llvm-6502/lib/Bitcode/Writer/ValueEnumerator.cpp
Chris Lattner 2edd22b959 Emit module-level constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36384 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-24 00:16:04 +00:00

239 lines
7.9 KiB
C++

//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValueEnumerator class.
//
//===----------------------------------------------------------------------===//
#include "ValueEnumerator.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
using namespace llvm;
/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const Module *M) {
// Enumerate the global variables.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
EnumerateValue(I);
// Enumerate the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
EnumerateValue(I);
// Enumerate the global variable initializers.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
if (I->hasInitializer())
EnumerateValue(I->getInitializer());
// FIXME: Implement the 'string constant' optimization.
// Enumerate types used by the type symbol table.
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
// Insert constants that are named at module level into the slot pool so that
// the module symbol table can refer to them...
EnumerateValueSymbolTable(M->getValueSymbolTable());
// Enumerate types used by function bodies.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI)
EnumerateType((*OI)->getType());
EnumerateType(I->getType());
}
}
// FIXME: std::partition the type and value tables so that first-class types
// come earlier than aggregates. FIXME: Emit a marker into the module
// indicating which aggregates types AND values can be dropped form the table.
// FIXME: Sort type/value tables by frequency.
// FIXME: Sort constants by type to reduce size.
}
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
/// table.
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI)
EnumerateType(TI->second);
}
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
VI != VE; ++VI)
EnumerateValue(VI->getValue());
}
void ValueEnumerator::EnumerateValue(const Value *V) {
assert(V->getType() != Type::VoidTy && "Can't insert void values!");
// Check to see if it's already in!
unsigned &ValueID = ValueMap[V];
if (ValueID) {
// Increment use count.
Values[ValueID-1].second++;
return;
}
// Add the value.
Values.push_back(std::make_pair(V, 1U));
ValueID = Values.size();
if (const Constant *C = dyn_cast<Constant>(V)) {
if (isa<GlobalValue>(C)) {
// Initializers for globals are handled explicitly elsewhere.
} else {
// This makes sure that if a constant has uses (for example an array of
// const ints), that they are inserted also.
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
I != E; ++I)
EnumerateValue(*I);
}
}
EnumerateType(V->getType());
}
void ValueEnumerator::EnumerateType(const Type *Ty) {
unsigned &TypeID = TypeMap[Ty];
if (TypeID) {
// If we've already seen this type, just increase its occurrence count.
Types[TypeID-1].second++;
return;
}
// First time we saw this type, add it.
Types.push_back(std::make_pair(Ty, 1U));
TypeID = Types.size();
// Enumerate subtypes.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
EnumerateType(*I);
}
#if 0
void SlotCalculator::incorporateFunction(const Function *F) {
SC_DEBUG("begin processFunction!\n");
// Iterate over function arguments, adding them to the value table...
for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
CreateFunctionValueSlot(I);
SC_DEBUG("Inserting Instructions:\n");
// Add all of the instructions to the type planes...
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
CreateFunctionValueSlot(BB);
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
if (I->getType() != Type::VoidTy)
CreateFunctionValueSlot(I);
}
}
SC_DEBUG("end processFunction!\n");
}
void SlotCalculator::purgeFunction() {
SC_DEBUG("begin purgeFunction!\n");
// Next, remove values from existing type planes
for (DenseMap<unsigned,unsigned,
ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
E = ModuleLevel.end(); I != E; ++I) {
unsigned PlaneNo = I->first;
unsigned ModuleLev = I->second;
// Pop all function-local values in this type-plane off of Table.
TypePlane &Plane = getPlane(PlaneNo);
assert(ModuleLev < Plane.size() && "module levels higher than elements?");
for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
NodeMap.erase(Plane.back()); // Erase from nodemap
Plane.pop_back(); // Shrink plane
}
}
ModuleLevel.clear();
// Finally, remove any type planes defined by the function...
while (Table.size() > NumModuleTypes) {
TypePlane &Plane = Table.back();
SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
<< Plane.size() << "\n");
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
NodeMap.erase(Plane[i]); // Erase from nodemap
Table.pop_back(); // Nuke the plane, we don't like it.
}
SC_DEBUG("end purgeFunction!\n");
}
inline static bool hasImplicitNull(const Type* Ty) {
return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
}
void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
const Type *Ty = V->getType();
assert(Ty != Type::VoidTy && "Can't insert void values!");
assert(!isa<Constant>(V) && "Not a function-local value!");
unsigned TyPlane = getOrCreateTypeSlot(Ty);
if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
Table.resize(TyPlane+1, TypePlane());
// If this is the first value noticed of this type within this function,
// remember the module level for this type plane in ModuleLevel. This reminds
// us to remove the values in purgeFunction and tells us how many to remove.
if (TyPlane < NumModuleTypes)
ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
// If this is the first value to get inserted into the type plane, make sure
// to insert the implicit null value.
if (Table[TyPlane].empty()) {
// Label's and opaque types can't have a null value.
if (hasImplicitNull(Ty)) {
Value *ZeroInitializer = Constant::getNullValue(Ty);
// If we are pushing zeroinit, it will be handled below.
if (V != ZeroInitializer) {
Table[TyPlane].push_back(ZeroInitializer);
NodeMap[ZeroInitializer] = 0;
}
}
}
// Insert node into table and NodeMap...
NodeMap[V] = Table[TyPlane].size();
Table[TyPlane].push_back(V);
SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
NodeMap[V] << "\n");
}
#endif