mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-09 10:31:14 +00:00
6cdc374786
In r210492 the logic of calculateDbgValueHistory was changed to end register variable live ranges at the end of MBB conditionally on the fact that the register was or not clobbered by the function body. This requires an initial scan of all the operands of the function to collect all clobbered registers. In a second pass over all instructions, we compare this set with the set of clobbered registers for the current MachineInstruction. This modification incurred a compilation time regression on some benchmarks: the debug info emission phase takes ~10% more time. While a small performance hit is unavoidable due to the initial scan requirement, we can improve the situation by avoiding to create too many temporary sets and just use lambdas to work directly on the result of the initial scan. Fixes <rdar://problem/17884104> Patch by Frederic Riss! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214987 91177308-0d34-0410-b5e6-96231b3b80d8
218 lines
8.1 KiB
C++
218 lines
8.1 KiB
C++
//===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DbgValueHistoryCalculator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <set>
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
namespace llvm {
|
|
|
|
// \brief If @MI is a DBG_VALUE with debug value described by a
|
|
// defined register, returns the number of this register.
|
|
// In the other case, returns 0.
|
|
static unsigned isDescribedByReg(const MachineInstr &MI) {
|
|
assert(MI.isDebugValue());
|
|
assert(MI.getNumOperands() == 3);
|
|
// If location of variable is described using a register (directly or
|
|
// indirecltly), this register is always a first operand.
|
|
return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
|
|
}
|
|
|
|
void DbgValueHistoryMap::startInstrRange(const MDNode *Var,
|
|
const MachineInstr &MI) {
|
|
// Instruction range should start with a DBG_VALUE instruction for the
|
|
// variable.
|
|
assert(MI.isDebugValue() && getEntireVariable(MI.getDebugVariable()) == Var);
|
|
auto &Ranges = VarInstrRanges[Var];
|
|
if (!Ranges.empty() && Ranges.back().second == nullptr &&
|
|
Ranges.back().first->isIdenticalTo(&MI)) {
|
|
DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
|
|
<< "\t" << Ranges.back().first << "\t" << MI << "\n");
|
|
return;
|
|
}
|
|
Ranges.push_back(std::make_pair(&MI, nullptr));
|
|
}
|
|
|
|
void DbgValueHistoryMap::endInstrRange(const MDNode *Var,
|
|
const MachineInstr &MI) {
|
|
auto &Ranges = VarInstrRanges[Var];
|
|
// Verify that the current instruction range is not yet closed.
|
|
assert(!Ranges.empty() && Ranges.back().second == nullptr);
|
|
// For now, instruction ranges are not allowed to cross basic block
|
|
// boundaries.
|
|
assert(Ranges.back().first->getParent() == MI.getParent());
|
|
Ranges.back().second = &MI;
|
|
}
|
|
|
|
unsigned DbgValueHistoryMap::getRegisterForVar(const MDNode *Var) const {
|
|
const auto &I = VarInstrRanges.find(Var);
|
|
if (I == VarInstrRanges.end())
|
|
return 0;
|
|
const auto &Ranges = I->second;
|
|
if (Ranges.empty() || Ranges.back().second != nullptr)
|
|
return 0;
|
|
return isDescribedByReg(*Ranges.back().first);
|
|
}
|
|
|
|
namespace {
|
|
// Maps physreg numbers to the variables they describe.
|
|
typedef std::map<unsigned, SmallVector<const MDNode *, 1>> RegDescribedVarsMap;
|
|
}
|
|
|
|
// \brief Claim that @Var is not described by @RegNo anymore.
|
|
static void dropRegDescribedVar(RegDescribedVarsMap &RegVars,
|
|
unsigned RegNo, const MDNode *Var) {
|
|
const auto &I = RegVars.find(RegNo);
|
|
assert(RegNo != 0U && I != RegVars.end());
|
|
auto &VarSet = I->second;
|
|
const auto &VarPos = std::find(VarSet.begin(), VarSet.end(), Var);
|
|
assert(VarPos != VarSet.end());
|
|
VarSet.erase(VarPos);
|
|
// Don't keep empty sets in a map to keep it as small as possible.
|
|
if (VarSet.empty())
|
|
RegVars.erase(I);
|
|
}
|
|
|
|
// \brief Claim that @Var is now described by @RegNo.
|
|
static void addRegDescribedVar(RegDescribedVarsMap &RegVars,
|
|
unsigned RegNo, const MDNode *Var) {
|
|
assert(RegNo != 0U);
|
|
auto &VarSet = RegVars[RegNo];
|
|
assert(std::find(VarSet.begin(), VarSet.end(), Var) == VarSet.end());
|
|
VarSet.push_back(Var);
|
|
}
|
|
|
|
// \brief Terminate the location range for variables described by register
|
|
// @RegNo by inserting @ClobberingInstr to their history.
|
|
static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
|
|
DbgValueHistoryMap &HistMap,
|
|
const MachineInstr &ClobberingInstr) {
|
|
const auto &I = RegVars.find(RegNo);
|
|
if (I == RegVars.end())
|
|
return;
|
|
// Iterate over all variables described by this register and add this
|
|
// instruction to their history, clobbering it.
|
|
for (const auto &Var : I->second)
|
|
HistMap.endInstrRange(Var, ClobberingInstr);
|
|
RegVars.erase(I);
|
|
}
|
|
|
|
// \brief Collect all registers clobbered by @MI and apply the functor
|
|
// @Func to their RegNo.
|
|
// @Func should be a functor with a void(unsigned) signature. We're
|
|
// not using std::function here for performance reasons. It has a
|
|
// small but measurable impact. By using a functor instead of a
|
|
// std::set& here, we can avoid the overhead of constructing
|
|
// temporaries in calculateDbgValueHistory, which has a significant
|
|
// performance impact.
|
|
template<typename Callable>
|
|
static void applyToClobberedRegisters(const MachineInstr &MI,
|
|
const TargetRegisterInfo *TRI,
|
|
Callable Func) {
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.isDef() || !MO.getReg())
|
|
continue;
|
|
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
|
|
Func(*AI);
|
|
}
|
|
}
|
|
|
|
// \brief Returns the first instruction in @MBB which corresponds to
|
|
// the function epilogue, or nullptr if @MBB doesn't contain an epilogue.
|
|
static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
|
|
auto LastMI = MBB.getLastNonDebugInstr();
|
|
if (LastMI == MBB.end() || !LastMI->isReturn())
|
|
return nullptr;
|
|
// Assume that epilogue starts with instruction having the same debug location
|
|
// as the return instruction.
|
|
DebugLoc LastLoc = LastMI->getDebugLoc();
|
|
auto Res = LastMI;
|
|
for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)); I != MBB.rend();
|
|
++I) {
|
|
if (I->getDebugLoc() != LastLoc)
|
|
return Res;
|
|
Res = std::prev(I.base());
|
|
}
|
|
// If all instructions have the same debug location, assume whole MBB is
|
|
// an epilogue.
|
|
return MBB.begin();
|
|
}
|
|
|
|
// \brief Collect registers that are modified in the function body (their
|
|
// contents is changed outside of the prologue and epilogue).
|
|
static void collectChangingRegs(const MachineFunction *MF,
|
|
const TargetRegisterInfo *TRI,
|
|
std::set<unsigned> &Regs) {
|
|
for (const auto &MBB : *MF) {
|
|
auto FirstEpilogueInst = getFirstEpilogueInst(MBB);
|
|
|
|
for (const auto &MI : MBB) {
|
|
if (&MI == FirstEpilogueInst)
|
|
break;
|
|
if (!MI.getFlag(MachineInstr::FrameSetup))
|
|
applyToClobberedRegisters(MI, TRI, [&](unsigned r) { Regs.insert(r); });
|
|
}
|
|
}
|
|
}
|
|
|
|
void calculateDbgValueHistory(const MachineFunction *MF,
|
|
const TargetRegisterInfo *TRI,
|
|
DbgValueHistoryMap &Result) {
|
|
std::set<unsigned> ChangingRegs;
|
|
collectChangingRegs(MF, TRI, ChangingRegs);
|
|
|
|
RegDescribedVarsMap RegVars;
|
|
for (const auto &MBB : *MF) {
|
|
for (const auto &MI : MBB) {
|
|
if (!MI.isDebugValue()) {
|
|
// Not a DBG_VALUE instruction. It may clobber registers which describe
|
|
// some variables.
|
|
applyToClobberedRegisters(MI, TRI, [&](unsigned RegNo) {
|
|
if (ChangingRegs.count(RegNo))
|
|
clobberRegisterUses(RegVars, RegNo, Result, MI);
|
|
});
|
|
continue;
|
|
}
|
|
|
|
assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
|
|
// Use the base variable (without any DW_OP_piece expressions)
|
|
// as index into History. The full variables including the
|
|
// piece expressions are attached to the MI.
|
|
DIVariable Var = getEntireVariable(MI.getDebugVariable());
|
|
|
|
if (unsigned PrevReg = Result.getRegisterForVar(Var))
|
|
dropRegDescribedVar(RegVars, PrevReg, Var);
|
|
|
|
Result.startInstrRange(Var, MI);
|
|
|
|
if (unsigned NewReg = isDescribedByReg(MI))
|
|
addRegDescribedVar(RegVars, NewReg, Var);
|
|
}
|
|
|
|
// Make sure locations for register-described variables are valid only
|
|
// until the end of the basic block (unless it's the last basic block, in
|
|
// which case let their liveness run off to the end of the function).
|
|
if (!MBB.empty() && &MBB != &MF->back()) {
|
|
for (unsigned RegNo : ChangingRegs)
|
|
clobberRegisterUses(RegVars, RegNo, Result, MBB.back());
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|