Cameron Zwarich c827939046 Make LoadAndStorePromoter preserve debug info and create llvm.dbg.values when
promoting allocas to SSA variables. Fixes <rdar://problem/9479036>.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131953 91177308-0d34-0410-b5e6-96231b3b80d8
2011-05-24 03:10:43 +00:00

188 lines
7.8 KiB
C++

//===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
#define LLVM_TRANSFORMS_UTILS_LOCAL_H
namespace llvm {
class User;
class BasicBlock;
class Function;
class BranchInst;
class Instruction;
class DbgDeclareInst;
class StoreInst;
class LoadInst;
class Value;
class Pass;
class PHINode;
class AllocaInst;
class ConstantExpr;
class TargetData;
class DIBuilder;
template<typename T> class SmallVectorImpl;
//===----------------------------------------------------------------------===//
// Local constant propagation.
//
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
/// constant value, convert it into an unconditional branch to the constant
/// destination. This is a nontrivial operation because the successors of this
/// basic block must have their PHI nodes updated.
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false);
//===----------------------------------------------------------------------===//
// Local dead code elimination.
//
/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
bool isInstructionTriviallyDead(Instruction *I);
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it. If that makes any of its operands
/// trivially dead, delete them too, recursively. Return true if any
/// instructions were deleted.
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V);
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
/// too, recursively. Return true if a change was made.
bool RecursivelyDeleteDeadPHINode(PHINode *PN);
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD = 0);
//===----------------------------------------------------------------------===//
// Control Flow Graph Restructuring.
//
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB. If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values. For example, if we have:
/// x = phi(1, 0, 0, 0)
/// y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the 'and' to 0.
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
TargetData *TD = 0);
/// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
/// predecessor is known to have one successor (BB!). Eliminate the edge
/// between them, moving the instructions in the predecessor into BB. This
/// deletes the predecessor block.
///
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P = 0);
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential debug intrinsics and the branch. If possible, eliminate BB by
/// rewriting all the predecessors to branch to the successor block and return
/// true. If we can't transform, return false.
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool EliminateDuplicatePHINodes(BasicBlock *BB);
/// SimplifyCFG - This function is used to do simplification of a CFG. For
/// example, it adjusts branches to branches to eliminate the extra hop, it
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG. It returns true if a modification was made, possibly deleting
/// the basic block that was pointed to.
///
bool SimplifyCFG(BasicBlock *BB, const TargetData *TD = 0);
/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
/// and if a predecessor branches to us and one of our successors, fold the
/// setcc into the predecessor and use logical operations to pick the right
/// destination.
bool FoldBranchToCommonDest(BranchInst *BI);
/// DemoteRegToStack - This function takes a virtual register computed by an
/// Instruction and replaces it with a slot in the stack frame, allocated via
/// alloca. This allows the CFG to be changed around without fear of
/// invalidating the SSA information for the value. It returns the pointer to
/// the alloca inserted to create a stack slot for X.
///
AllocaInst *DemoteRegToStack(Instruction &X,
bool VolatileLoads = false,
Instruction *AllocaPoint = 0);
/// DemotePHIToStack - This function takes a virtual register computed by a phi
/// node and replaces it with a slot in the stack frame, allocated via alloca.
/// The phi node is deleted and it returns the pointer to the alloca inserted.
AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = 0);
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
const TargetData *TD = 0);
/// getKnownAlignment - Try to infer an alignment for the specified pointer.
static inline unsigned getKnownAlignment(Value *V, const TargetData *TD = 0) {
return getOrEnforceKnownAlignment(V, 0, TD);
}
///===---------------------------------------------------------------------===//
/// Dbg Intrinsic utilities
///
/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
/// that has an associated llvm.dbg.decl intrinsic.
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
StoreInst *SI, DIBuilder &Builder);
/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
/// that has an associated llvm.dbg.decl intrinsic.
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
LoadInst *LI, DIBuilder &Builder);
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
/// of llvm.dbg.value intrinsics.
bool LowerDbgDeclare(Function &F);
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to
/// an alloca, if any.
DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
} // End llvm namespace
#endif