isIntegerTy(32) ||
!FT->getParamType(0)->isIntegerTy())
return 0;
Value *Op = CI->getArgOperand(0);
// Constant fold.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
if (CI->getValue() == 0) // ffs(0) -> 0.
return Constant::getNullValue(CI->getType());
return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1
CI->getValue().countTrailingZeros()+1);
}
// ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
const Type *ArgType = Op->getType();
Value *F = Intrinsic::getDeclaration(Callee->getParent(),
Intrinsic::cttz, &ArgType, 1);
Value *V = B.CreateCall(F, Op, "cttz");
V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp");
Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
return B.CreateSelect(Cond, V,
ConstantInt::get(Type::getInt32Ty(*Context), 0));
}
};
//===---------------------------------------===//
// 'isdigit' Optimizations
struct IsDigitOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
!FT->getParamType(0)->isIntegerTy(32))
return 0;
// isdigit(c) -> (c-'0') <u 10
Value *Op = CI->getArgOperand(0);
Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'),
"isdigittmp");
Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10),
"isdigit");
return B.CreateZExt(Op, CI->getType());
}
};
//===---------------------------------------===//
// 'isascii' Optimizations
struct IsAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
!FT->getParamType(0)->isIntegerTy(32))
return 0;
// isascii(c) -> c <u 128
Value *Op = CI->getArgOperand(0);
Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128),
"isascii");
return B.CreateZExt(Op, CI->getType());
}
};
//===---------------------------------------===//
// 'abs', 'labs', 'llabs' Optimizations
struct AbsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(integer) where the types agree.
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
FT->getParamType(0) != FT->getReturnType())
return 0;
// abs(x) -> x >s -1 ? x : -x
Value *Op = CI->getArgOperand(0);
Value *Pos = B.CreateICmpSGT(Op,
Constant::getAllOnesValue(Op->getType()),
"ispos");
Value *Neg = B.CreateNeg(Op, "neg");
return B.CreateSelect(Pos, Op, Neg);
}
};
//===---------------------------------------===//
// 'toascii' Optimizations
struct ToAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require i32(i32)
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isIntegerTy(32))
return 0;
// isascii(c) -> c & 0x7f
return B.CreateAnd(CI->getArgOperand(0),
ConstantInt::get(CI->getType(),0x7F));
}
};
//===----------------------------------------------------------------------===//
// Formatting and IO Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'printf' Optimizations
struct PrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
!(FT->getReturnType()->isIntegerTy() ||
FT->getReturnType()->isVoidTy()))
return 0;
// Check for a fixed format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr))
return 0;
// Empty format string -> noop.
if (FormatStr.empty()) // Tolerate printf's declared void.
return CI->use_empty() ? (Value*)CI :
ConstantInt::get(CI->getType(), 0);
// printf("x") -> putchar('x'), even for '%'. Return the result of putchar
// in case there is an error writing to stdout.
if (FormatStr.size() == 1) {
Value *Res = EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context),
FormatStr[0]), B, TD);
if (CI->use_empty()) return CI;
return B.CreateIntCast(Res, CI->getType(), true);
}
// printf("foo\n") --> puts("foo")
if (FormatStr[FormatStr.size()-1] == '\n' &&
FormatStr.find('%') == std::string::npos) { // no format characters.
// Create a string literal with no \n on it. We expect the constant merge
// pass to be run after this pass, to merge duplicate strings.
FormatStr.erase(FormatStr.end()-1);
Constant *C = ConstantArray::get(*Context, FormatStr, true);
C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
GlobalVariable::InternalLinkage, C, "str");
EmitPutS(C, B, TD);
return CI->use_empty() ? (Value*)CI :
ConstantInt::get(CI->getType(), FormatStr.size()+1);
}
// Optimize specific format strings.
// printf("%c", chr) --> putchar(chr)
if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isIntegerTy()) {
Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD);
if (CI->use_empty()) return CI;
return B.CreateIntCast(Res, CI->getType(), true);
}
// printf("%s\n", str) --> puts(str)
if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isPointerTy() &&
CI->use_empty()) {
EmitPutS(CI->getArgOperand(1), B, TD);
return CI;
}
return 0;
}
};
//===---------------------------------------===//
// 'sprintf' Optimizations
struct SPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed pointer arguments and an integer result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
// Check for a fixed format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
return 0;
// If we just have a format string (nothing else crazy) transform it.
if (CI->getNumArgOperands() == 2) {
// Make sure there's no % in the constant array. We could try to handle
// %% -> % in the future if we cared.
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return 0; // we found a format specifier, bail out.
// These optimizations require TargetData.
if (!TD) return 0;
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), // Copy the
ConstantInt::get(TD->getIntPtrType(*Context), // nul byte.
FormatStr.size() + 1), 1, false, B, TD);
return ConstantInt::get(CI->getType(), FormatStr.size());
}
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
CI->getNumArgOperands() < 3)
return 0;
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
Value *V = B.CreateTrunc(CI->getArgOperand(2),
Type::getInt8Ty(*Context), "char");
Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
B.CreateStore(V, Ptr);
Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1),
"nul");
B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr);
return ConstantInt::get(CI->getType(), 1);
}
if (FormatStr[1] == 's') {
// These optimizations require TargetData.
if (!TD) return 0;
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD);
Value *IncLen = B.CreateAdd(Len,
ConstantInt::get(Len->getType(), 1),
"leninc");
EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(2),
IncLen, 1, false, B, TD);
// The sprintf result is the unincremented number of bytes in the string.
return B.CreateIntCast(Len, CI->getType(), false);
}
return 0;
}
};
//===---------------------------------------===//
// 'fwrite' Optimizations
struct FWriteOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require a pointer, an integer, an integer, a pointer, returning integer.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
!FT->getParamType(2)->isIntegerTy() ||
!FT->getParamType(3)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
// Get the element size and count.
ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
if (!SizeC || !CountC) return 0;
uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
// If this is writing zero records, remove the call (it's a noop).
if (Bytes == 0)
return ConstantInt::get(CI->getType(), 0);
// If this is writing one byte, turn it into fputc.
if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
EmitFPutC(Char, CI->getArgOperand(3), B, TD);
return ConstantInt::get(CI->getType(), 1);
}
return 0;
}
};
//===---------------------------------------===//
// 'fputs' Optimizations
struct FPutsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
// Require two pointers. Also, we can't optimize if return value is used.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!CI->use_empty())
return 0;
// fputs(s,F) --> fwrite(s,1,strlen(s),F)
uint64_t Len = GetStringLength(CI->getArgOperand(0));
if (!Len) return 0;
EmitFWrite(CI->getArgOperand(0),
ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
CI->getArgOperand(1), B, TD);
return CI; // Known to have no uses (see above).
}
};
//===---------------------------------------===//
// 'fprintf' Optimizations
struct FPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed paramters as pointers and integer result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
// All the optimizations depend on the format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
return 0;
// fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
if (CI->getNumArgOperands() == 2) {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
return 0; // We found a format specifier.
// These optimizations require TargetData.
if (!TD) return 0;
EmitFWrite(CI->getArgOperand(1),
ConstantInt::get(TD->getIntPtrType(*Context),
FormatStr.size()),
CI->getArgOperand(0), B, TD);
return ConstantInt::get(CI->getType(), FormatStr.size());
}
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
CI->getNumArgOperands() < 3)
return 0;
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// fprintf(F, "%c", chr) --> fputc(chr, F)
if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
return ConstantInt::get(CI->getType(), 1);
}
if (FormatStr[1] == 's') {
// fprintf(F, "%s", str) --> fputs(str, F)
if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
return 0;
EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
return CI;
}
return 0;
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// SimplifyLibCalls Pass Implementation
//===----------------------------------------------------------------------===//
namespace {
/// This pass optimizes well known library functions from libc and libm.
///
class SimplifyLibCalls : public FunctionPass {
StringMap<LibCallOptimization*> Optimizations;
// String and Memory LibCall Optimizations
StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr;
StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk;
StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrPBrkOpt StrPBrk;
StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr;
MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
// Math Library Optimizations
PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
// Integer Optimizations
FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
ToAsciiOpt ToAscii;
// Formatting and IO Optimizations
SPrintFOpt SPrintF; PrintFOpt PrintF;
FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
bool Modified; // This is only used by doInitialization.
public:
static char ID; // Pass identification
SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) {}
void InitOptimizations();
bool runOnFunction(Function &F);
void setDoesNotAccessMemory(Function &F);
void setOnlyReadsMemory(Function &F);
void setDoesNotThrow(Function &F);
void setDoesNotCapture(Function &F, unsigned n);
void setDoesNotAlias(Function &F, unsigned n);
bool doInitialization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
}
};
char SimplifyLibCalls::ID = 0;
} // end anonymous namespace.
INITIALIZE_PASS(SimplifyLibCalls, "simplify-libcalls",
"Simplify well-known library calls", false, false);
// Public interface to the Simplify LibCalls pass.
FunctionPass *llvm::createSimplifyLibCallsPass() {
return new SimplifyLibCalls();
}
/// Optimizations - Populate the Optimizations map with all the optimizations
/// we know.
void SimplifyLibCalls::InitOptimizations() {
// String and Memory LibCall Optimizations
Optimizations["strcat"] = &StrCat;
Optimizations["strncat"] = &StrNCat;
Optimizations["strchr"] = &StrChr;
Optimizations["strrchr"] = &StrRChr;
Optimizations["strcmp"] = &StrCmp;
Optimizations["strncmp"] = &StrNCmp;
Optimizations["strcpy"] = &StrCpy;
Optimizations["strncpy"] = &StrNCpy;
Optimizations["strlen"] = &StrLen;
Optimizations["strpbrk"] = &StrPBrk;
Optimizations["strtol"] = &StrTo;
Optimizations["strtod"] = &StrTo;
Optimizations["strtof"] = &StrTo;
Optimizations["strtoul"] = &StrTo;
Optimizations["strtoll"] = &StrTo;
Optimizations["strtold"] = &StrTo;
Optimizations["strtoull"] = &StrTo;
Optimizations["strspn"] = &StrSpn;
Optimizations["strcspn"] = &StrCSpn;
Optimizations["strstr"] = &StrStr;
Optimizations["memcmp"] = &MemCmp;
Optimizations["memcpy"] = &MemCpy;
Optimizations["memmove"] = &MemMove;
Optimizations["memset"] = &MemSet;
// _chk variants of String and Memory LibCall Optimizations.
Optimizations["__strcpy_chk"] = &StrCpyChk;
// Math Library Optimizations
Optimizations["powf"] = &Pow;
Optimizations["pow"] = &Pow;
Optimizations["powl"] = &Pow;
Optimizations["llvm.pow.f32"] = &Pow;
Optimizations["llvm.pow.f64"] = &Pow;
Optimizations["llvm.pow.f80"] = &Pow;
Optimizations["llvm.pow.f128"] = &Pow;
Optimizations["llvm.pow.ppcf128"] = &Pow;
Optimizations["exp2l"] = &Exp2;
Optimizations["exp2"] = &Exp2;
Optimizations["exp2f"] = &Exp2;
Optimizations["llvm.exp2.ppcf128"] = &Exp2;
Optimizations["llvm.exp2.f128"] = &Exp2;
Optimizations["llvm.exp2.f80"] = &Exp2;
Optimizations["llvm.exp2.f64"] = &Exp2;
Optimizations["llvm.exp2.f32"] = &Exp2;
#ifdef HAVE_FLOORF
Optimizations["floor"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_CEILF
Optimizations["ceil"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_ROUNDF
Optimizations["round"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_RINTF
Optimizations["rint"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_NEARBYINTF
Optimizations["nearbyint"] = &UnaryDoubleFP;
#endif
// Integer Optimizations
Optimizations["ffs"] = &FFS;
Optimizations["ffsl"] = &FFS;
Optimizations["ffsll"] = &FFS;
Optimizations["abs"] = &Abs;
Optimizations["labs"] = &Abs;
Optimizations["llabs"] = &Abs;
Optimizations["isdigit"] = &IsDigit;
Optimizations["isascii"] = &IsAscii;
Optimizations["toascii"] = &ToAscii;
// Formatting and IO Optimizations
Optimizations["sprintf"] = &SPrintF;
Optimizations["printf"] = &PrintF;
Optimizations["fwrite"] = &FWrite;
Optimizations["fputs"] = &FPuts;
Optimizations["fprintf"] = &FPrintF;
}
/// runOnFunction - Top level algorithm.
///
bool SimplifyLibCalls::runOnFunction(Function &F) {
if (Optimizations.empty())
InitOptimizations();
const TargetData *TD = getAnalysisIfAvailable<TargetData>();
IRBuilder<> Builder(F.getContext());
bool Changed = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// Ignore non-calls.
CallInst *CI = dyn_cast<CallInst>(I++);
if (!CI) continue;
// Ignore indirect calls and calls to non-external functions.
Function *Callee = CI->getCalledFunction();
if (Callee == 0 || !Callee->isDeclaration() ||
!(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
continue;
// Ignore unknown calls.
LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
if (!LCO) continue;
// Set the builder to the instruction after the call.
Builder.SetInsertPoint(BB, I);
// Try to optimize this call.
Value *Result = LCO->OptimizeCall(CI, TD, Builder);
if (Result == 0) continue;
DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI;
dbgs() << " into: " << *Result << "\n");
// Something changed!
Changed = true;
++NumSimplified;
// Inspect the instruction after the call (which was potentially just
// added) next.
I = CI; ++I;
if (CI != Result && !CI->use_empty()) {
CI->replaceAllUsesWith(Result);
if (!Result->hasName())
Result->takeName(CI);
}
CI->eraseFromParent();
}
}
return Changed;
}
// Utility methods for doInitialization.
void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
if (!F.doesNotAccessMemory()) {
F.setDoesNotAccessMemory();
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
if (!F.onlyReadsMemory()) {
F.setOnlyReadsMemory();
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setDoesNotThrow(Function &F) {
if (!F.doesNotThrow()) {
F.setDoesNotThrow();
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
if (!F.doesNotCapture(n)) {
F.setDoesNotCapture(n);
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
if (!F.doesNotAlias(n)) {
F.setDoesNotAlias(n);
++NumAnnotated;
Modified = true;
}
}
/// doInitialization - Add attributes to well-known functions.
///
bool SimplifyLibCalls::doInitialization(Module &M) {
Modified = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Function &F = *I;
if (!F.isDeclaration())
continue;
if (!F.hasName())
continue;
const FunctionType *FTy = F.getFunctionType();
StringRef Name = F.getName();
switch (Name[0]) {
case 's':
if (Name == "strlen") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "strchr" ||
Name == "strrchr") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isIntegerTy())
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
} else if (Name == "strcpy" ||
Name == "stpcpy" ||
Name == "strcat" ||
Name == "strtol" ||
Name == "strtod" ||
Name == "strtof" ||
Name == "strtoul" ||
Name == "strtoll" ||
Name == "strtold" ||
Name == "strncat" ||
Name == "strncpy" ||
Name == "strtoull") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "strxfrm") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "strcmp" ||
Name == "strspn" ||
Name == "strncmp" ||
Name == "strcspn" ||
Name == "strcoll" ||
Name == "strcasecmp" ||
Name == "strncasecmp") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "strstr" ||
Name == "strpbrk") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "strtok" ||
Name == "strtok_r") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "scanf" ||
Name == "setbuf" ||
Name == "setvbuf") {
if (FTy->getNumParams() < 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "strdup" ||
Name == "strndup") {
if (FTy->getNumParams() < 1 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
} else if (Name == "stat" ||
Name == "sscanf" ||
Name == "sprintf" ||
Name == "statvfs") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "snprintf") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(2)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 3);
} else if (Name == "setitimer") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(1)->isPointerTy() ||
!FTy->getParamType(2)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
setDoesNotCapture(F, 3);
} else if (Name == "system") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
// May throw; "system" is a valid pthread cancellation point.
setDoesNotCapture(F, 1);
}
break;
case 'm':
if (Name == "malloc") {
if (FTy->getNumParams() != 1 ||
!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
} else if (Name == "memcmp") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "memchr" ||
Name == "memrchr") {
if (FTy->getNumParams() != 3)
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
} else if (Name == "modf" ||
Name == "modff" ||
Name == "modfl" ||
Name == "memcpy" ||
Name == "memccpy" ||
Name == "memmove") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "memalign") {
if (!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotAlias(F, 0);
} else if (Name == "mkdir" ||
Name == "mktime") {
if (FTy->getNumParams() == 0 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'r':
if (Name == "realloc") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
} else if (Name == "read") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(1)->isPointerTy())
continue;
// May throw; "read" is a valid pthread cancellation point.
setDoesNotCapture(F, 2);
} else if (Name == "rmdir" ||
Name == "rewind" ||
Name == "remove" ||
Name == "realpath") {
if (FTy->getNumParams() < 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "rename" ||
Name == "readlink") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
}
break;
case 'w':
if (Name == "write") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(1)->isPointerTy())
continue;
// May throw; "write" is a valid pthread cancellation point.
setDoesNotCapture(F, 2);
}
break;
case 'b':
if (Name == "bcopy") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "bcmp") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setOnlyReadsMemory(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "bzero") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'c':
if (Name == "calloc") {
if (FTy->getNumParams() != 2 ||
!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
} else if (Name == "chmod" ||
Name == "chown" ||
Name == "ctermid" ||
Name == "clearerr" ||
Name == "closedir") {
if (FTy->getNumParams() == 0 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'a':
if (Name == "atoi" ||
Name == "atol" ||
Name == "atof" ||
Name == "atoll") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setOnlyReadsMemory(F);
setDoesNotCapture(F, 1);
} else if (Name == "access") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'f':
if (Name == "fopen") {
if (FTy->getNumParams() != 2 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "fdopen") {
if (FTy->getNumParams() != 2 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 2);
} else if (Name == "feof" ||
Name == "free" ||
Name == "fseek" ||
Name == "ftell" ||
Name == "fgetc" ||
Name == "fseeko" ||
Name == "ftello" ||
Name == "fileno" ||
Name == "fflush" ||
Name == "fclose" ||
Name == "fsetpos" ||
Name == "flockfile" ||
Name == "funlockfile" ||
Name == "ftrylockfile") {
if (FTy->getNumParams() == 0 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "ferror") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setOnlyReadsMemory(F);
} else if (Name == "fputc" ||
Name == "fstat" ||
Name == "frexp" ||
Name == "frexpf" ||
Name == "frexpl" ||
Name == "fstatvfs") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "fgets") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(2)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 3);
} else if (Name == "fread" ||
Name == "fwrite") {
if (FTy->getNumParams() != 4 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(3)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 4);
} else if (Name == "fputs" ||
Name == "fscanf" ||
Name == "fprintf" ||
Name == "fgetpos") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
}
break;
case 'g':
if (Name == "getc" ||
Name == "getlogin_r" ||
Name == "getc_unlocked") {
if (FTy->getNumParams() == 0 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "getenv") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setOnlyReadsMemory(F);
setDoesNotCapture(F, 1);
} else if (Name == "gets" ||
Name == "getchar") {
setDoesNotThrow(F);
} else if (Name == "getitimer") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "getpwnam") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'u':
if (Name == "ungetc") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "uname" ||
Name == "unlink" ||
Name == "unsetenv") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "utime" ||
Name == "utimes") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
}
break;
case 'p':
if (Name == "putc") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "puts" ||
Name == "printf" ||
Name == "perror") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "pread" ||
Name == "pwrite") {
if (FTy->getNumParams() != 4 ||
!FTy->getParamType(1)->isPointerTy())
continue;
// May throw; these are valid pthread cancellation points.
setDoesNotCapture(F, 2);
} else if (Name == "putchar") {
setDoesNotThrow(F);
} else if (Name == "popen") {
if (FTy->getNumParams() != 2 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "pclose") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'v':
if (Name == "vscanf") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "vsscanf" ||
Name == "vfscanf") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(1)->isPointerTy() ||
!FTy->getParamType(2)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "valloc") {
if (!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
} else if (Name == "vprintf") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "vfprintf" ||
Name == "vsprintf") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "vsnprintf") {
if (FTy->getNumParams() != 4 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(2)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 3);
}
break;
case 'o':
if (Name == "open") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(0)->isPointerTy())
continue;
// May throw; "open" is a valid pthread cancellation point.
setDoesNotCapture(F, 1);
} else if (Name == "opendir") {
if (FTy->getNumParams() != 1 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
}
break;
case 't':
if (Name == "tmpfile") {
if (!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
} else if (Name == "times") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'h':
if (Name == "htonl" ||
Name == "htons") {
setDoesNotThrow(F);
setDoesNotAccessMemory(F);
}
break;
case 'n':
if (Name == "ntohl" ||
Name == "ntohs") {
setDoesNotThrow(F);
setDoesNotAccessMemory(F);
}
break;
case 'l':
if (Name == "lstat") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "lchown") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
}
break;
case 'q':
if (Name == "qsort") {
if (FTy->getNumParams() != 4 ||
!FTy->getParamType(3)->isPointerTy())
continue;
// May throw; places call through function pointer.
setDoesNotCapture(F, 4);
}
break;
case '_':
if (Name == "__strdup" ||
Name == "__strndup") {
if (FTy->getNumParams() < 1 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
} else if (Name == "__strtok_r") {
if (FTy->getNumParams() != 3 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "_IO_getc") {
if (FTy->getNumParams() != 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "_IO_putc") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
}
break;
case 1:
if (Name == "\1__isoc99_scanf") {
if (FTy->getNumParams() < 1 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "\1stat64" ||
Name == "\1lstat64" ||
Name == "\1statvfs64" ||
Name == "\1__isoc99_sscanf") {
if (FTy->getNumParams() < 1 ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "\1fopen64") {
if (FTy->getNumParams() != 2 ||
!FTy->getReturnType()->isPointerTy() ||
!FTy->getParamType(0)->isPointerTy() ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "\1fseeko64" ||
Name == "\1ftello64") {
if (FTy->getNumParams() == 0 ||
!FTy->getParamType(0)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "\1tmpfile64") {
if (!FTy->getReturnType()->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
} else if (Name == "\1fstat64" ||
Name == "\1fstatvfs64") {
if (FTy->getNumParams() != 2 ||
!FTy->getParamType(1)->isPointerTy())
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "\1open64") {
if (FTy->getNumParams() < 2 ||
!FTy->getParamType(0)->isPointerTy())
continue;
// May throw; "open" is a valid pthread cancellation point.
setDoesNotCapture(F, 1);
}
break;
}
}
return Modified;
}
// TODO:
// Additional cases that we need to add to this file:
//
// cbrt:
// * cbrt(expN(X)) -> expN(x/3)
// * cbrt(sqrt(x)) -> pow(x,1/6)
// * cbrt(sqrt(x)) -> pow(x,1/9)
//
// cos, cosf, cosl:
// * cos(-x) -> cos(x)
//
// exp, expf, expl:
// * exp(log(x)) -> x
//
// log, logf, logl:
// * log(exp(x)) -> x
// * log(x**y) -> y*log(x)
// * log(exp(y)) -> y*log(e)
// * log(exp2(y)) -> y*log(2)
// * log(exp10(y)) -> y*log(10)
// * log(sqrt(x)) -> 0.5*log(x)
// * log(pow(x,y)) -> y*log(x)
//
// lround, lroundf, lroundl:
// * lround(cnst) -> cnst'
//
// pow, powf, powl:
// * pow(exp(x),y) -> exp(x*y)
// * pow(sqrt(x),y) -> pow(x,y*0.5)
// * pow(pow(x,y),z)-> pow(x,y*z)
//
// puts:
// * puts("") -> putchar('\n')
//
// round, roundf, roundl:
// * round(cnst) -> cnst'
//
// signbit:
// * signbit(cnst) -> cnst'
// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
//
// sqrt, sqrtf, sqrtl:
// * sqrt(expN(x)) -> expN(x*0.5)
// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
//
// stpcpy:
// * stpcpy(str, "literal") ->
// llvm.memcpy(str,"literal",strlen("literal")+1,1)
//
// tan, tanf, tanl:
// * tan(atan(x)) -> x
//
// trunc, truncf, truncl:
// * trunc(cnst) -> cnst'
//
//