llvm-6502/lib/Transforms/ExprTypeConvert.cpp
Reid Spencer 8a903db499 Convert the last uses of CastInst::createInferredCast to a normal cast
creation. These changes are still temporary but at least this pushes
knowledge of signedness out closer to where it can be determined properly
and allows signedness to be removed from VMCore.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32654 91177308-0d34-0410-b5e6-96231b3b80d8
2006-12-18 08:47:13 +00:00

985 lines
36 KiB
C++

//===- ExprTypeConvert.cpp - Code to change an LLVM Expr Type -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the part of level raising that checks to see if it is
// possible to coerce an entire expression tree into a different type. If
// convertible, other routines from this file will do the conversion.
//
//===----------------------------------------------------------------------===//
#include "TransformInternals.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;
static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
ValueTypeCache &ConvertedTypes,
const TargetData &TD);
static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
ValueMapCache &VMC, const TargetData &TD);
// ExpressionConvertibleToType - Return true if it is possible
bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
ValueTypeCache &CTMap, const TargetData &TD) {
// Expression type must be holdable in a register.
if (!Ty->isFirstClassType())
return false;
ValueTypeCache::iterator CTMI = CTMap.find(V);
if (CTMI != CTMap.end()) return CTMI->second == Ty;
// If it's a constant... all constants can be converted to a different
// type.
//
if (isa<Constant>(V) && !isa<GlobalValue>(V))
return true;
CTMap[V] = Ty;
if (V->getType() == Ty) return true; // Expression already correct type!
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false; // Otherwise, we can't convert!
switch (I->getOpcode()) {
case Instruction::BitCast:
if (!cast<BitCastInst>(I)->isLosslessCast())
return false;
// We do not allow conversion of a cast that casts from a ptr to array
// of X to a *X. For example: cast [4 x %List *] * %val to %List * *
//
if (const PointerType *SPT =
dyn_cast<PointerType>(I->getOperand(0)->getType()))
if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
if (AT->getElementType() == DPT->getElementType())
return false;
// Otherwise it is a lossless cast and we can allow it
break;
case Instruction::Add:
case Instruction::Sub:
if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD) ||
!ExpressionConvertibleToType(I->getOperand(1), Ty, CTMap, TD))
return false;
break;
case Instruction::LShr:
case Instruction::AShr:
if (!Ty->isInteger()) return false;
if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
return false;
break;
case Instruction::Shl:
if (!Ty->isInteger()) return false;
if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
return false;
break;
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
if (!ExpressionConvertibleToType(LI->getPointerOperand(),
PointerType::get(Ty), CTMap, TD))
return false;
break;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(I);
// Be conservative if we find a giant PHI node.
if (PN->getNumIncomingValues() > 32) return false;
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
return false;
break;
}
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertible to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) return false; // GEP must always return a pointer...
const Type *PVTy = PTy->getElementType();
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
const Type *BaseType = GEP->getPointerOperand()->getType();
const Type *ElTy = 0;
while (!Indices.empty() &&
Indices.back() == Constant::getNullValue(Indices.back()->getType())){
Indices.pop_back();
ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, true);
if (ElTy == PVTy)
break; // Found a match!!
ElTy = 0;
}
if (ElTy) break; // Found a number of zeros we can strip off!
// Otherwise, it could be that we have something like this:
// getelementptr [[sbyte] *] * %reg115, long %reg138 ; [sbyte]**
// and want to convert it into something like this:
// getelemenptr [[int] *] * %reg115, long %reg138 ; [int]**
//
if (GEP->getNumOperands() == 2 &&
PTy->getElementType()->isSized() &&
TD.getTypeSize(PTy->getElementType()) ==
TD.getTypeSize(GEP->getType()->getElementType())) {
const PointerType *NewSrcTy = PointerType::get(PVTy);
if (!ExpressionConvertibleToType(I->getOperand(0), NewSrcTy, CTMap, TD))
return false;
break;
}
return false; // No match, maybe next time.
}
case Instruction::Call: {
if (isa<Function>(I->getOperand(0)))
return false; // Don't even try to change direct calls.
// If this is a function pointer, we can convert the return type if we can
// convert the source function pointer.
//
const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
const FunctionType *FT = cast<FunctionType>(PT->getElementType());
std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
const FunctionType *NewTy =
FunctionType::get(Ty, ArgTys, FT->isVarArg());
if (!ExpressionConvertibleToType(I->getOperand(0),
PointerType::get(NewTy), CTMap, TD))
return false;
break;
}
default:
return false;
}
// Expressions are only convertible if all of the users of the expression can
// have this value converted. This makes use of the map to avoid infinite
// recursion.
//
for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It)
if (!OperandConvertibleToType(*It, I, Ty, CTMap, TD))
return false;
return true;
}
Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty,
ValueMapCache &VMC, const TargetData &TD) {
if (V->getType() == Ty) return V; // Already where we need to be?
ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(V);
if (VMCI != VMC.ExprMap.end()) {
assert(VMCI->second->getType() == Ty);
if (Instruction *I = dyn_cast<Instruction>(V))
ValueHandle IHandle(VMC, I); // Remove I if it is unused now!
return VMCI->second;
}
DOUT << "CETT: " << (void*)V << " " << *V;
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) {
Constant *CPV = cast<Constant>(V);
// Constants are converted by constant folding the cast that is required.
// We assume here that all casts are implemented for constant prop.
Instruction::CastOps opcode = CastInst::getCastOpcode(CPV,
CPV->getType()->isSigned(), Ty, Ty->isSigned());
Value *Result = ConstantExpr::getCast(opcode, CPV, Ty);
// Add the instruction to the expression map
//VMC.ExprMap[V] = Result;
return Result;
}
BasicBlock *BB = I->getParent();
std::string Name = I->getName(); if (!Name.empty()) I->setName("");
Instruction *Res; // Result of conversion
ValueHandle IHandle(VMC, I); // Prevent I from being removed!
Constant *Dummy = Constant::getNullValue(Ty);
switch (I->getOpcode()) {
case Instruction::BitCast: {
assert(VMC.NewCasts.count(ValueHandle(VMC, I)) == 0);
Instruction::CastOps opcode = CastInst::getCastOpcode(I->getOperand(0),
I->getOperand(0)->getType()->isSigned(), Ty, Ty->isSigned());
Res = CastInst::create(opcode, I->getOperand(0), Ty, Name);
VMC.NewCasts.insert(ValueHandle(VMC, Res));
break;
}
case Instruction::Add:
case Instruction::Sub:
Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
Dummy, Dummy, Name);
VMC.ExprMap[I] = Res; // Add node to expression eagerly
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC, TD));
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), Dummy,
I->getOperand(1), Name);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
break;
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
Res = new LoadInst(Constant::getNullValue(PointerType::get(Ty)), Name);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(LI->getPointerOperand(),
PointerType::get(Ty), VMC, TD));
assert(Res->getOperand(0)->getType() == PointerType::get(Ty));
assert(Ty == Res->getType());
assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
break;
}
case Instruction::PHI: {
PHINode *OldPN = cast<PHINode>(I);
PHINode *NewPN = new PHINode(Ty, Name);
VMC.ExprMap[I] = NewPN; // Add node to expression eagerly
while (OldPN->getNumOperands()) {
BasicBlock *BB = OldPN->getIncomingBlock(0);
Value *OldVal = OldPN->getIncomingValue(0);
ValueHandle OldValHandle(VMC, OldVal);
OldPN->removeIncomingValue(BB, false);
Value *V = ConvertExpressionToType(OldVal, Ty, VMC, TD);
NewPN->addIncoming(V, BB);
}
Res = NewPN;
break;
}
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertible to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
const Type *BaseType = GEP->getPointerOperand()->getType();
const Type *PVTy = cast<PointerType>(Ty)->getElementType();
Res = 0;
while (!Indices.empty() &&
Indices.back() == Constant::getNullValue(Indices.back()->getType())){
Indices.pop_back();
if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
if (Indices.size() == 0)
// We want to no-op cast this so use BitCast
Res = new BitCastInst(GEP->getPointerOperand(), BaseType);
else
Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name);
break;
}
}
// Otherwise, it could be that we have something like this:
// getelementptr [[sbyte] *] * %reg115, uint %reg138 ; [sbyte]**
// and want to convert it into something like this:
// getelemenptr [[int] *] * %reg115, uint %reg138 ; [int]**
//
if (Res == 0) {
const PointerType *NewSrcTy = PointerType::get(PVTy);
std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy),
Indices, Name);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
NewSrcTy, VMC, TD));
}
assert(Res && "Didn't find match!");
break;
}
case Instruction::Call: {
assert(!isa<Function>(I->getOperand(0)));
// If this is a function pointer, we can convert the return type if we can
// convert the source function pointer.
//
const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
const FunctionType *FT = cast<FunctionType>(PT->getElementType());
std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
const FunctionType *NewTy =
FunctionType::get(Ty, ArgTys, FT->isVarArg());
const PointerType *NewPTy = PointerType::get(NewTy);
if (Ty == Type::VoidTy)
Name = ""; // Make sure not to name calls that now return void!
Res = new CallInst(Constant::getNullValue(NewPTy),
std::vector<Value*>(I->op_begin()+1, I->op_end()),
Name);
if (cast<CallInst>(I)->isTailCall())
cast<CallInst>(Res)->setTailCall();
cast<CallInst>(Res)->setCallingConv(cast<CallInst>(I)->getCallingConv());
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),NewPTy,VMC,TD));
break;
}
default:
assert(0 && "Expression convertible, but don't know how to convert?");
return 0;
}
assert(Res->getType() == Ty && "Didn't convert expr to correct type!");
BB->getInstList().insert(I, Res);
// Add the instruction to the expression map
VMC.ExprMap[I] = Res;
//// WTF is this code! FIXME: remove this.
unsigned NumUses = I->getNumUses();
for (unsigned It = 0; It < NumUses; ) {
unsigned OldSize = NumUses;
Value::use_iterator UI = I->use_begin();
std::advance(UI, It);
ConvertOperandToType(*UI, I, Res, VMC, TD);
NumUses = I->getNumUses();
if (NumUses == OldSize) ++It;
}
DOUT << "ExpIn: " << (void*)I << " " << *I
<< "ExpOut: " << (void*)Res << " " << *Res;
return Res;
}
// ValueConvertibleToType - Return true if it is possible
bool llvm::ValueConvertibleToType(Value *V, const Type *Ty,
ValueTypeCache &ConvertedTypes,
const TargetData &TD) {
ValueTypeCache::iterator I = ConvertedTypes.find(V);
if (I != ConvertedTypes.end()) return I->second == Ty;
ConvertedTypes[V] = Ty;
// It is safe to convert the specified value to the specified type IFF all of
// the uses of the value can be converted to accept the new typed value.
//
if (V->getType() != Ty) {
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
if (!OperandConvertibleToType(*I, V, Ty, ConvertedTypes, TD))
return false;
}
return true;
}
// OperandConvertibleToType - Return true if it is possible to convert operand
// V of User (instruction) U to the specified type. This is true iff it is
// possible to change the specified instruction to accept this. CTMap is a map
// of converted types, so that circular definitions will see the future type of
// the expression, not the static current type.
//
static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
ValueTypeCache &CTMap,
const TargetData &TD) {
// if (V->getType() == Ty) return true; // Operand already the right type?
// Expression type must be holdable in a register.
if (!Ty->isFirstClassType())
return false;
Instruction *I = dyn_cast<Instruction>(U);
if (I == 0) return false; // We can't convert non-instructions!
switch (I->getOpcode()) {
case Instruction::BitCast:
assert(I->getOperand(0) == V);
// We can convert the expr if the cast destination type is losslessly
// convertible to the requested type. Also, do not change a cast that
// is a noop cast. For all intents and purposes it should be eliminated.
if (!cast<BitCastInst>(I)->isLosslessCast() ||
I->getType() == I->getOperand(0)->getType())
return false;
// We also do not allow conversion of a cast that casts from a ptr to array
// of X to a *X. For example: cast [4 x %List *] * %val to %List * *
//
if (const PointerType *SPT =
dyn_cast<PointerType>(I->getOperand(0)->getType()))
if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
if (AT->getElementType() == DPT->getElementType())
return false;
return true;
case Instruction::Add:
case Instruction::Sub: {
if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
return ValueConvertibleToType(I, Ty, CTMap, TD) &&
ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
}
case Instruction::SetEQ:
case Instruction::SetNE: {
Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
return ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
}
case Instruction::LShr:
case Instruction::AShr:
if (Ty->isSigned() != V->getType()->isSigned()) return false;
// FALL THROUGH
case Instruction::Shl:
if (I->getOperand(1) == V) return false; // Cannot change shift amount type
if (!Ty->isInteger()) return false;
return ValueConvertibleToType(I, Ty, CTMap, TD);
case Instruction::Free:
assert(I->getOperand(0) == V);
return isa<PointerType>(Ty); // Free can free any pointer type!
case Instruction::Load:
// Cannot convert the types of any subscripts...
if (I->getOperand(0) != V) return false;
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
LoadInst *LI = cast<LoadInst>(I);
const Type *LoadedTy = PT->getElementType();
// They could be loading the first element of a composite type...
if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
unsigned Offset = 0; // No offset, get first leaf.
std::vector<Value*> Indices; // Discarded...
LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
assert(Offset == 0 && "Offset changed from zero???");
}
if (!LoadedTy->isFirstClassType())
return false;
if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
return false;
return ValueConvertibleToType(LI, LoadedTy, CTMap, TD);
}
return false;
case Instruction::Store: {
if (V == I->getOperand(0)) {
ValueTypeCache::iterator CTMI = CTMap.find(I->getOperand(1));
if (CTMI != CTMap.end()) { // Operand #1 is in the table already?
// If so, check to see if it's Ty*, or, more importantly, if it is a
// pointer to a structure where the first element is a Ty... this code
// is necessary because we might be trying to change the source and
// destination type of the store (they might be related) and the dest
// pointer type might be a pointer to structure. Below we allow pointer
// to structures where the 0th element is compatible with the value,
// now we have to support the symmetrical part of this.
//
const Type *ElTy = cast<PointerType>(CTMI->second)->getElementType();
// Already a pointer to what we want? Trivially accept...
if (ElTy == Ty) return true;
// Tricky case now, if the destination is a pointer to structure,
// obviously the source is not allowed to be a structure (cannot copy
// a whole structure at a time), so the level raiser must be trying to
// store into the first field. Check for this and allow it now:
//
if (isa<StructType>(ElTy)) {
unsigned Offset = 0;
std::vector<Value*> Indices;
ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
assert(Offset == 0 && "Offset changed!");
if (ElTy == 0) // Element at offset zero in struct doesn't exist!
return false; // Can only happen for {}*
if (ElTy == Ty) // Looks like the 0th element of structure is
return true; // compatible! Accept now!
// Otherwise we know that we can't work, so just stop trying now.
return false;
}
}
// Can convert the store if we can convert the pointer operand to match
// the new value type...
return ExpressionConvertibleToType(I->getOperand(1), PointerType::get(Ty),
CTMap, TD);
} else if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
const Type *ElTy = PT->getElementType();
assert(V == I->getOperand(1));
if (isa<StructType>(ElTy)) {
// We can change the destination pointer if we can store our first
// argument into the first element of the structure...
//
unsigned Offset = 0;
std::vector<Value*> Indices;
ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
assert(Offset == 0 && "Offset changed!");
if (ElTy == 0) // Element at offset zero in struct doesn't exist!
return false; // Can only happen for {}*
}
// Must move the same amount of data...
if (!ElTy->isSized() ||
TD.getTypeSize(ElTy) != TD.getTypeSize(I->getOperand(0)->getType()))
return false;
// Can convert store if the incoming value is convertible and if the
// result will preserve semantics...
const Type *Op0Ty = I->getOperand(0)->getType();
if (!(Op0Ty->isIntegral() ^ ElTy->isIntegral()) &&
!(Op0Ty->isFloatingPoint() ^ ElTy->isFloatingPoint()))
return ExpressionConvertibleToType(I->getOperand(0), ElTy, CTMap, TD);
}
return false;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(I);
// Be conservative if we find a giant PHI node.
if (PN->getNumIncomingValues() > 32) return false;
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
return false;
return ValueConvertibleToType(PN, Ty, CTMap, TD);
}
case Instruction::Call: {
User::op_iterator OI = std::find(I->op_begin(), I->op_end(), V);
assert (OI != I->op_end() && "Not using value!");
unsigned OpNum = OI - I->op_begin();
// Are we trying to change the function pointer value to a new type?
if (OpNum == 0) {
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (PTy == 0) return false; // Can't convert to a non-pointer type...
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0) return false; // Can't convert to a non ptr to function...
// Do not allow converting to a call where all of the operands are ...'s
if (FTy->getNumParams() == 0 && FTy->isVarArg())
return false; // Do not permit this conversion!
// Perform sanity checks to make sure that new function type has the
// correct number of arguments...
//
unsigned NumArgs = I->getNumOperands()-1; // Don't include function ptr
// Cannot convert to a type that requires more fixed arguments than
// the call provides...
//
if (NumArgs < FTy->getNumParams()) return false;
// Unless this is a vararg function type, we cannot provide more arguments
// than are desired...
//
if (!FTy->isVarArg() && NumArgs > FTy->getNumParams())
return false;
// Okay, at this point, we know that the call and the function type match
// number of arguments. Now we see if we can convert the arguments
// themselves. Note that we do not require operands to be convertible,
// we can insert casts if they are convertible but not compatible. The
// reason for this is that we prefer to have resolved functions but casted
// arguments if possible.
//
for (unsigned i = 0, NA = FTy->getNumParams(); i < NA; ++i)
if (!FTy->getParamType(i)->canLosslesslyBitCastTo(
I->getOperand(i+1)->getType()))
return false; // Operands must have compatible types!
// Okay, at this point, we know that all of the arguments can be
// converted. We succeed if we can change the return type if
// necessary...
//
return ValueConvertibleToType(I, FTy->getReturnType(), CTMap, TD);
}
const PointerType *MPtr = cast<PointerType>(I->getOperand(0)->getType());
const FunctionType *FTy = cast<FunctionType>(MPtr->getElementType());
if (!FTy->isVarArg()) return false;
if ((OpNum-1) < FTy->getNumParams())
return false; // It's not in the varargs section...
// If we get this far, we know the value is in the varargs section of the
// function! We can convert if we don't reinterpret the value...
//
return Ty->canLosslesslyBitCastTo(V->getType());
}
}
return false;
}
void llvm::ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC,
const TargetData &TD) {
ValueHandle VH(VMC, V);
// FIXME: This is horrible!
unsigned NumUses = V->getNumUses();
for (unsigned It = 0; It < NumUses; ) {
unsigned OldSize = NumUses;
Value::use_iterator UI = V->use_begin();
std::advance(UI, It);
ConvertOperandToType(*UI, V, NewVal, VMC, TD);
NumUses = V->getNumUses();
if (NumUses == OldSize) ++It;
}
}
static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
ValueMapCache &VMC, const TargetData &TD) {
if (isa<ValueHandle>(U)) return; // Valuehandles don't let go of operands...
if (VMC.OperandsMapped.count(U)) return;
VMC.OperandsMapped.insert(U);
ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(U);
if (VMCI != VMC.ExprMap.end())
return;
Instruction *I = cast<Instruction>(U); // Only Instructions convertible
BasicBlock *BB = I->getParent();
assert(BB != 0 && "Instruction not embedded in basic block!");
std::string Name = I->getName();
I->setName("");
Instruction *Res; // Result of conversion
//cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I
// << "BB Before: " << BB << endl;
// Prevent I from being removed...
ValueHandle IHandle(VMC, I);
const Type *NewTy = NewVal->getType();
Constant *Dummy = (NewTy != Type::VoidTy) ?
Constant::getNullValue(NewTy) : 0;
switch (I->getOpcode()) {
case Instruction::BitCast: {
Instruction::CastOps opcode = CastInst::getCastOpcode(NewVal,
NewVal->getType()->isSigned(), I->getType(), I->getType()->isSigned());
Res = CastInst::create(opcode, NewVal, I->getType(), Name);
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::SetEQ:
case Instruction::SetNE: {
Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
Dummy, Dummy, Name);
VMC.ExprMap[I] = Res; // Add node to expression eagerly
unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0;
Value *OtherOp = I->getOperand(OtherIdx);
Res->setOperand(!OtherIdx, NewVal);
Value *NewOther = ConvertExpressionToType(OtherOp, NewTy, VMC, TD);
Res->setOperand(OtherIdx, NewOther);
break;
}
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(I->getOperand(0) == OldVal);
Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), NewVal,
I->getOperand(1), Name);
break;
case Instruction::Free: // Free can free any pointer type!
assert(I->getOperand(0) == OldVal);
Res = new FreeInst(NewVal);
break;
case Instruction::Load: {
assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
const Type *LoadedTy =
cast<PointerType>(NewVal->getType())->getElementType();
Value *Src = NewVal;
if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
std::vector<Value*> Indices;
Indices.push_back(Constant::getNullValue(Type::UIntTy));
unsigned Offset = 0; // No offset, get first leaf.
LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
assert(LoadedTy->isFirstClassType());
if (Indices.size() != 1) { // Do not generate load X, 0
// Insert the GEP instruction before this load.
Src = new GetElementPtrInst(Src, Indices, Name+".idx", I);
}
}
Res = new LoadInst(Src, Name);
assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
break;
}
case Instruction::Store: {
if (I->getOperand(0) == OldVal) { // Replace the source value
// Check to see if operand #1 has already been converted...
ValueMapCache::ExprMapTy::iterator VMCI =
VMC.ExprMap.find(I->getOperand(1));
if (VMCI != VMC.ExprMap.end()) {
// Comments describing this stuff are in the OperandConvertibleToType
// switch statement for Store...
//
const Type *ElTy =
cast<PointerType>(VMCI->second->getType())->getElementType();
Value *SrcPtr = VMCI->second;
if (ElTy != NewTy) {
std::vector<Value*> Indices;
Indices.push_back(Constant::getNullValue(Type::UIntTy));
unsigned Offset = 0;
const Type *Ty = getStructOffsetType(ElTy, Offset, Indices, TD,false);
assert(Offset == 0 && "Offset changed!");
assert(NewTy == Ty && "Did not convert to correct type!");
// Insert the GEP instruction before this store.
SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
SrcPtr->getName()+".idx", I);
}
Res = new StoreInst(NewVal, SrcPtr);
VMC.ExprMap[I] = Res;
} else {
// Otherwise, we haven't converted Operand #1 over yet...
const PointerType *NewPT = PointerType::get(NewTy);
Res = new StoreInst(NewVal, Constant::getNullValue(NewPT));
VMC.ExprMap[I] = Res;
Res->setOperand(1, ConvertExpressionToType(I->getOperand(1),
NewPT, VMC, TD));
}
} else { // Replace the source pointer
const Type *ValTy = cast<PointerType>(NewTy)->getElementType();
Value *SrcPtr = NewVal;
if (isa<StructType>(ValTy)) {
std::vector<Value*> Indices;
Indices.push_back(Constant::getNullValue(Type::UIntTy));
unsigned Offset = 0;
ValTy = getStructOffsetType(ValTy, Offset, Indices, TD, false);
assert(Offset == 0 && ValTy);
// Insert the GEP instruction before this store.
SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
SrcPtr->getName()+".idx", I);
}
Res = new StoreInst(Constant::getNullValue(ValTy), SrcPtr);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
ValTy, VMC, TD));
}
break;
}
case Instruction::PHI: {
PHINode *OldPN = cast<PHINode>(I);
PHINode *NewPN = new PHINode(NewTy, Name);
VMC.ExprMap[I] = NewPN;
while (OldPN->getNumOperands()) {
BasicBlock *BB = OldPN->getIncomingBlock(0);
Value *OldVal = OldPN->getIncomingValue(0);
ValueHandle OldValHandle(VMC, OldVal);
OldPN->removeIncomingValue(BB, false);
Value *V = ConvertExpressionToType(OldVal, NewTy, VMC, TD);
NewPN->addIncoming(V, BB);
}
Res = NewPN;
break;
}
case Instruction::Call: {
Value *Meth = I->getOperand(0);
std::vector<Value*> Params(I->op_begin()+1, I->op_end());
if (Meth == OldVal) { // Changing the function pointer?
const PointerType *NewPTy = cast<PointerType>(NewVal->getType());
const FunctionType *NewTy = cast<FunctionType>(NewPTy->getElementType());
if (NewTy->getReturnType() == Type::VoidTy)
Name = ""; // Make sure not to name a void call!
// Get an iterator to the call instruction so that we can insert casts for
// operands if need be. Note that we do not require operands to be
// convertible, we can insert casts if they are convertible but not
// compatible. The reason for this is that we prefer to have resolved
// functions but casted arguments if possible.
//
BasicBlock::iterator It = I;
// Convert over all of the call operands to their new types... but only
// convert over the part that is not in the vararg section of the call.
//
for (unsigned i = 0; i != NewTy->getNumParams(); ++i)
if (Params[i]->getType() != NewTy->getParamType(i)) {
// Create a cast to convert it to the right type, we know that this
// is a no-op cast...
//
Params[i] = new BitCastInst(Params[i], NewTy->getParamType(i),
"callarg.cast." +
Params[i]->getName(), It);
}
Meth = NewVal; // Update call destination to new value
} else { // Changing an argument, must be in vararg area
std::vector<Value*>::iterator OI =
std::find(Params.begin(), Params.end(), OldVal);
assert (OI != Params.end() && "Not using value!");
*OI = NewVal;
}
Res = new CallInst(Meth, Params, Name);
if (cast<CallInst>(I)->isTailCall())
cast<CallInst>(Res)->setTailCall();
cast<CallInst>(Res)->setCallingConv(cast<CallInst>(I)->getCallingConv());
break;
}
default:
assert(0 && "Expression convertible, but don't know how to convert?");
return;
}
// If the instruction was newly created, insert it into the instruction
// stream.
//
BasicBlock::iterator It = I;
assert(It != BB->end() && "Instruction not in own basic block??");
BB->getInstList().insert(It, Res); // Keep It pointing to old instruction
DOUT << "COT CREATED: " << (void*)Res << " " << *Res
<< "In: " << (void*)I << " " << *I << "Out: " << (void*)Res
<< " " << *Res;
// Add the instruction to the expression map
VMC.ExprMap[I] = Res;
if (I->getType() != Res->getType())
ConvertValueToNewType(I, Res, VMC, TD);
else {
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; )
if (isa<ValueHandle>(*UI)) {
++UI;
} else {
Use &U = UI.getUse();
++UI; // Do not invalidate UI.
U.set(Res);
}
}
}
ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V)
: Instruction(Type::VoidTy, UserOp1, &Op, 1, ""), Op(V, this), Cache(VMC) {
//DOUT << "VH AQUIRING: " << (void*)V << " " << V;
}
ValueHandle::ValueHandle(const ValueHandle &VH)
: Instruction(Type::VoidTy, UserOp1, &Op, 1, ""),
Op(VH.Op, this), Cache(VH.Cache) {
//DOUT << "VH AQUIRING: " << (void*)V << " " << V;
}
static void RecursiveDelete(ValueMapCache &Cache, Instruction *I) {
if (!I || !I->use_empty()) return;
assert(I->getParent() && "Inst not in basic block!");
//DOUT << "VH DELETING: " << (void*)I << " " << I;
for (User::op_iterator OI = I->op_begin(), OE = I->op_end();
OI != OE; ++OI)
if (Instruction *U = dyn_cast<Instruction>(OI)) {
*OI = 0;
RecursiveDelete(Cache, U);
}
I->getParent()->getInstList().remove(I);
Cache.OperandsMapped.erase(I);
Cache.ExprMap.erase(I);
delete I;
}
ValueHandle::~ValueHandle() {
if (Op->hasOneUse()) {
Value *V = Op;
Op.set(0); // Drop use!
// Now we just need to remove the old instruction so we don't get infinite
// loops. Note that we cannot use DCE because DCE won't remove a store
// instruction, for example.
//
RecursiveDelete(Cache, dyn_cast<Instruction>(V));
} else {
//DOUT << "VH RELEASING: " << (void*)Operands[0].get() << " "
// << Operands[0]->getNumUses() << " " << Operands[0];
}
}