mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
beefa3ada0
Immediate fields that have no natural MVT type tended to use i8 if the field was small enough. This was a bit confusing since i8 isn't a legal type for the target. Fields for short immediates in a 32-bit or 64-bit operation use i32 or i64 instead, so it would be better to do the same for all fields. No behavioral change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212702 91177308-0d34-0410-b5e6-96231b3b80d8
156 lines
7.4 KiB
TableGen
156 lines
7.4 KiB
TableGen
//===-- SystemZPatterns.td - SystemZ-specific pattern rules ---*- tblgen-*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Record that INSN performs a 64-bit version of unary operator OPERATOR
|
|
// in which the operand is sign-extended from 32 to 64 bits.
|
|
multiclass SXU<SDPatternOperator operator, Instruction insn> {
|
|
def : Pat<(operator (sext (i32 GR32:$src))),
|
|
(insn GR32:$src)>;
|
|
def : Pat<(operator (sext_inreg GR64:$src, i32)),
|
|
(insn (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
|
|
}
|
|
|
|
// Record that INSN performs a 64-bit version of binary operator OPERATOR
|
|
// in which the first operand has class CLS and which the second operand
|
|
// is sign-extended from a 32-bit register.
|
|
multiclass SXB<SDPatternOperator operator, RegisterOperand cls,
|
|
Instruction insn> {
|
|
def : Pat<(operator cls:$src1, (sext GR32:$src2)),
|
|
(insn cls:$src1, GR32:$src2)>;
|
|
def : Pat<(operator cls:$src1, (sext_inreg GR64:$src2, i32)),
|
|
(insn cls:$src1, (EXTRACT_SUBREG GR64:$src2, subreg_l32))>;
|
|
}
|
|
|
|
// Like SXB, but for zero extension.
|
|
multiclass ZXB<SDPatternOperator operator, RegisterOperand cls,
|
|
Instruction insn> {
|
|
def : Pat<(operator cls:$src1, (zext GR32:$src2)),
|
|
(insn cls:$src1, GR32:$src2)>;
|
|
def : Pat<(operator cls:$src1, (and GR64:$src2, 0xffffffff)),
|
|
(insn cls:$src1, (EXTRACT_SUBREG GR64:$src2, subreg_l32))>;
|
|
}
|
|
|
|
// Record that INSN performs a binary read-modify-write operation,
|
|
// with LOAD, OPERATOR and STORE being the read, modify and write
|
|
// respectively. MODE is the addressing mode and IMM is the type
|
|
// of the second operand.
|
|
class RMWI<SDPatternOperator load, SDPatternOperator operator,
|
|
SDPatternOperator store, AddressingMode mode,
|
|
PatFrag imm, Instruction insn>
|
|
: Pat<(store (operator (load mode:$addr), imm:$src), mode:$addr),
|
|
(insn mode:$addr, (UIMM8 imm:$src))>;
|
|
|
|
// Record that INSN performs binary operation OPERATION on a byte
|
|
// memory location. IMM is the type of the second operand.
|
|
multiclass RMWIByte<SDPatternOperator operator, AddressingMode mode,
|
|
Instruction insn> {
|
|
def : RMWI<anyextloadi8, operator, truncstorei8, mode, imm32, insn>;
|
|
def : RMWI<anyextloadi8, operator, truncstorei8, mode, imm64, insn>;
|
|
}
|
|
|
|
// Record that INSN performs insertion TYPE into a register of class CLS.
|
|
// The inserted operand is loaded using LOAD from an address of mode MODE.
|
|
multiclass InsertMem<string type, Instruction insn, RegisterOperand cls,
|
|
SDPatternOperator load, AddressingMode mode> {
|
|
def : Pat<(!cast<SDPatternOperator>("or_as_"##type)
|
|
cls:$src1, (load mode:$src2)),
|
|
(insn cls:$src1, mode:$src2)>;
|
|
def : Pat<(!cast<SDPatternOperator>("or_as_rev"##type)
|
|
(load mode:$src2), cls:$src1),
|
|
(insn cls:$src1, mode:$src2)>;
|
|
}
|
|
|
|
// INSN stores the low 32 bits of a GPR to a memory with addressing mode MODE.
|
|
// Record that it is equivalent to using OPERATOR to store a GR64.
|
|
class StoreGR64<Instruction insn, SDPatternOperator operator,
|
|
AddressingMode mode>
|
|
: Pat<(operator GR64:$R1, mode:$XBD2),
|
|
(insn (EXTRACT_SUBREG GR64:$R1, subreg_l32), mode:$XBD2)>;
|
|
|
|
// INSN and INSNY are an RX/RXY pair of instructions that store the low
|
|
// 32 bits of a GPR to memory. Record that they are equivalent to using
|
|
// OPERATOR to store a GR64.
|
|
multiclass StoreGR64Pair<Instruction insn, Instruction insny,
|
|
SDPatternOperator operator> {
|
|
def : StoreGR64<insn, operator, bdxaddr12pair>;
|
|
def : StoreGR64<insny, operator, bdxaddr20pair>;
|
|
}
|
|
|
|
// INSN stores the low 32 bits of a GPR using PC-relative addressing.
|
|
// Record that it is equivalent to using OPERATOR to store a GR64.
|
|
class StoreGR64PC<Instruction insn, SDPatternOperator operator>
|
|
: Pat<(operator GR64:$R1, pcrel32:$XBD2),
|
|
(insn (EXTRACT_SUBREG GR64:$R1, subreg_l32), pcrel32:$XBD2)> {
|
|
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
|
|
// However, BDXs have two extra operands and are therefore 6 units more
|
|
// complex.
|
|
let AddedComplexity = 7;
|
|
}
|
|
|
|
// INSN and INSNINV conditionally store the low 32 bits of a GPR to memory,
|
|
// with INSN storing when the condition is true and INSNINV storing when the
|
|
// condition is false. Record that they are equivalent to a LOAD/select/STORE
|
|
// sequence for GR64s.
|
|
multiclass CondStores64<Instruction insn, Instruction insninv,
|
|
SDPatternOperator store, SDPatternOperator load,
|
|
AddressingMode mode> {
|
|
def : Pat<(store (z_select_ccmask GR64:$new, (load mode:$addr),
|
|
imm32zx4:$valid, imm32zx4:$cc),
|
|
mode:$addr),
|
|
(insn (EXTRACT_SUBREG GR64:$new, subreg_l32), mode:$addr,
|
|
imm32zx4:$valid, imm32zx4:$cc)>;
|
|
def : Pat<(store (z_select_ccmask (load mode:$addr), GR64:$new,
|
|
imm32zx4:$valid, imm32zx4:$cc),
|
|
mode:$addr),
|
|
(insninv (EXTRACT_SUBREG GR64:$new, subreg_l32), mode:$addr,
|
|
imm32zx4:$valid, imm32zx4:$cc)>;
|
|
}
|
|
|
|
// Try to use MVC instruction INSN for a load of type LOAD followed by a store
|
|
// of the same size. VT is the type of the intermediate (legalized) value and
|
|
// LENGTH is the number of bytes loaded by LOAD.
|
|
multiclass MVCLoadStore<SDPatternOperator load, ValueType vt, Instruction insn,
|
|
bits<5> length> {
|
|
def : Pat<(mvc_store (vt (load bdaddr12only:$src)), bdaddr12only:$dest),
|
|
(insn bdaddr12only:$dest, bdaddr12only:$src, length)>;
|
|
}
|
|
|
|
// Use NC-like instruction INSN for block_op operation OPERATOR.
|
|
// The other operand is a load of type LOAD, which accesses LENGTH bytes.
|
|
// VT is the intermediate legalized type in which the binary operation
|
|
// is actually done.
|
|
multiclass BinaryLoadStore<SDPatternOperator operator, SDPatternOperator load,
|
|
ValueType vt, Instruction insn, bits<5> length> {
|
|
def : Pat<(operator (vt (load bdaddr12only:$src)), bdaddr12only:$dest),
|
|
(insn bdaddr12only:$dest, bdaddr12only:$src, length)>;
|
|
}
|
|
|
|
// A convenient way of generating all block peepholes for a particular
|
|
// LOAD/VT/LENGTH combination.
|
|
multiclass BlockLoadStore<SDPatternOperator load, ValueType vt,
|
|
Instruction mvc, Instruction nc, Instruction oc,
|
|
Instruction xc, bits<5> length> {
|
|
defm : MVCLoadStore<load, vt, mvc, length>;
|
|
defm : BinaryLoadStore<block_and1, load, vt, nc, length>;
|
|
defm : BinaryLoadStore<block_and2, load, vt, nc, length>;
|
|
defm : BinaryLoadStore<block_or1, load, vt, oc, length>;
|
|
defm : BinaryLoadStore<block_or2, load, vt, oc, length>;
|
|
defm : BinaryLoadStore<block_xor1, load, vt, xc, length>;
|
|
defm : BinaryLoadStore<block_xor2, load, vt, xc, length>;
|
|
}
|
|
|
|
// Record that INSN is a LOAD AND TEST that can be used to compare
|
|
// registers in CLS against zero. The instruction has separate R1 and R2
|
|
// operands, but they must be the same when the instruction is used like this.
|
|
multiclass CompareZeroFP<Instruction insn, RegisterOperand cls> {
|
|
def : Pat<(z_fcmp cls:$reg, (fpimm0)), (insn cls:$reg, cls:$reg)>;
|
|
// The sign of the zero makes no difference.
|
|
def : Pat<(z_fcmp cls:$reg, (fpimmneg0)), (insn cls:$reg, cls:$reg)>;
|
|
}
|