llvm-6502/lib/Analysis/DataStructure/DataStructureAA.cpp
Chris Lattner 2e2cce69bc Two changes:
1. Chain to the parent implementation of M/R analysis if we can't find
     any information.  It has some heuristics that often do well.
  2. Do not clear all flags, this can make invalid nodes by turning nodes
     that used to be collapsed into non-collapsed nodes (fixing crashes)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20659 91177308-0d34-0410-b5e6-96231b3b80d8
2005-03-17 19:56:18 +00:00

229 lines
8.0 KiB
C++

//===- DataStructureAA.cpp - Data Structure Based Alias Analysis ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the top-down data structure graphs to implement a simple
// context sensitive alias analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
using namespace llvm;
namespace {
class DSAA : public ModulePass, public AliasAnalysis {
TDDataStructures *TD;
BUDataStructures *BU;
public:
DSAA() : TD(0) {}
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool runOnModule(Module &M) {
InitializeAliasAnalysis(this);
TD = &getAnalysis<TDDataStructures>();
BU = &getAnalysis<BUDataStructures>();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code
AU.addRequiredTransitive<TDDataStructures>(); // Uses TD Datastructures
AU.addRequiredTransitive<BUDataStructures>(); // Uses BU Datastructures
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
void getMustAliases(Value *P, std::vector<Value*> &RetVals);
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
return AliasAnalysis::getModRefInfo(CS1,CS2);
}
virtual void deleteValue(Value *V) {
BU->deleteValue(V);
TD->deleteValue(V);
}
virtual void copyValue(Value *From, Value *To) {
if (From == To) return;
BU->copyValue(From, To);
TD->copyValue(From, To);
}
private:
DSGraph *getGraphForValue(const Value *V);
};
// Register the pass...
RegisterOpt<DSAA> X("ds-aa", "Data Structure Graph Based Alias Analysis");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis, DSAA> Y;
}
ModulePass *llvm::createDSAAPass() { return new DSAA(); }
// getGraphForValue - Return the DSGraph to use for queries about the specified
// value...
//
DSGraph *DSAA::getGraphForValue(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return &TD->getDSGraph(*I->getParent()->getParent());
else if (const Argument *A = dyn_cast<Argument>(V))
return &TD->getDSGraph(*A->getParent());
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return &TD->getDSGraph(*BB->getParent());
return 0;
}
// isSinglePhysicalObject - For now, the only case that we know that there is
// only one memory object in the node is when there is a single global in the
// node, and the only composition bit set is Global.
//
static bool isSinglePhysicalObject(DSNode *N) {
assert(N->isComplete() && "Can only tell if this is a complete object!");
return N->isGlobalNode() && N->getGlobals().size() == 1 &&
!N->isHeapNode() && !N->isAllocaNode() && !N->isUnknownNode();
}
// alias - This is the only method here that does anything interesting...
AliasAnalysis::AliasResult DSAA::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
if (V1 == V2) return MustAlias;
DSGraph *G1 = getGraphForValue(V1);
DSGraph *G2 = getGraphForValue(V2);
assert((!G1 || !G2 || G1 == G2) && "Alias query for 2 different functions?");
// Get the graph to use...
DSGraph &G = *(G1 ? G1 : (G2 ? G2 : &TD->getGlobalsGraph()));
const DSGraph::ScalarMapTy &GSM = G.getScalarMap();
DSGraph::ScalarMapTy::const_iterator I = GSM.find((Value*)V1);
if (I == GSM.end()) return NoAlias;
assert(I->second.getNode() && "Scalar map points to null node?");
DSGraph::ScalarMapTy::const_iterator J = GSM.find((Value*)V2);
if (J == GSM.end()) return NoAlias;
assert(J->second.getNode() && "Scalar map points to null node?");
DSNode *N1 = I->second.getNode(), *N2 = J->second.getNode();
unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
// We can only make a judgment of one of the nodes is complete...
if (N1->isComplete() || N2->isComplete()) {
if (N1 != N2)
return NoAlias; // Completely different nodes.
#if 0 // This does not correctly handle arrays!
// Both point to the same node and same offset, and there is only one
// physical memory object represented in the node, return must alias.
//
// FIXME: This isn't correct because we do not handle array indexing
// correctly.
if (O1 == O2 && isSinglePhysicalObject(N1))
return MustAlias; // Exactly the same object & offset
#endif
// See if they point to different offsets... if so, we may be able to
// determine that they do not alias...
if (O1 != O2) {
if (O2 < O1) { // Ensure that O1 <= O2
std::swap(V1, V2);
std::swap(O1, O2);
std::swap(V1Size, V2Size);
}
// FIXME: This is not correct because we do not handle array
// indexing correctly with this check!
//if (O1+V1Size <= O2) return NoAlias;
}
}
// FIXME: we could improve on this by checking the globals graph for aliased
// global queries...
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}
/// getModRefInfo - does a callsite modify or reference a value?
///
AliasAnalysis::ModRefResult
DSAA::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
Function *F = CS.getCalledFunction();
if (!F || F->isExternal())
return AliasAnalysis::getModRefInfo(CS, P, Size);
// Clone the function TD graph, clearing off Mod/Ref flags
const Function *csParent = CS.getInstruction()->getParent()->getParent();
DSGraph TDGraph(TD->getDSGraph(*csParent));
TDGraph.maskNodeTypes(~(DSNode::Modified|DSNode::Read));
// Insert the callee's BU graph into the TD graph
const DSGraph &BUGraph = BU->getDSGraph(*F);
TDGraph.mergeInGraph(TDGraph.getDSCallSiteForCallSite(CS),
*F, BUGraph, 0);
// Report the flags that have been added
const DSNodeHandle &DSH = TDGraph.getNodeForValue(P);
if (const DSNode *N = DSH.getNode())
if (N->isModified())
return N->isRead() ? ModRef : Mod;
else
return N->isRead() ? Ref : NoModRef;
return NoModRef;
}
/// getMustAliases - If there are any pointers known that must alias this
/// pointer, return them now. This allows alias-set based alias analyses to
/// perform a form a value numbering (which is exposed by load-vn). If an alias
/// analysis supports this, it should ADD any must aliased pointers to the
/// specified vector.
///
void DSAA::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
#if 0 // This does not correctly handle arrays!
// Currently the only must alias information we can provide is to say that
// something is equal to a global value. If we already have a global value,
// don't get worked up about it.
if (!isa<GlobalValue>(P)) {
DSGraph *G = getGraphForValue(P);
if (!G) G = &TD->getGlobalsGraph();
// The only must alias information we can currently determine occurs when
// the node for P is a global node with only one entry.
DSGraph::ScalarMapTy::const_iterator I = G->getScalarMap().find(P);
if (I != G->getScalarMap().end()) {
DSNode *N = I->second.getNode();
if (N->isComplete() && isSinglePhysicalObject(N))
RetVals.push_back(N->getGlobals()[0]);
}
}
#endif
return AliasAnalysis::getMustAliases(P, RetVals);
}