Chris Lattner 678c6a089d Add support for tracking whether a module is 64/32 bit and big/little endian
Also add a moduleID field which can be used for diagnostics


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5834 91177308-0d34-0410-b5e6-96231b3b80d8
2003-04-22 18:02:04 +00:00

207 lines
8.9 KiB
C++

//===-- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*--=//
//
// This file contains the declarations for the Module class that is used to
// maintain all the information related to a VM module.
//
// A module also maintains a GlobalValRefMap object that is used to hold all
// constant references to global variables in the module. When a global
// variable is destroyed, it should have no entries in the GlobalValueRefMap.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MODULE_H
#define LLVM_MODULE_H
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
class GlobalVariable;
class GlobalValueRefMap; // Used by ConstantVals.cpp
class ConstantPointerRef;
class FunctionType;
class SymbolTable;
template<> struct ilist_traits<Function>
: public SymbolTableListTraits<Function, Module, Module> {
// createNode is used to create a node that marks the end of the list...
static Function *createNode();
static iplist<Function> &getList(Module *M);
};
template<> struct ilist_traits<GlobalVariable>
: public SymbolTableListTraits<GlobalVariable, Module, Module> {
// createNode is used to create a node that marks the end of the list...
static GlobalVariable *createNode();
static iplist<GlobalVariable> &getList(Module *M);
};
class Module : public Annotable {
public:
typedef iplist<GlobalVariable> GlobalListType;
typedef iplist<Function> FunctionListType;
// Global Variable iterators...
typedef GlobalListType::iterator giterator;
typedef GlobalListType::const_iterator const_giterator;
typedef std::reverse_iterator<giterator> reverse_giterator;
typedef std::reverse_iterator<const_giterator> const_reverse_giterator;
// Function iterators...
typedef FunctionListType::iterator iterator;
typedef FunctionListType::const_iterator const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
enum Endianness { LittleEndian, BigEndian };
enum PointerSize { Pointer32, Pointer64 };
private:
GlobalListType GlobalList; // The Global Variables in the module
FunctionListType FunctionList; // The Functions in the module
GlobalValueRefMap *GVRefMap; // Keep track of GlobalValueRef's
SymbolTable *SymTab; // Symbol Table for the module
std::string ModuleID; // Human readable identifier for the module
// These flags are probably not the right long-term way to handle this kind of
// target information, but it is sufficient for now.
Endianness Endian; // True if target is little endian
PointerSize PtrSize; // True if target has 32-bit pointers (false = 64-bit)
// Accessor for the underlying GVRefMap... only through the Constant class...
friend class Constant;
friend class ConstantPointerRef;
void mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV);
ConstantPointerRef *getConstantPointerRef(GlobalValue *GV);
void destroyConstantPointerRef(ConstantPointerRef *CPR);
public:
Module(const std::string &ModuleID);
~Module();
const std::string &getModuleIdentifier() const { return ModuleID; }
/// Target endian information...
bool isLittleEndian() const { return Endian == LittleEndian; }
bool isBigEndian() const { return Endian == BigEndian; }
Endianness getEndianness() const { return Endian; }
void setEndianness(Endianness E) { Endian = E; }
/// Target Pointer Size information...
bool has32BitPointers() const { return PtrSize == Pointer32; }
bool has64BitPointers() const { return PtrSize == Pointer64; }
PointerSize getPointerSize() const { return PtrSize; }
void setPointerSize(PointerSize PS) { PtrSize = PS; }
/// getOrInsertFunction - Look up the specified function in the module symbol
/// table. If it does not exist, add a prototype for the function and return
/// it.
Function *getOrInsertFunction(const std::string &Name, const FunctionType *T);
/// getFunction - Look up the specified function in the module symbol table.
/// If it does not exist, return null.
///
Function *getFunction(const std::string &Name, const FunctionType *Ty);
/// getMainFunction - This function looks up main efficiently. This is such a
/// common case, that it is a method in Module. If main cannot be found, a
/// null pointer is returned.
///
Function *getMainFunction();
/// getNamedFunction - Return the first function in the module with the
/// specified name, of arbitrary type. This method returns null if a function
/// with the specified name is not found.
///
Function *getNamedFunction(const std::string &Name);
/// addTypeName - Insert an entry in the symbol table mapping Str to Type. If
/// there is already an entry for this name, true is returned and the symbol
/// table is not modified.
///
bool addTypeName(const std::string &Name, const Type *Ty);
/// getTypeName - If there is at least one entry in the symbol table for the
/// specified type, return it.
///
std::string getTypeName(const Type *Ty);
/// Get the underlying elements of the Module...
inline const GlobalListType &getGlobalList() const { return GlobalList; }
inline GlobalListType &getGlobalList() { return GlobalList; }
inline const FunctionListType &getFunctionList() const { return FunctionList;}
inline FunctionListType &getFunctionList() { return FunctionList;}
//===--------------------------------------------------------------------===//
// Symbol table support functions...
/// getSymbolTable() - Get access to the symbol table for the module, where
/// global variables and functions are identified.
///
inline SymbolTable &getSymbolTable() { return *SymTab; }
inline const SymbolTable &getSymbolTable() const { return *SymTab; }
//===--------------------------------------------------------------------===//
// Module iterator forwarding functions
//
inline giterator gbegin() { return GlobalList.begin(); }
inline const_giterator gbegin() const { return GlobalList.begin(); }
inline giterator gend () { return GlobalList.end(); }
inline const_giterator gend () const { return GlobalList.end(); }
inline reverse_giterator grbegin() { return GlobalList.rbegin(); }
inline const_reverse_giterator grbegin() const { return GlobalList.rbegin(); }
inline reverse_giterator grend () { return GlobalList.rend(); }
inline const_reverse_giterator grend () const { return GlobalList.rend(); }
inline unsigned gsize() const { return GlobalList.size(); }
inline bool gempty() const { return GlobalList.empty(); }
inline const GlobalVariable &gfront() const { return GlobalList.front(); }
inline GlobalVariable &gfront() { return GlobalList.front(); }
inline const GlobalVariable &gback() const { return GlobalList.back(); }
inline GlobalVariable &gback() { return GlobalList.back(); }
inline iterator begin() { return FunctionList.begin(); }
inline const_iterator begin() const { return FunctionList.begin(); }
inline iterator end () { return FunctionList.end(); }
inline const_iterator end () const { return FunctionList.end(); }
inline reverse_iterator rbegin() { return FunctionList.rbegin(); }
inline const_reverse_iterator rbegin() const { return FunctionList.rbegin(); }
inline reverse_iterator rend () { return FunctionList.rend(); }
inline const_reverse_iterator rend () const { return FunctionList.rend(); }
inline unsigned size() const { return FunctionList.size(); }
inline bool empty() const { return FunctionList.empty(); }
inline const Function &front() const { return FunctionList.front(); }
inline Function &front() { return FunctionList.front(); }
inline const Function &back() const { return FunctionList.back(); }
inline Function &back() { return FunctionList.back(); }
void print(std::ostream &OS) const;
void dump() const;
/// dropAllReferences() - This function causes all the subinstructions to "let
/// go" of all references that they are maintaining. This allows one to
/// 'delete' a whole class at a time, even though there may be circular
/// references... first all references are dropped, and all use counts go to
/// zero. Then everything is delete'd for real. Note that no operations are
/// valid on an object that has "dropped all references", except operator
/// delete.
///
void dropAllReferences();
};
inline std::ostream &operator<<(std::ostream &O, const Module *M) {
M->print(O);
return O;
}
inline std::ostream &operator<<(std::ostream &O, const Module &M) {
M.print(O);
return O;
}
#endif