llvm-6502/lib/Target/BPF/BPFISelLowering.cpp
Alexei Starovoitov 8ea8f377aa bpf: Use the getSubtarget call off of the MachineFunction rather than the TargetMachine
Summary:
Hi Eric,

this patch cleans up the layering violation that you're fixing across backends.
Anything else I need to fix on bpf backend side?

Thanks

Reviewers: echristo

Reviewed By: echristo

Differential Revision: http://reviews.llvm.org/D7355

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227865 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-02 21:24:27 +00:00

642 lines
21 KiB
C++

//===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that BPF uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "BPFISelLowering.h"
#include "BPF.h"
#include "BPFTargetMachine.h"
#include "BPFSubtarget.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
using namespace llvm;
#define DEBUG_TYPE "bpf-lower"
namespace {
// Diagnostic information for unimplemented or unsupported feature reporting.
class DiagnosticInfoUnsupported : public DiagnosticInfo {
private:
// Debug location where this diagnostic is triggered.
DebugLoc DLoc;
const Twine &Description;
const Function &Fn;
SDValue Value;
static int KindID;
static int getKindID() {
if (KindID == 0)
KindID = llvm::getNextAvailablePluginDiagnosticKind();
return KindID;
}
public:
DiagnosticInfoUnsupported(SDLoc DLoc, const Function &Fn, const Twine &Desc,
SDValue Value)
: DiagnosticInfo(getKindID(), DS_Error), DLoc(DLoc.getDebugLoc()),
Description(Desc), Fn(Fn), Value(Value) {}
void print(DiagnosticPrinter &DP) const override {
std::string Str;
raw_string_ostream OS(Str);
if (DLoc.isUnknown() == false) {
DILocation DIL(DLoc.getAsMDNode(Fn.getContext()));
StringRef Filename = DIL.getFilename();
unsigned Line = DIL.getLineNumber();
unsigned Column = DIL.getColumnNumber();
OS << Filename << ':' << Line << ':' << Column << ' ';
}
OS << "in function " << Fn.getName() << ' ' << *Fn.getFunctionType() << '\n'
<< Description;
if (Value)
Value->print(OS);
OS << '\n';
OS.flush();
DP << Str;
}
static bool classof(const DiagnosticInfo *DI) {
return DI->getKind() == getKindID();
}
};
int DiagnosticInfoUnsupported::KindID = 0;
}
BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM)
: TargetLowering(TM) {
// Set up the register classes.
addRegisterClass(MVT::i64, &BPF::GPRRegClass);
// Compute derived properties from the register classes
computeRegisterProperties();
setStackPointerRegisterToSaveRestore(BPF::R11);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::SETCC, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::ADDC, MVT::i64, Expand);
setOperationAction(ISD::ADDE, MVT::i64, Expand);
setOperationAction(ISD::SUBC, MVT::i64, Expand);
setOperationAction(ISD::SUBE, MVT::i64, Expand);
// no UNDEF allowed
setOperationAction(ISD::UNDEF, MVT::i64, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Custom);
setOperationAction(ISD::CTLZ, MVT::i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
// Extended load operations for i1 types must be promoted
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
}
setBooleanContents(ZeroOrOneBooleanContent);
// Function alignments (log2)
setMinFunctionAlignment(3);
setPrefFunctionAlignment(3);
// inline memcpy() for kernel to see explicit copy
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 128;
MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 128;
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 128;
}
SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::BR_CC:
return LowerBR_CC(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG);
default:
llvm_unreachable("unimplemented operand");
}
}
// Calling Convention Implementation
#include "BPFGenCallingConv.inc"
SDValue BPFTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
break;
}
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_BPF64);
for (auto &VA : ArgLocs) {
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
switch (RegVT.getSimpleVT().SimpleTy) {
default: {
errs() << "LowerFormalArguments Unhandled argument type: "
<< RegVT.getSimpleVT().SimpleTy << '\n';
llvm_unreachable(0);
}
case MVT::i64:
unsigned VReg = RegInfo.createVirtualRegister(&BPF::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
// If this is an 8/16/32-bit value, it is really passed promoted to 64
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
InVals.push_back(ArgValue);
}
} else {
DiagnosticInfoUnsupported Err(DL, *MF.getFunction(),
"defined with too many args", SDValue());
DAG.getContext()->diagnose(Err);
}
}
if (IsVarArg || MF.getFunction()->hasStructRetAttr()) {
DiagnosticInfoUnsupported Err(
DL, *MF.getFunction(),
"functions with VarArgs or StructRet are not supported", SDValue());
DAG.getContext()->diagnose(Err);
}
return Chain;
}
SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
auto &Outs = CLI.Outs;
auto &OutVals = CLI.OutVals;
auto &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
// BPF target does not support tail call optimization.
IsTailCall = false;
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
break;
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_BPF64);
unsigned NumBytes = CCInfo.getNextStackOffset();
if (Outs.size() >= 6) {
DiagnosticInfoUnsupported Err(CLI.DL, *MF.getFunction(),
"too many args to ", Callee);
DAG.getContext()->diagnose(Err);
}
for (auto &Arg : Outs) {
ISD::ArgFlagsTy Flags = Arg.Flags;
if (!Flags.isByVal())
continue;
DiagnosticInfoUnsupported Err(CLI.DL, *MF.getFunction(),
"pass by value not supported ", Callee);
DAG.getContext()->diagnose(Err);
}
Chain = DAG.getCALLSEQ_START(
Chain, DAG.getConstant(NumBytes, getPointerTy(), true), CLI.DL);
SmallVector<std::pair<unsigned, SDValue>, 5> RegsToPass;
// Walk arg assignments
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
break;
}
// Push arguments into RegsToPass vector
if (VA.isRegLoc())
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
else
llvm_unreachable("call arg pass bug");
}
SDValue InFlag;
// Build a sequence of copy-to-reg nodes chained together with token chain and
// flag operands which copy the outgoing args into registers. The InFlag in
// necessary since all emitted instructions must be stuck together.
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, getPointerTy(),
G->getOffset(), 0);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy(), 0);
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (auto &Reg : RegsToPass)
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(
Chain, DAG.getConstant(NumBytes, getPointerTy(), true),
DAG.getConstant(0, getPointerTy(), true), InFlag, CLI.DL);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
InVals);
}
SDValue
BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
MachineFunction &MF = DAG.getMachineFunction();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
if (MF.getFunction()->getReturnType()->isAggregateType()) {
DiagnosticInfoUnsupported Err(DL, *MF.getFunction(),
"only integer returns supported", SDValue());
DAG.getContext()->diagnose(Err);
}
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_BPF64);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together,
// avoiding something bad.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
unsigned Opc = BPFISD::RET_FLAG;
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}
SDValue BPFTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
if (Ins.size() >= 2) {
DiagnosticInfoUnsupported Err(DL, *MF.getFunction(),
"only small returns supported", SDValue());
DAG.getContext()->diagnose(Err);
}
CCInfo.AnalyzeCallResult(Ins, RetCC_BPF64);
// Copy all of the result registers out of their specified physreg.
for (auto &Val : RVLocs) {
Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
Val.getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
switch (CC) {
default:
break;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETLT:
case ISD::SETLE:
CC = ISD::getSetCCSwappedOperands(CC);
std::swap(LHS, RHS);
break;
}
}
SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc DL(Op);
NegateCC(LHS, RHS, CC);
return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
DAG.getConstant(CC, MVT::i64), Dest);
}
SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueV = Op.getOperand(2);
SDValue FalseV = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDLoc DL(Op);
NegateCC(LHS, RHS, CC);
SDValue TargetCC = DAG.getConstant(CC, MVT::i64);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
}
const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default:
return NULL;
case BPFISD::RET_FLAG:
return "BPFISD::RET_FLAG";
case BPFISD::CALL:
return "BPFISD::CALL";
case BPFISD::SELECT_CC:
return "BPFISD::SELECT_CC";
case BPFISD::BR_CC:
return "BPFISD::BR_CC";
case BPFISD::Wrapper:
return "BPFISD::Wrapper";
}
}
SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
}
MachineBasicBlock *
BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
unsigned Opc = MI->getOpcode();
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
assert(Opc == BPF::Select && "Unexpected instr type to insert");
// To "insert" a SELECT instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = BB;
++I;
// ThisMBB:
// ...
// TrueVal = ...
// jmp_XX r1, r2 goto Copy1MBB
// fallthrough --> Copy0MBB
MachineBasicBlock *ThisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, Copy0MBB);
F->insert(I, Copy1MBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
Copy1MBB->splice(Copy1MBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(Copy0MBB);
BB->addSuccessor(Copy1MBB);
// Insert Branch if Flag
unsigned LHS = MI->getOperand(1).getReg();
unsigned RHS = MI->getOperand(2).getReg();
int CC = MI->getOperand(3).getImm();
switch (CC) {
case ISD::SETGT:
BuildMI(BB, DL, TII.get(BPF::JSGT_rr))
.addReg(LHS)
.addReg(RHS)
.addMBB(Copy1MBB);
break;
case ISD::SETUGT:
BuildMI(BB, DL, TII.get(BPF::JUGT_rr))
.addReg(LHS)
.addReg(RHS)
.addMBB(Copy1MBB);
break;
case ISD::SETGE:
BuildMI(BB, DL, TII.get(BPF::JSGE_rr))
.addReg(LHS)
.addReg(RHS)
.addMBB(Copy1MBB);
break;
case ISD::SETUGE:
BuildMI(BB, DL, TII.get(BPF::JUGE_rr))
.addReg(LHS)
.addReg(RHS)
.addMBB(Copy1MBB);
break;
case ISD::SETEQ:
BuildMI(BB, DL, TII.get(BPF::JEQ_rr))
.addReg(LHS)
.addReg(RHS)
.addMBB(Copy1MBB);
break;
case ISD::SETNE:
BuildMI(BB, DL, TII.get(BPF::JNE_rr))
.addReg(LHS)
.addReg(RHS)
.addMBB(Copy1MBB);
break;
default:
report_fatal_error("unimplemented select CondCode " + Twine(CC));
}
// Copy0MBB:
// %FalseValue = ...
// # fallthrough to Copy1MBB
BB = Copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(Copy1MBB);
// Copy1MBB:
// %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
// ...
BB = Copy1MBB;
BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(5).getReg())
.addMBB(Copy0MBB)
.addReg(MI->getOperand(4).getReg())
.addMBB(ThisMBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}