llvm-6502/lib/Target/R600/AMDGPUISelLowering.cpp
Tom Stellard 4b84b524e5 R600: Expand i64 ISD:SUB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208005 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-05 21:47:15 +00:00

1451 lines
54 KiB
C++

//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This is the parent TargetLowering class for hardware code gen
/// targets.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUFrameLowering.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDILIntrinsicInfo.h"
#include "R600MachineFunctionInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
using namespace llvm;
namespace {
/// Diagnostic information for unimplemented or unsupported feature reporting.
class DiagnosticInfoUnsupported : public DiagnosticInfo {
private:
const Twine &Description;
const Function &Fn;
static int KindID;
static int getKindID() {
if (KindID == 0)
KindID = llvm::getNextAvailablePluginDiagnosticKind();
return KindID;
}
public:
DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
DiagnosticSeverity Severity = DS_Error)
: DiagnosticInfo(getKindID(), Severity),
Description(Desc),
Fn(Fn) { }
const Function &getFunction() const { return Fn; }
const Twine &getDescription() const { return Description; }
void print(DiagnosticPrinter &DP) const override {
DP << "unsupported " << getDescription() << " in " << Fn.getName();
}
static bool classof(const DiagnosticInfo *DI) {
return DI->getKind() == getKindID();
}
};
int DiagnosticInfoUnsupported::KindID = 0;
}
static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
ArgFlags.getOrigAlign());
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
#include "AMDGPUGenCallingConv.inc"
AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
TargetLowering(TM, new TargetLoweringObjectFileELF()) {
Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
// Initialize target lowering borrowed from AMDIL
InitAMDILLowering();
// We need to custom lower some of the intrinsics
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// Library functions. These default to Expand, but we have instructions
// for them.
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FEXP2, MVT::f32, Legal);
setOperationAction(ISD::FPOW, MVT::f32, Legal);
setOperationAction(ISD::FLOG2, MVT::f32, Legal);
setOperationAction(ISD::FABS, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
// The hardware supports ROTR, but not ROTL
setOperationAction(ISD::ROTL, MVT::i32, Expand);
// Lower floating point store/load to integer store/load to reduce the number
// of patterns in tablegen.
setOperationAction(ISD::STORE, MVT::f32, Promote);
AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
setOperationAction(ISD::STORE, MVT::v2f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v8f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::f64, Promote);
AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
// Custom lowering of vector stores is required for local address space
// stores.
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
// XXX: Native v2i32 local address space stores are possible, but not
// currently implemented.
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
// XXX: This can be change to Custom, once ExpandVectorStores can
// handle 64-bit stores.
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8, Expand);
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
setOperationAction(ISD::LOAD, MVT::f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::LOAD, MVT::f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::FNEG, MVT::v2f32, Expand);
setOperationAction(ISD::FNEG, MVT::v4f32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::SUB, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::VSELECT, MVT::v2f32, Expand);
setOperationAction(ISD::VSELECT, MVT::v4f32, Expand);
static const MVT::SimpleValueType IntTypes[] = {
MVT::v2i32, MVT::v4i32
};
const size_t NumIntTypes = array_lengthof(IntTypes);
for (unsigned int x = 0; x < NumIntTypes; ++x) {
MVT::SimpleValueType VT = IntTypes[x];
//Expand the following operations for the current type by default
setOperationAction(ISD::ADD, VT, Expand);
setOperationAction(ISD::AND, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::MUL, VT, Expand);
setOperationAction(ISD::OR, VT, Expand);
setOperationAction(ISD::SHL, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::SRL, VT, Expand);
setOperationAction(ISD::SRA, VT, Expand);
setOperationAction(ISD::SUB, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::XOR, VT, Expand);
}
static const MVT::SimpleValueType FloatTypes[] = {
MVT::v2f32, MVT::v4f32
};
const size_t NumFloatTypes = array_lengthof(FloatTypes);
for (unsigned int x = 0; x < NumFloatTypes; ++x) {
MVT::SimpleValueType VT = FloatTypes[x];
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FMUL, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSUB, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
}
setTargetDAGCombine(ISD::MUL);
}
//===----------------------------------------------------------------------===//
// Target Information
//===----------------------------------------------------------------------===//
MVT AMDGPUTargetLowering::getVectorIdxTy() const {
return MVT::i32;
}
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
EVT CastTy) const {
if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
return true;
unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
return ((LScalarSize <= CastScalarSize) ||
(CastScalarSize >= 32) ||
(LScalarSize < 32));
}
//===---------------------------------------------------------------------===//
// Target Properties
//===---------------------------------------------------------------------===//
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32;
}
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32;
}
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
// Truncate is just accessing a subregister.
return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
}
bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
// Truncate is just accessing a subregister.
return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
(Dest->getPrimitiveSizeInBits() % 32 == 0);
}
bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
const DataLayout *DL = getDataLayout();
unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
return SrcSize == 32 && DestSize == 64;
}
bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
// Any register load of a 64-bit value really requires 2 32-bit moves. For all
// practical purposes, the extra mov 0 to load a 64-bit is free. As used,
// this will enable reducing 64-bit operations the 32-bit, which is always
// good.
return Src == MVT::i32 && Dest == MVT::i64;
}
bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
// There aren't really 64-bit registers, but pairs of 32-bit ones and only a
// limited number of native 64-bit operations. Shrinking an operation to fit
// in a single 32-bit register should always be helpful. As currently used,
// this is much less general than the name suggests, and is only used in
// places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
// not profitable, and may actually be harmful.
return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
}
//===---------------------------------------------------------------------===//
// TargetLowering Callbacks
//===---------------------------------------------------------------------===//
void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
}
SDValue AMDGPUTargetLowering::LowerReturn(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
}
//===---------------------------------------------------------------------===//
// Target specific lowering
//===---------------------------------------------------------------------===//
SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SDValue Callee = CLI.Callee;
SelectionDAG &DAG = CLI.DAG;
const Function &Fn = *DAG.getMachineFunction().getFunction();
StringRef FuncName("<unknown>");
if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
FuncName = G->getSymbol();
else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
FuncName = G->getGlobal()->getName();
DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
DAG.getContext()->diagnose(NoCalls);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
const {
switch (Op.getOpcode()) {
default:
Op.getNode()->dump();
llvm_unreachable("Custom lowering code for this"
"instruction is not implemented yet!");
break;
// AMDIL DAG lowering
case ISD::SDIV: return LowerSDIV(Op, DAG);
case ISD::SREM: return LowerSREM(Op, DAG);
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
// AMDGPU DAG lowering
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
}
return Op;
}
void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::SIGN_EXTEND_INREG:
// Different parts of legalization seem to interpret which type of
// sign_extend_inreg is the one to check for custom lowering. The extended
// from type is what really matters, but some places check for custom
// lowering of the result type. This results in trying to use
// ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
// nothing here and let the illegal result integer be handled normally.
return;
case ISD::UDIV: {
SDValue Op = SDValue(N, 0);
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue UDIVREM = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT),
N->getOperand(0), N->getOperand(1));
Results.push_back(UDIVREM);
break;
}
case ISD::UREM: {
SDValue Op = SDValue(N, 0);
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue UDIVREM = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT),
N->getOperand(0), N->getOperand(1));
Results.push_back(UDIVREM.getValue(1));
break;
}
case ISD::UDIVREM: {
SDValue Op = SDValue(N, 0);
SDLoc DL(Op);
EVT VT = Op.getValueType();
EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
SDValue one = DAG.getConstant(1, HalfVT);
SDValue zero = DAG.getConstant(0, HalfVT);
//HiLo split
SDValue LHS = N->getOperand(0);
SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
SDValue RHS = N->getOperand(1);
SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
// Get Speculative values
SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
SDValue REM_Hi = zero;
SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
SDValue DIV_Lo = zero;
const unsigned halfBitWidth = HalfVT.getSizeInBits();
for (unsigned i = 0; i < halfBitWidth; ++i) {
SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
// Get Value of high bit
SDValue HBit;
if (halfBitWidth == 32 && Subtarget->hasBFE()) {
HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
} else {
HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
}
SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
DAG.getConstant(halfBitWidth - 1, HalfVT));
REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETGE);
DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
// Update REM
SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETGE);
REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
}
SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
Results.push_back(DIV);
Results.push_back(REM);
break;
}
default:
return;
}
}
SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
const GlobalValue *GV,
const SDValue &InitPtr,
SDValue Chain,
SelectionDAG &DAG) const {
const DataLayout *TD = getTargetMachine().getDataLayout();
SDLoc DL(InitPtr);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
EVT VT = EVT::getEVT(CI->getType());
PointerType *PtrTy = PointerType::get(CI->getType(), 0);
return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
TD->getPrefTypeAlignment(CI->getType()));
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
EVT VT = EVT::getEVT(CFP->getType());
PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
TD->getPrefTypeAlignment(CFP->getType()));
} else if (Init->getType()->isAggregateType()) {
EVT PtrVT = InitPtr.getValueType();
unsigned NumElements = Init->getType()->getArrayNumElements();
SmallVector<SDValue, 8> Chains;
for (unsigned i = 0; i < NumElements; ++i) {
SDValue Offset = DAG.getConstant(i * TD->getTypeAllocSize(
Init->getType()->getArrayElementType()), PtrVT);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
Chains.push_back(LowerConstantInitializer(Init->getAggregateElement(i),
GV, Ptr, Chain, DAG));
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
} else {
Init->dump();
llvm_unreachable("Unhandled constant initializer");
}
}
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
SDValue Op,
SelectionDAG &DAG) const {
const DataLayout *TD = getTargetMachine().getDataLayout();
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = G->getGlobal();
switch (G->getAddressSpace()) {
default: llvm_unreachable("Global Address lowering not implemented for this "
"address space");
case AMDGPUAS::LOCAL_ADDRESS: {
// XXX: What does the value of G->getOffset() mean?
assert(G->getOffset() == 0 &&
"Do not know what to do with an non-zero offset");
unsigned Offset;
if (MFI->LocalMemoryObjects.count(GV) == 0) {
uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
Offset = MFI->LDSSize;
MFI->LocalMemoryObjects[GV] = Offset;
// XXX: Account for alignment?
MFI->LDSSize += Size;
} else {
Offset = MFI->LocalMemoryObjects[GV];
}
return DAG.getConstant(Offset, getPointerTy(G->getAddressSpace()));
}
case AMDGPUAS::CONSTANT_ADDRESS: {
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
Type *EltType = GV->getType()->getElementType();
unsigned Size = TD->getTypeAllocSize(EltType);
unsigned Alignment = TD->getPrefTypeAlignment(EltType);
const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV);
const Constant *Init = Var->getInitializer();
int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
SDValue InitPtr = DAG.getFrameIndex(FI,
getPointerTy(AMDGPUAS::PRIVATE_ADDRESS));
SmallVector<SDNode*, 8> WorkList;
for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
E = DAG.getEntryNode()->use_end(); I != E; ++I) {
if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
continue;
WorkList.push_back(*I);
}
SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
E = WorkList.end(); I != E; ++I) {
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
Ops.push_back((*I)->getOperand(i));
}
DAG.UpdateNodeOperands(*I, Ops);
}
return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op),
getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
}
}
}
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
DAG.ExtractVectorElements(A, Args);
DAG.ExtractVectorElements(B, Args);
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
}
SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
EVT VT = Op.getValueType();
DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
VT.getVectorNumElements());
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
}
SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL =
static_cast<const AMDGPUFrameLowering*>(getTargetMachine().getFrameLowering());
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op);
assert(FIN);
unsigned FrameIndex = FIN->getIndex();
unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
Op.getValueType());
}
SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc DL(Op);
EVT VT = Op.getValueType();
switch (IntrinsicID) {
default: return Op;
case AMDGPUIntrinsic::AMDIL_abs:
return LowerIntrinsicIABS(Op, DAG);
case AMDGPUIntrinsic::AMDIL_exp:
return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_lrp:
return LowerIntrinsicLRP(Op, DAG);
case AMDGPUIntrinsic::AMDIL_fraction:
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDIL_max:
return DAG.getNode(AMDGPUISD::FMAX, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_imax:
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_umax:
return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDIL_min:
return DAG.getNode(AMDGPUISD::FMIN, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_imin:
return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_umin:
return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_bfe_i32:
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfe_u32:
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfi:
return DAG.getNode(AMDGPUISD::BFI, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfm:
return DAG.getNode(AMDGPUISD::BFM, DL, VT,
Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDIL_round_nearest:
return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
}
}
///IABS(a) = SMAX(sub(0, a), a)
SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
Op.getOperand(1));
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
}
/// Linear Interpolation
/// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
DAG.getConstantFP(1.0f, MVT::f32),
Op.getOperand(1));
SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
Op.getOperand(3));
return DAG.getNode(ISD::FADD, DL, VT,
DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
OneSubAC);
}
/// \brief Generate Min/Max node
SDValue AMDGPUTargetLowering::LowerMinMax(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue True = Op.getOperand(2);
SDValue False = Op.getOperand(3);
SDValue CC = Op.getOperand(4);
if (VT != MVT::f32 ||
!((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
return SDValue();
}
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
switch (CCOpcode) {
case ISD::SETOEQ:
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETNE:
case ISD::SETUEQ:
case ISD::SETEQ:
case ISD::SETFALSE:
case ISD::SETFALSE2:
case ISD::SETTRUE:
case ISD::SETTRUE2:
case ISD::SETUO:
case ISD::SETO:
llvm_unreachable("Operation should already be optimised!");
case ISD::SETULE:
case ISD::SETULT:
case ISD::SETOLE:
case ISD::SETOLT:
case ISD::SETLE:
case ISD::SETLT: {
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMIN, DL, VT, LHS, RHS);
else
return DAG.getNode(AMDGPUISD::FMAX, DL, VT, LHS, RHS);
}
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGE:
case ISD::SETOGE:
case ISD::SETUGT:
case ISD::SETOGT: {
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMAX, DL, VT, LHS, RHS);
else
return DAG.getNode(AMDGPUISD::FMIN, DL, VT, LHS, RHS);
}
case ISD::SETCC_INVALID:
llvm_unreachable("Invalid setcc condcode!");
}
return Op;
}
SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
SelectionDAG &DAG) const {
LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
EVT MemEltVT = Load->getMemoryVT().getVectorElementType();
EVT EltVT = Op.getValueType().getVectorElementType();
EVT PtrVT = Load->getBasePtr().getValueType();
unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
SmallVector<SDValue, 8> Loads;
SDLoc SL(Op);
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8), PtrVT));
Loads.push_back(DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
Load->getChain(), Ptr,
MachinePointerInfo(Load->getMemOperand()->getValue()),
MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
Load->getAlignment()));
}
return DAG.getNode(ISD::BUILD_VECTOR, SL, Op.getValueType(), Loads);
}
SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = dyn_cast<StoreSDNode>(Op);
EVT MemVT = Store->getMemoryVT();
unsigned MemBits = MemVT.getSizeInBits();
// Byte stores are really expensive, so if possible, try to pack 32-bit vector
// truncating store into an i32 store.
// XXX: We could also handle optimize other vector bitwidths.
if (!MemVT.isVector() || MemBits > 32) {
return SDValue();
}
SDLoc DL(Op);
SDValue Value = Store->getValue();
EVT VT = Value.getValueType();
EVT ElemVT = VT.getVectorElementType();
SDValue Ptr = Store->getBasePtr();
EVT MemEltVT = MemVT.getVectorElementType();
unsigned MemEltBits = MemEltVT.getSizeInBits();
unsigned MemNumElements = MemVT.getVectorNumElements();
unsigned PackedSize = MemVT.getStoreSizeInBits();
SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
assert(Value.getValueType().getScalarSizeInBits() >= 32);
SDValue PackedValue;
for (unsigned i = 0; i < MemNumElements; ++i) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
DAG.getConstant(i, MVT::i32));
Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
if (i == 0) {
PackedValue = Elt;
} else {
PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
}
}
if (PackedSize < 32) {
EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
Store->getMemOperand()->getPointerInfo(),
PackedVT,
Store->isNonTemporal(), Store->isVolatile(),
Store->getAlignment());
}
return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
Store->getMemOperand()->getPointerInfo(),
Store->isVolatile(), Store->isNonTemporal(),
Store->getAlignment());
}
SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
EVT EltVT = Store->getValue().getValueType().getVectorElementType();
EVT PtrVT = Store->getBasePtr().getValueType();
unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
SDLoc SL(Op);
SmallVector<SDValue, 8> Chains;
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Store->getValue(), DAG.getConstant(i, MVT::i32));
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT,
Store->getBasePtr(),
DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8),
PtrVT));
Chains.push_back(DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
MachinePointerInfo(Store->getMemOperand()->getValue()),
MemEltVT, Store->isVolatile(), Store->isNonTemporal(),
Store->getAlignment()));
}
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
}
SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT VT = Op.getValueType();
EVT MemVT = Load->getMemoryVT();
if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
// We can do the extload to 32-bits, and then need to separately extend to
// 64-bits.
SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
Load->getChain(),
Load->getBasePtr(),
MemVT,
Load->getMemOperand());
return DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32);
}
if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
assert(VT == MVT::i1 && "Only i1 non-extloads expected");
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, MVT::i8, MMO);
return DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
}
// Lower loads constant address space global variable loads
if (Load->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
isa<GlobalVariable>(
GetUnderlyingObject(Load->getMemOperand()->getValue()))) {
SDValue Ptr = DAG.getZExtOrTrunc(Load->getBasePtr(), DL,
getPointerTy(AMDGPUAS::PRIVATE_ADDRESS));
Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
DAG.getConstant(2, MVT::i32));
return DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
Load->getChain(), Ptr,
DAG.getTargetConstant(0, MVT::i32), Op.getOperand(2));
}
if (Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
return SDValue();
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
DAG.getConstant(2, MVT::i32));
SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
Load->getChain(), Ptr,
DAG.getTargetConstant(0, MVT::i32),
Op.getOperand(2));
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
Load->getBasePtr(),
DAG.getConstant(0x3, MVT::i32));
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
DAG.getConstant(3, MVT::i32));
Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
EVT MemEltVT = MemVT.getScalarType();
if (ExtType == ISD::SEXTLOAD) {
SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
}
return DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
}
SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
if (Result.getNode()) {
return Result;
}
StoreSDNode *Store = cast<StoreSDNode>(Op);
SDValue Chain = Store->getChain();
if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
Store->getValue().getValueType().isVector()) {
return SplitVectorStore(Op, DAG);
}
EVT MemVT = Store->getMemoryVT();
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
MemVT.bitsLT(MVT::i32)) {
unsigned Mask = 0;
if (Store->getMemoryVT() == MVT::i8) {
Mask = 0xff;
} else if (Store->getMemoryVT() == MVT::i16) {
Mask = 0xffff;
}
SDValue BasePtr = Store->getBasePtr();
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
DAG.getConstant(2, MVT::i32));
SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
DAG.getConstant(0x3, MVT::i32));
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
DAG.getConstant(3, MVT::i32));
SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
Store->getValue());
SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
MaskedValue, ShiftAmt);
SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
ShiftAmt);
DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
DAG.getConstant(0xffffffff, MVT::i32));
Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
}
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Num = Op.getOperand(0);
SDValue Den = Op.getOperand(1);
// RCP = URECIP(Den) = 2^32 / Den + e
// e is rounding error.
SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
// RCP_LO = umulo(RCP, Den) */
SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
// RCP_HI = mulhu (RCP, Den) */
SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
// NEG_RCP_LO = -RCP_LO
SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
RCP_LO);
// ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
NEG_RCP_LO, RCP_LO,
ISD::SETEQ);
// Calculate the rounding error from the URECIP instruction
// E = mulhu(ABS_RCP_LO, RCP)
SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
// RCP_A_E = RCP + E
SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
// RCP_S_E = RCP - E
SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
// Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
RCP_A_E, RCP_S_E,
ISD::SETEQ);
// Quotient = mulhu(Tmp0, Num)
SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
// Num_S_Remainder = Quotient * Den
SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
// Remainder = Num - Num_S_Remainder
SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
// Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
DAG.getConstant(-1, VT),
DAG.getConstant(0, VT),
ISD::SETUGE);
// Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
Num_S_Remainder,
DAG.getConstant(-1, VT),
DAG.getConstant(0, VT),
ISD::SETUGE);
// Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
Remainder_GE_Zero);
// Calculate Division result:
// Quotient_A_One = Quotient + 1
SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
DAG.getConstant(1, VT));
// Quotient_S_One = Quotient - 1
SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
DAG.getConstant(1, VT));
// Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
Quotient, Quotient_A_One, ISD::SETEQ);
// Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
Quotient_S_One, Div, ISD::SETEQ);
// Calculate Rem result:
// Remainder_S_Den = Remainder - Den
SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
// Remainder_A_Den = Remainder + Den
SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
// Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
Remainder, Remainder_S_Den, ISD::SETEQ);
// Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
Remainder_A_Den, Rem, ISD::SETEQ);
SDValue Ops[2] = {
Div,
Rem
};
return DAG.getMergeValues(Ops, DL);
}
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue S0 = Op.getOperand(0);
SDLoc DL(Op);
if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
return SDValue();
// f32 uint_to_fp i64
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
DAG.getConstant(0, MVT::i32));
SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
DAG.getConstant(1, MVT::i32));
SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
}
SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
unsigned BitsDiff,
SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
SDValue Shift = DAG.getConstant(BitsDiff, VT);
// Shift left by 'Shift' bits.
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
// Signed shift Right by 'Shift' bits.
return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
}
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
if (!VT.isVector())
return SDValue();
SDValue Src = Op.getOperand(0);
SDLoc DL(Op);
// TODO: Don't scalarize on Evergreen?
unsigned NElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> Args;
DAG.ExtractVectorElements(Src, Args, 0, NElts);
SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
for (unsigned I = 0; I < NElts; ++I)
Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
static bool isU24(SDValue Op, SelectionDAG &DAG) {
APInt KnownZero, KnownOne;
EVT VT = Op.getValueType();
DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
}
static bool isI24(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
// as unsigned 24-bit values.
(VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
}
static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = Op.getValueType();
APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch(N->getOpcode()) {
default: break;
case ISD::MUL: {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue Mul;
// FIXME: Add support for 24-bit multiply with 64-bit output on SI.
if (VT.isVector() || VT.getSizeInBits() > 32)
break;
if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
} else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
} else {
break;
}
// We need to use sext even for MUL_U24, because MUL_U24 is used
// for signed multiply of 8 and 16-bit types.
SDValue Reg = DAG.getSExtOrTrunc(Mul, DL, VT);
return Reg;
}
case AMDGPUISD::MUL_I24:
case AMDGPUISD::MUL_U24: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
simplifyI24(N0, DCI);
simplifyI24(N1, DCI);
return SDValue();
}
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
void AMDGPUTargetLowering::getOriginalFunctionArgs(
SelectionDAG &DAG,
const Function *F,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<ISD::InputArg> &OrigIns) const {
for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
if (Ins[i].ArgVT == Ins[i].VT) {
OrigIns.push_back(Ins[i]);
continue;
}
EVT VT;
if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
// Vector has been split into scalars.
VT = Ins[i].ArgVT.getVectorElementType();
} else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
Ins[i].ArgVT.getVectorElementType() !=
Ins[i].VT.getVectorElementType()) {
// Vector elements have been promoted
VT = Ins[i].ArgVT;
} else {
// Vector has been spilt into smaller vectors.
VT = Ins[i].VT;
}
ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
Ins[i].OrigArgIndex, Ins[i].PartOffset);
OrigIns.push_back(Arg);
}
}
bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
return CFP->isExactlyValue(1.0);
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
return C->isAllOnesValue();
}
return false;
}
bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
return CFP->getValueAPF().isZero();
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
return C->isNullValue();
}
return false;
}
SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned VirtualRegister;
if (!MRI.isLiveIn(Reg)) {
VirtualRegister = MRI.createVirtualRegister(RC);
MRI.addLiveIn(Reg, VirtualRegister);
} else {
VirtualRegister = MRI.getLiveInVirtReg(Reg);
}
return DAG.getRegister(VirtualRegister, VT);
}
#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return nullptr;
// AMDIL DAG nodes
NODE_NAME_CASE(CALL);
NODE_NAME_CASE(UMUL);
NODE_NAME_CASE(DIV_INF);
NODE_NAME_CASE(RET_FLAG);
NODE_NAME_CASE(BRANCH_COND);
// AMDGPU DAG nodes
NODE_NAME_CASE(DWORDADDR)
NODE_NAME_CASE(FRACT)
NODE_NAME_CASE(FMAX)
NODE_NAME_CASE(SMAX)
NODE_NAME_CASE(UMAX)
NODE_NAME_CASE(FMIN)
NODE_NAME_CASE(SMIN)
NODE_NAME_CASE(UMIN)
NODE_NAME_CASE(BFE_U32)
NODE_NAME_CASE(BFE_I32)
NODE_NAME_CASE(BFI)
NODE_NAME_CASE(BFM)
NODE_NAME_CASE(MUL_U24)
NODE_NAME_CASE(MUL_I24)
NODE_NAME_CASE(URECIP)
NODE_NAME_CASE(DOT4)
NODE_NAME_CASE(EXPORT)
NODE_NAME_CASE(CONST_ADDRESS)
NODE_NAME_CASE(REGISTER_LOAD)
NODE_NAME_CASE(REGISTER_STORE)
NODE_NAME_CASE(LOAD_CONSTANT)
NODE_NAME_CASE(LOAD_INPUT)
NODE_NAME_CASE(SAMPLE)
NODE_NAME_CASE(SAMPLEB)
NODE_NAME_CASE(SAMPLED)
NODE_NAME_CASE(SAMPLEL)
NODE_NAME_CASE(STORE_MSKOR)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
}
}
static void computeMaskedBitsForMinMax(const SDValue Op0,
const SDValue Op1,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) {
APInt Op0Zero, Op0One;
APInt Op1Zero, Op1One;
DAG.ComputeMaskedBits(Op0, Op0Zero, Op0One, Depth);
DAG.ComputeMaskedBits(Op1, Op1Zero, Op1One, Depth);
KnownZero = Op0Zero & Op1Zero;
KnownOne = Op0One & Op1One;
}
void AMDGPUTargetLowering::computeMaskedBitsForTargetNode(
const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
unsigned Opc = Op.getOpcode();
switch (Opc) {
case ISD::INTRINSIC_WO_CHAIN: {
// FIXME: The intrinsic should just use the node.
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
case AMDGPUIntrinsic::AMDGPU_imax:
case AMDGPUIntrinsic::AMDGPU_umax:
case AMDGPUIntrinsic::AMDGPU_imin:
case AMDGPUIntrinsic::AMDGPU_umin:
computeMaskedBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
KnownZero, KnownOne, DAG, Depth);
break;
default:
break;
}
break;
}
case AMDGPUISD::SMAX:
case AMDGPUISD::UMAX:
case AMDGPUISD::SMIN:
case AMDGPUISD::UMIN:
computeMaskedBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
KnownZero, KnownOne, DAG, Depth);
break;
default:
break;
}
}