mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-15 07:34:33 +00:00
3fc35c594c
LLVMBuildMalloc was reimplemented but with the bug that it didn't insert the resulting instruction. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84374 91177308-0d34-0410-b5e6-96231b3b80d8
3387 lines
122 KiB
C++
3387 lines
122 KiB
C++
//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements all of the non-inline methods for the LLVM instruction
|
|
// classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Operator.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/ConstantRange.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallSite Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define CALLSITE_DELEGATE_GETTER(METHOD) \
|
|
Instruction *II(getInstruction()); \
|
|
return isCall() \
|
|
? cast<CallInst>(II)->METHOD \
|
|
: cast<InvokeInst>(II)->METHOD
|
|
|
|
#define CALLSITE_DELEGATE_SETTER(METHOD) \
|
|
Instruction *II(getInstruction()); \
|
|
if (isCall()) \
|
|
cast<CallInst>(II)->METHOD; \
|
|
else \
|
|
cast<InvokeInst>(II)->METHOD
|
|
|
|
CallSite::CallSite(Instruction *C) {
|
|
assert((isa<CallInst>(C) || isa<InvokeInst>(C)) && "Not a call!");
|
|
I.setPointer(C);
|
|
I.setInt(isa<CallInst>(C));
|
|
}
|
|
CallingConv::ID CallSite::getCallingConv() const {
|
|
CALLSITE_DELEGATE_GETTER(getCallingConv());
|
|
}
|
|
void CallSite::setCallingConv(CallingConv::ID CC) {
|
|
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
|
|
}
|
|
const AttrListPtr &CallSite::getAttributes() const {
|
|
CALLSITE_DELEGATE_GETTER(getAttributes());
|
|
}
|
|
void CallSite::setAttributes(const AttrListPtr &PAL) {
|
|
CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
|
|
}
|
|
bool CallSite::paramHasAttr(uint16_t i, Attributes attr) const {
|
|
CALLSITE_DELEGATE_GETTER(paramHasAttr(i, attr));
|
|
}
|
|
uint16_t CallSite::getParamAlignment(uint16_t i) const {
|
|
CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
|
|
}
|
|
bool CallSite::doesNotAccessMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
|
|
}
|
|
void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory) {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory));
|
|
}
|
|
bool CallSite::onlyReadsMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
|
|
}
|
|
void CallSite::setOnlyReadsMemory(bool onlyReadsMemory) {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory));
|
|
}
|
|
bool CallSite::doesNotReturn() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReturn());
|
|
}
|
|
void CallSite::setDoesNotReturn(bool doesNotReturn) {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn));
|
|
}
|
|
bool CallSite::doesNotThrow() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotThrow());
|
|
}
|
|
void CallSite::setDoesNotThrow(bool doesNotThrow) {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow));
|
|
}
|
|
|
|
bool CallSite::hasArgument(const Value *Arg) const {
|
|
for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E; ++AI)
|
|
if (AI->get() == Arg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#undef CALLSITE_DELEGATE_GETTER
|
|
#undef CALLSITE_DELEGATE_SETTER
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TerminatorInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
TerminatorInst::~TerminatorInst() {
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnaryInstruction Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
UnaryInstruction::~UnaryInstruction() {
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// areInvalidOperands - Return a string if the specified operands are invalid
|
|
/// for a select operation, otherwise return null.
|
|
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
|
|
if (Op1->getType() != Op2->getType())
|
|
return "both values to select must have same type";
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
|
|
// Vector select.
|
|
if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
|
|
return "vector select condition element type must be i1";
|
|
const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
|
|
if (ET == 0)
|
|
return "selected values for vector select must be vectors";
|
|
if (ET->getNumElements() != VT->getNumElements())
|
|
return "vector select requires selected vectors to have "
|
|
"the same vector length as select condition";
|
|
} else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
|
|
return "select condition must be i1 or <n x i1>";
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PHINode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PHINode::PHINode(const PHINode &PN)
|
|
: Instruction(PN.getType(), Instruction::PHI,
|
|
allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
|
|
ReservedSpace(PN.getNumOperands()) {
|
|
Use *OL = OperandList;
|
|
for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
|
|
OL[i] = PN.getOperand(i);
|
|
OL[i+1] = PN.getOperand(i+1);
|
|
}
|
|
SubclassOptionalData = PN.SubclassOptionalData;
|
|
}
|
|
|
|
PHINode::~PHINode() {
|
|
if (OperandList)
|
|
dropHungoffUses(OperandList);
|
|
}
|
|
|
|
// removeIncomingValue - Remove an incoming value. This is useful if a
|
|
// predecessor basic block is deleted.
|
|
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
|
|
unsigned NumOps = getNumOperands();
|
|
Use *OL = OperandList;
|
|
assert(Idx*2 < NumOps && "BB not in PHI node!");
|
|
Value *Removed = OL[Idx*2];
|
|
|
|
// Move everything after this operand down.
|
|
//
|
|
// FIXME: we could just swap with the end of the list, then erase. However,
|
|
// client might not expect this to happen. The code as it is thrashes the
|
|
// use/def lists, which is kinda lame.
|
|
for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
|
|
OL[i-2] = OL[i];
|
|
OL[i-2+1] = OL[i+1];
|
|
}
|
|
|
|
// Nuke the last value.
|
|
OL[NumOps-2].set(0);
|
|
OL[NumOps-2+1].set(0);
|
|
NumOperands = NumOps-2;
|
|
|
|
// If the PHI node is dead, because it has zero entries, nuke it now.
|
|
if (NumOps == 2 && DeletePHIIfEmpty) {
|
|
// If anyone is using this PHI, make them use a dummy value instead...
|
|
replaceAllUsesWith(UndefValue::get(getType()));
|
|
eraseFromParent();
|
|
}
|
|
return Removed;
|
|
}
|
|
|
|
/// resizeOperands - resize operands - This adjusts the length of the operands
|
|
/// list according to the following behavior:
|
|
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
|
|
/// of operation. This grows the number of ops by 1.5 times.
|
|
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
|
|
/// 3. If NumOps == NumOperands, trim the reserved space.
|
|
///
|
|
void PHINode::resizeOperands(unsigned NumOps) {
|
|
unsigned e = getNumOperands();
|
|
if (NumOps == 0) {
|
|
NumOps = e*3/2;
|
|
if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
|
|
} else if (NumOps*2 > NumOperands) {
|
|
// No resize needed.
|
|
if (ReservedSpace >= NumOps) return;
|
|
} else if (NumOps == NumOperands) {
|
|
if (ReservedSpace == NumOps) return;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
ReservedSpace = NumOps;
|
|
Use *OldOps = OperandList;
|
|
Use *NewOps = allocHungoffUses(NumOps);
|
|
std::copy(OldOps, OldOps + e, NewOps);
|
|
OperandList = NewOps;
|
|
if (OldOps) Use::zap(OldOps, OldOps + e, true);
|
|
}
|
|
|
|
/// hasConstantValue - If the specified PHI node always merges together the same
|
|
/// value, return the value, otherwise return null.
|
|
///
|
|
/// If the PHI has undef operands, but all the rest of the operands are
|
|
/// some unique value, return that value if it can be proved that the
|
|
/// value dominates the PHI. If DT is null, use a conservative check,
|
|
/// otherwise use DT to test for dominance.
|
|
///
|
|
Value *PHINode::hasConstantValue(DominatorTree *DT) const {
|
|
// If the PHI node only has one incoming value, eliminate the PHI node.
|
|
if (getNumIncomingValues() == 1) {
|
|
if (getIncomingValue(0) != this) // not X = phi X
|
|
return getIncomingValue(0);
|
|
return UndefValue::get(getType()); // Self cycle is dead.
|
|
}
|
|
|
|
// Otherwise if all of the incoming values are the same for the PHI, replace
|
|
// the PHI node with the incoming value.
|
|
//
|
|
Value *InVal = 0;
|
|
bool HasUndefInput = false;
|
|
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
|
|
if (isa<UndefValue>(getIncomingValue(i))) {
|
|
HasUndefInput = true;
|
|
} else if (getIncomingValue(i) != this) { // Not the PHI node itself...
|
|
if (InVal && getIncomingValue(i) != InVal)
|
|
return 0; // Not the same, bail out.
|
|
InVal = getIncomingValue(i);
|
|
}
|
|
|
|
// The only case that could cause InVal to be null is if we have a PHI node
|
|
// that only has entries for itself. In this case, there is no entry into the
|
|
// loop, so kill the PHI.
|
|
//
|
|
if (InVal == 0) InVal = UndefValue::get(getType());
|
|
|
|
// If we have a PHI node like phi(X, undef, X), where X is defined by some
|
|
// instruction, we cannot always return X as the result of the PHI node. Only
|
|
// do this if X is not an instruction (thus it must dominate the PHI block),
|
|
// or if the client is prepared to deal with this possibility.
|
|
if (!HasUndefInput || !isa<Instruction>(InVal))
|
|
return InVal;
|
|
|
|
Instruction *IV = cast<Instruction>(InVal);
|
|
if (DT) {
|
|
// We have a DominatorTree. Do a precise test.
|
|
if (!DT->dominates(IV, this))
|
|
return 0;
|
|
} else {
|
|
// If it is in the entry block, it obviously dominates everything.
|
|
if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
|
|
isa<InvokeInst>(IV))
|
|
return 0; // Cannot guarantee that InVal dominates this PHINode.
|
|
}
|
|
|
|
// All of the incoming values are the same, return the value now.
|
|
return InVal;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallInst::~CallInst() {
|
|
}
|
|
|
|
void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
|
|
assert(NumOperands == NumParams+1 && "NumOperands not set up?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Func;
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
FTy = FTy; // silence warning.
|
|
|
|
assert((NumParams == FTy->getNumParams() ||
|
|
(FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
|
|
"Calling a function with bad signature!");
|
|
for (unsigned i = 0; i != NumParams; ++i) {
|
|
assert((i >= FTy->getNumParams() ||
|
|
FTy->getParamType(i) == Params[i]->getType()) &&
|
|
"Calling a function with a bad signature!");
|
|
OL[i+1] = Params[i];
|
|
}
|
|
}
|
|
|
|
void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
|
|
assert(NumOperands == 3 && "NumOperands not set up?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Func;
|
|
OL[1] = Actual1;
|
|
OL[2] = Actual2;
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
FTy = FTy; // silence warning.
|
|
|
|
assert((FTy->getNumParams() == 2 ||
|
|
(FTy->isVarArg() && FTy->getNumParams() < 2)) &&
|
|
"Calling a function with bad signature");
|
|
assert((0 >= FTy->getNumParams() ||
|
|
FTy->getParamType(0) == Actual1->getType()) &&
|
|
"Calling a function with a bad signature!");
|
|
assert((1 >= FTy->getNumParams() ||
|
|
FTy->getParamType(1) == Actual2->getType()) &&
|
|
"Calling a function with a bad signature!");
|
|
}
|
|
|
|
void CallInst::init(Value *Func, Value *Actual) {
|
|
assert(NumOperands == 2 && "NumOperands not set up?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Func;
|
|
OL[1] = Actual;
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
FTy = FTy; // silence warning.
|
|
|
|
assert((FTy->getNumParams() == 1 ||
|
|
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
|
|
"Calling a function with bad signature");
|
|
assert((0 == FTy->getNumParams() ||
|
|
FTy->getParamType(0) == Actual->getType()) &&
|
|
"Calling a function with a bad signature!");
|
|
}
|
|
|
|
void CallInst::init(Value *Func) {
|
|
assert(NumOperands == 1 && "NumOperands not set up?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Func;
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
FTy = FTy; // silence warning.
|
|
|
|
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - 2,
|
|
2, InsertBefore) {
|
|
init(Func, Actual);
|
|
setName(Name);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - 2,
|
|
2, InsertAtEnd) {
|
|
init(Func, Actual);
|
|
setName(Name);
|
|
}
|
|
CallInst::CallInst(Value *Func, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - 1,
|
|
1, InsertBefore) {
|
|
init(Func);
|
|
setName(Name);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - 1,
|
|
1, InsertAtEnd) {
|
|
init(Func);
|
|
setName(Name);
|
|
}
|
|
|
|
CallInst::CallInst(const CallInst &CI)
|
|
: Instruction(CI.getType(), Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
|
|
CI.getNumOperands()) {
|
|
setAttributes(CI.getAttributes());
|
|
SubclassData = CI.SubclassData;
|
|
Use *OL = OperandList;
|
|
Use *InOL = CI.OperandList;
|
|
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
|
|
OL[i] = InOL[i];
|
|
SubclassOptionalData = CI.SubclassOptionalData;
|
|
}
|
|
|
|
void CallInst::addAttribute(unsigned i, Attributes attr) {
|
|
AttrListPtr PAL = getAttributes();
|
|
PAL = PAL.addAttr(i, attr);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void CallInst::removeAttribute(unsigned i, Attributes attr) {
|
|
AttrListPtr PAL = getAttributes();
|
|
PAL = PAL.removeAttr(i, attr);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
|
|
if (AttributeList.paramHasAttr(i, attr))
|
|
return true;
|
|
if (const Function *F = getCalledFunction())
|
|
return F->paramHasAttr(i, attr);
|
|
return false;
|
|
}
|
|
|
|
/// IsConstantOne - Return true only if val is constant int 1
|
|
static bool IsConstantOne(Value *val) {
|
|
assert(val && "IsConstantOne does not work with NULL val");
|
|
return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
|
|
}
|
|
|
|
static Value *checkArraySize(Value *Amt, const Type *IntPtrTy) {
|
|
if (!Amt)
|
|
Amt = ConstantInt::get(IntPtrTy, 1);
|
|
else {
|
|
assert(!isa<BasicBlock>(Amt) &&
|
|
"Passed basic block into malloc size parameter! Use other ctor");
|
|
assert(Amt->getType() == IntPtrTy &&
|
|
"Malloc array size is not an intptr!");
|
|
}
|
|
return Amt;
|
|
}
|
|
|
|
static Instruction *createMalloc(Instruction *InsertBefore,
|
|
BasicBlock *InsertAtEnd, const Type *IntPtrTy,
|
|
const Type *AllocTy, Value *ArraySize,
|
|
Function *MallocF, const Twine &NameStr) {
|
|
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
|
|
"createMalloc needs either InsertBefore or InsertAtEnd");
|
|
|
|
// malloc(type) becomes:
|
|
// bitcast (i8* malloc(typeSize)) to type*
|
|
// malloc(type, arraySize) becomes:
|
|
// bitcast (i8 *malloc(typeSize*arraySize)) to type*
|
|
Value *AllocSize = ConstantExpr::getSizeOf(AllocTy);
|
|
AllocSize = ConstantExpr::getTruncOrBitCast(cast<Constant>(AllocSize),
|
|
IntPtrTy);
|
|
ArraySize = checkArraySize(ArraySize, IntPtrTy);
|
|
|
|
if (!IsConstantOne(ArraySize)) {
|
|
if (IsConstantOne(AllocSize)) {
|
|
AllocSize = ArraySize; // Operand * 1 = Operand
|
|
} else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
|
|
Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
|
|
false /*ZExt*/);
|
|
// Malloc arg is constant product of type size and array size
|
|
AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
|
|
} else {
|
|
// Multiply type size by the array size...
|
|
if (InsertBefore)
|
|
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
|
|
"mallocsize", InsertBefore);
|
|
else
|
|
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
|
|
"mallocsize", InsertAtEnd);
|
|
}
|
|
}
|
|
|
|
assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
|
|
// Create the call to Malloc.
|
|
BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
|
|
Module* M = BB->getParent()->getParent();
|
|
const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
|
|
if (!MallocF)
|
|
// prototype malloc as "void *malloc(size_t)"
|
|
MallocF = cast<Function>(M->getOrInsertFunction("malloc", BPTy,
|
|
IntPtrTy, NULL));
|
|
if (!MallocF->doesNotAlias(0)) MallocF->setDoesNotAlias(0);
|
|
const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
|
|
CallInst *MCall = NULL;
|
|
Instruction *Result = NULL;
|
|
if (InsertBefore) {
|
|
MCall = CallInst::Create(MallocF, AllocSize, "malloccall", InsertBefore);
|
|
Result = MCall;
|
|
if (Result->getType() != AllocPtrType)
|
|
// Create a cast instruction to convert to the right type...
|
|
Result = new BitCastInst(MCall, AllocPtrType, NameStr, InsertBefore);
|
|
} else {
|
|
MCall = CallInst::Create(MallocF, AllocSize, "malloccall");
|
|
Result = MCall;
|
|
if (Result->getType() != AllocPtrType) {
|
|
InsertAtEnd->getInstList().push_back(MCall);
|
|
// Create a cast instruction to convert to the right type...
|
|
Result = new BitCastInst(MCall, AllocPtrType, NameStr);
|
|
}
|
|
}
|
|
MCall->setTailCall();
|
|
assert(MCall->getType() != Type::getVoidTy(BB->getContext()) &&
|
|
"Malloc has void return type");
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// CreateMalloc - Generate the IR for a call to malloc:
|
|
/// 1. Compute the malloc call's argument as the specified type's size,
|
|
/// possibly multiplied by the array size if the array size is not
|
|
/// constant 1.
|
|
/// 2. Call malloc with that argument.
|
|
/// 3. Bitcast the result of the malloc call to the specified type.
|
|
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
|
|
const Type *IntPtrTy, const Type *AllocTy,
|
|
Value *ArraySize, const Twine &Name) {
|
|
return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy,
|
|
ArraySize, NULL, Name);
|
|
}
|
|
|
|
/// CreateMalloc - Generate the IR for a call to malloc:
|
|
/// 1. Compute the malloc call's argument as the specified type's size,
|
|
/// possibly multiplied by the array size if the array size is not
|
|
/// constant 1.
|
|
/// 2. Call malloc with that argument.
|
|
/// 3. Bitcast the result of the malloc call to the specified type.
|
|
/// Note: This function does not add the bitcast to the basic block, that is the
|
|
/// responsibility of the caller.
|
|
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
|
|
const Type *IntPtrTy, const Type *AllocTy,
|
|
Value *ArraySize, Function* MallocF,
|
|
const Twine &Name) {
|
|
return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy,
|
|
ArraySize, MallocF, Name);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InvokeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
|
|
Value* const *Args, unsigned NumArgs) {
|
|
assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Fn;
|
|
OL[1] = IfNormal;
|
|
OL[2] = IfException;
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
|
|
FTy = FTy; // silence warning.
|
|
|
|
assert(((NumArgs == FTy->getNumParams()) ||
|
|
(FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
|
|
"Calling a function with bad signature");
|
|
|
|
for (unsigned i = 0, e = NumArgs; i != e; i++) {
|
|
assert((i >= FTy->getNumParams() ||
|
|
FTy->getParamType(i) == Args[i]->getType()) &&
|
|
"Invoking a function with a bad signature!");
|
|
|
|
OL[i+3] = Args[i];
|
|
}
|
|
}
|
|
|
|
InvokeInst::InvokeInst(const InvokeInst &II)
|
|
: TerminatorInst(II.getType(), Instruction::Invoke,
|
|
OperandTraits<InvokeInst>::op_end(this)
|
|
- II.getNumOperands(),
|
|
II.getNumOperands()) {
|
|
setAttributes(II.getAttributes());
|
|
SubclassData = II.SubclassData;
|
|
Use *OL = OperandList, *InOL = II.OperandList;
|
|
for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
|
|
OL[i] = InOL[i];
|
|
SubclassOptionalData = II.SubclassOptionalData;
|
|
}
|
|
|
|
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
|
|
return getSuccessor(idx);
|
|
}
|
|
unsigned InvokeInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
|
|
return setSuccessor(idx, B);
|
|
}
|
|
|
|
bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
|
|
if (AttributeList.paramHasAttr(i, attr))
|
|
return true;
|
|
if (const Function *F = getCalledFunction())
|
|
return F->paramHasAttr(i, attr);
|
|
return false;
|
|
}
|
|
|
|
void InvokeInst::addAttribute(unsigned i, Attributes attr) {
|
|
AttrListPtr PAL = getAttributes();
|
|
PAL = PAL.addAttr(i, attr);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
|
|
AttrListPtr PAL = getAttributes();
|
|
PAL = PAL.removeAttr(i, attr);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ReturnInst::ReturnInst(const ReturnInst &RI)
|
|
: TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this) -
|
|
RI.getNumOperands(),
|
|
RI.getNumOperands()) {
|
|
if (RI.getNumOperands())
|
|
Op<0>() = RI.Op<0>();
|
|
SubclassOptionalData = RI.SubclassOptionalData;
|
|
}
|
|
|
|
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
|
|
: TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
|
|
InsertBefore) {
|
|
if (retVal)
|
|
Op<0>() = retVal;
|
|
}
|
|
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
|
|
InsertAtEnd) {
|
|
if (retVal)
|
|
Op<0>() = retVal;
|
|
}
|
|
ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
|
|
}
|
|
|
|
unsigned ReturnInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
|
|
/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
|
|
/// emit the vtable for the class in this translation unit.
|
|
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
|
|
llvm_unreachable("ReturnInst has no successors!");
|
|
}
|
|
|
|
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
|
|
llvm_unreachable("ReturnInst has no successors!");
|
|
return 0;
|
|
}
|
|
|
|
ReturnInst::~ReturnInst() {
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnwindInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
|
|
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
|
|
0, 0, InsertBefore) {
|
|
}
|
|
UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
|
|
0, 0, InsertAtEnd) {
|
|
}
|
|
|
|
|
|
unsigned UnwindInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
|
|
void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
|
|
llvm_unreachable("UnwindInst has no successors!");
|
|
}
|
|
|
|
BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
|
|
llvm_unreachable("UnwindInst has no successors!");
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnreachableInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UnreachableInst::UnreachableInst(LLVMContext &Context,
|
|
Instruction *InsertBefore)
|
|
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
|
|
0, 0, InsertBefore) {
|
|
}
|
|
UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
|
|
0, 0, InsertAtEnd) {
|
|
}
|
|
|
|
unsigned UnreachableInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
|
|
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
|
|
llvm_unreachable("UnwindInst has no successors!");
|
|
}
|
|
|
|
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
|
|
llvm_unreachable("UnwindInst has no successors!");
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BranchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BranchInst::AssertOK() {
|
|
if (isConditional())
|
|
assert(getCondition()->getType() == Type::getInt1Ty(getContext()) &&
|
|
"May only branch on boolean predicates!");
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
|
|
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 1,
|
|
1, InsertBefore) {
|
|
assert(IfTrue != 0 && "Branch destination may not be null!");
|
|
Op<-1>() = IfTrue;
|
|
}
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
Instruction *InsertBefore)
|
|
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 3,
|
|
3, InsertBefore) {
|
|
Op<-1>() = IfTrue;
|
|
Op<-2>() = IfFalse;
|
|
Op<-3>() = Cond;
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 1,
|
|
1, InsertAtEnd) {
|
|
assert(IfTrue != 0 && "Branch destination may not be null!");
|
|
Op<-1>() = IfTrue;
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 3,
|
|
3, InsertAtEnd) {
|
|
Op<-1>() = IfTrue;
|
|
Op<-2>() = IfFalse;
|
|
Op<-3>() = Cond;
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
|
|
BranchInst::BranchInst(const BranchInst &BI) :
|
|
TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
|
|
BI.getNumOperands()) {
|
|
Op<-1>() = BI.Op<-1>();
|
|
if (BI.getNumOperands() != 1) {
|
|
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
|
|
Op<-3>() = BI.Op<-3>();
|
|
Op<-2>() = BI.Op<-2>();
|
|
}
|
|
SubclassOptionalData = BI.SubclassOptionalData;
|
|
}
|
|
|
|
|
|
Use* Use::getPrefix() {
|
|
PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
|
|
if (PotentialPrefix.getOpaqueValue())
|
|
return 0;
|
|
|
|
return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
|
|
}
|
|
|
|
BranchInst::~BranchInst() {
|
|
if (NumOperands == 1) {
|
|
if (Use *Prefix = OperandList->getPrefix()) {
|
|
Op<-1>() = 0;
|
|
//
|
|
// mark OperandList to have a special value for scrutiny
|
|
// by baseclass destructors and operator delete
|
|
OperandList = Prefix;
|
|
} else {
|
|
NumOperands = 3;
|
|
OperandList = op_begin();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
|
|
return getSuccessor(idx);
|
|
}
|
|
unsigned BranchInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
|
|
setSuccessor(idx, B);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllocationInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Value *getAISize(LLVMContext &Context, Value *Amt) {
|
|
if (!Amt)
|
|
Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
|
|
else {
|
|
assert(!isa<BasicBlock>(Amt) &&
|
|
"Passed basic block into allocation size parameter! Use other ctor");
|
|
assert(Amt->getType() == Type::getInt32Ty(Context) &&
|
|
"Allocation array size is not a 32-bit integer!");
|
|
}
|
|
return Amt;
|
|
}
|
|
|
|
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
|
|
unsigned Align, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: UnaryInstruction(PointerType::getUnqual(Ty), iTy,
|
|
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
|
|
setAlignment(Align);
|
|
assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
|
|
setName(Name);
|
|
}
|
|
|
|
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
|
|
unsigned Align, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(PointerType::getUnqual(Ty), iTy,
|
|
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
|
|
setAlignment(Align);
|
|
assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
|
|
setName(Name);
|
|
}
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
AllocationInst::~AllocationInst() {
|
|
}
|
|
|
|
void AllocationInst::setAlignment(unsigned Align) {
|
|
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
|
|
SubclassData = Log2_32(Align) + 1;
|
|
assert(getAlignment() == Align && "Alignment representation error!");
|
|
}
|
|
|
|
bool AllocationInst::isArrayAllocation() const {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
|
|
return CI->getZExtValue() != 1;
|
|
return true;
|
|
}
|
|
|
|
const Type *AllocationInst::getAllocatedType() const {
|
|
return getType()->getElementType();
|
|
}
|
|
|
|
/// isStaticAlloca - Return true if this alloca is in the entry block of the
|
|
/// function and is a constant size. If so, the code generator will fold it
|
|
/// into the prolog/epilog code, so it is basically free.
|
|
bool AllocaInst::isStaticAlloca() const {
|
|
// Must be constant size.
|
|
if (!isa<ConstantInt>(getArraySize())) return false;
|
|
|
|
// Must be in the entry block.
|
|
const BasicBlock *Parent = getParent();
|
|
return Parent == &Parent->getParent()->front();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FreeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void FreeInst::AssertOK() {
|
|
assert(isa<PointerType>(getOperand(0)->getType()) &&
|
|
"Can not free something of nonpointer type!");
|
|
}
|
|
|
|
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
|
|
: UnaryInstruction(Type::getVoidTy(Ptr->getContext()),
|
|
Free, Ptr, InsertBefore) {
|
|
AssertOK();
|
|
}
|
|
|
|
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(Type::getVoidTy(Ptr->getContext()),
|
|
Free, Ptr, InsertAtEnd) {
|
|
AssertOK();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LoadInst::AssertOK() {
|
|
assert(isa<PointerType>(getOperand(0)->getType()) &&
|
|
"Ptr must have pointer type.");
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertBef) {
|
|
setVolatile(false);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertAE) {
|
|
setVolatile(false);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
|
|
Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertBef) {
|
|
setVolatile(isVolatile);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
|
|
unsigned Align, Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertBef) {
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
|
|
unsigned Align, BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertAE) {
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
|
|
BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertAE) {
|
|
setVolatile(isVolatile);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertBef) {
|
|
setVolatile(false);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
if (Name && Name[0]) setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertAE) {
|
|
setVolatile(false);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
if (Name && Name[0]) setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
|
|
Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertBef) {
|
|
setVolatile(isVolatile);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
if (Name && Name[0]) setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
|
|
BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, InsertAE) {
|
|
setVolatile(isVolatile);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
if (Name && Name[0]) setName(Name);
|
|
}
|
|
|
|
void LoadInst::setAlignment(unsigned Align) {
|
|
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
|
|
SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void StoreInst::AssertOK() {
|
|
assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
|
|
assert(isa<PointerType>(getOperand(1)->getType()) &&
|
|
"Ptr must have pointer type!");
|
|
assert(getOperand(0)->getType() ==
|
|
cast<PointerType>(getOperand(1)->getType())->getElementType()
|
|
&& "Ptr must be a pointer to Val type!");
|
|
}
|
|
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(false);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(false);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(isVolatile);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
unsigned Align, Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
unsigned Align, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(isVolatile);
|
|
setAlignment(0);
|
|
AssertOK();
|
|
}
|
|
|
|
void StoreInst::setAlignment(unsigned Align) {
|
|
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
|
|
SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetElementPtrInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static unsigned retrieveAddrSpace(const Value *Val) {
|
|
return cast<PointerType>(Val->getType())->getAddressSpace();
|
|
}
|
|
|
|
void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
|
|
const Twine &Name) {
|
|
assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Ptr;
|
|
|
|
for (unsigned i = 0; i != NumIdx; ++i)
|
|
OL[i+1] = Idx[i];
|
|
|
|
setName(Name);
|
|
}
|
|
|
|
void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
|
|
assert(NumOperands == 2 && "NumOperands not initialized?");
|
|
Use *OL = OperandList;
|
|
OL[0] = Ptr;
|
|
OL[1] = Idx;
|
|
|
|
setName(Name);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
|
|
: Instruction(GEPI.getType(), GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this)
|
|
- GEPI.getNumOperands(),
|
|
GEPI.getNumOperands()) {
|
|
Use *OL = OperandList;
|
|
Use *GEPIOL = GEPI.OperandList;
|
|
for (unsigned i = 0, E = NumOperands; i != E; ++i)
|
|
OL[i] = GEPIOL[i];
|
|
SubclassOptionalData = GEPI.SubclassOptionalData;
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
|
|
const Twine &Name, Instruction *InBe)
|
|
: Instruction(PointerType::get(
|
|
checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
|
|
GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) - 2,
|
|
2, InBe) {
|
|
init(Ptr, Idx, Name);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
|
|
const Twine &Name, BasicBlock *IAE)
|
|
: Instruction(PointerType::get(
|
|
checkType(getIndexedType(Ptr->getType(),Idx)),
|
|
retrieveAddrSpace(Ptr)),
|
|
GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) - 2,
|
|
2, IAE) {
|
|
init(Ptr, Idx, Name);
|
|
}
|
|
|
|
/// getIndexedType - Returns the type of the element that would be accessed with
|
|
/// a gep instruction with the specified parameters.
|
|
///
|
|
/// The Idxs pointer should point to a continuous piece of memory containing the
|
|
/// indices, either as Value* or uint64_t.
|
|
///
|
|
/// A null type is returned if the indices are invalid for the specified
|
|
/// pointer type.
|
|
///
|
|
template <typename IndexTy>
|
|
static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
|
|
unsigned NumIdx) {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
|
|
if (!PTy) return 0; // Type isn't a pointer type!
|
|
const Type *Agg = PTy->getElementType();
|
|
|
|
// Handle the special case of the empty set index set, which is always valid.
|
|
if (NumIdx == 0)
|
|
return Agg;
|
|
|
|
// If there is at least one index, the top level type must be sized, otherwise
|
|
// it cannot be 'stepped over'. We explicitly allow abstract types (those
|
|
// that contain opaque types) under the assumption that it will be resolved to
|
|
// a sane type later.
|
|
if (!Agg->isSized() && !Agg->isAbstract())
|
|
return 0;
|
|
|
|
unsigned CurIdx = 1;
|
|
for (; CurIdx != NumIdx; ++CurIdx) {
|
|
const CompositeType *CT = dyn_cast<CompositeType>(Agg);
|
|
if (!CT || isa<PointerType>(CT)) return 0;
|
|
IndexTy Index = Idxs[CurIdx];
|
|
if (!CT->indexValid(Index)) return 0;
|
|
Agg = CT->getTypeAtIndex(Index);
|
|
|
|
// If the new type forwards to another type, then it is in the middle
|
|
// of being refined to another type (and hence, may have dropped all
|
|
// references to what it was using before). So, use the new forwarded
|
|
// type.
|
|
if (const Type *Ty = Agg->getForwardedType())
|
|
Agg = Ty;
|
|
}
|
|
return CurIdx == NumIdx ? Agg : 0;
|
|
}
|
|
|
|
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
|
|
Value* const *Idxs,
|
|
unsigned NumIdx) {
|
|
return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
|
|
}
|
|
|
|
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
|
|
uint64_t const *Idxs,
|
|
unsigned NumIdx) {
|
|
return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
|
|
}
|
|
|
|
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
|
|
if (!PTy) return 0; // Type isn't a pointer type!
|
|
|
|
// Check the pointer index.
|
|
if (!PTy->indexValid(Idx)) return 0;
|
|
|
|
return PTy->getElementType();
|
|
}
|
|
|
|
|
|
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
|
|
/// zeros. If so, the result pointer and the first operand have the same
|
|
/// value, just potentially different types.
|
|
bool GetElementPtrInst::hasAllZeroIndices() const {
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
|
|
if (!CI->isZero()) return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
|
|
/// constant integers. If so, the result pointer and the first operand have
|
|
/// a constant offset between them.
|
|
bool GetElementPtrInst::hasAllConstantIndices() const {
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
if (!isa<ConstantInt>(getOperand(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void GetElementPtrInst::setIsInBounds(bool B) {
|
|
cast<GEPOperator>(this)->setIsInBounds(B);
|
|
}
|
|
|
|
bool GetElementPtrInst::isInBounds() const {
|
|
return cast<GEPOperator>(this)->isInBounds();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
|
|
const Twine &Name,
|
|
Instruction *InsertBef)
|
|
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
|
|
ExtractElement,
|
|
OperandTraits<ExtractElementInst>::op_begin(this),
|
|
2, InsertBef) {
|
|
assert(isValidOperands(Val, Index) &&
|
|
"Invalid extractelement instruction operands!");
|
|
Op<0>() = Val;
|
|
Op<1>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAE)
|
|
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
|
|
ExtractElement,
|
|
OperandTraits<ExtractElementInst>::op_begin(this),
|
|
2, InsertAE) {
|
|
assert(isValidOperands(Val, Index) &&
|
|
"Invalid extractelement instruction operands!");
|
|
|
|
Op<0>() = Val;
|
|
Op<1>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
|
|
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
|
|
if (!isa<VectorType>(Val->getType()) ||
|
|
Index->getType() != Type::getInt32Ty(Val->getContext()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
|
|
const Twine &Name,
|
|
Instruction *InsertBef)
|
|
: Instruction(Vec->getType(), InsertElement,
|
|
OperandTraits<InsertElementInst>::op_begin(this),
|
|
3, InsertBef) {
|
|
assert(isValidOperands(Vec, Elt, Index) &&
|
|
"Invalid insertelement instruction operands!");
|
|
Op<0>() = Vec;
|
|
Op<1>() = Elt;
|
|
Op<2>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAE)
|
|
: Instruction(Vec->getType(), InsertElement,
|
|
OperandTraits<InsertElementInst>::op_begin(this),
|
|
3, InsertAE) {
|
|
assert(isValidOperands(Vec, Elt, Index) &&
|
|
"Invalid insertelement instruction operands!");
|
|
|
|
Op<0>() = Vec;
|
|
Op<1>() = Elt;
|
|
Op<2>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
|
|
const Value *Index) {
|
|
if (!isa<VectorType>(Vec->getType()))
|
|
return false; // First operand of insertelement must be vector type.
|
|
|
|
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
|
|
return false;// Second operand of insertelement must be vector element type.
|
|
|
|
if (Index->getType() != Type::getInt32Ty(Vec->getContext()))
|
|
return false; // Third operand of insertelement must be i32.
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleVectorInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
|
|
cast<VectorType>(Mask->getType())->getNumElements()),
|
|
ShuffleVector,
|
|
OperandTraits<ShuffleVectorInst>::op_begin(this),
|
|
OperandTraits<ShuffleVectorInst>::operands(this),
|
|
InsertBefore) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
Op<0>() = V1;
|
|
Op<1>() = V2;
|
|
Op<2>() = Mask;
|
|
setName(Name);
|
|
}
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
|
|
cast<VectorType>(Mask->getType())->getNumElements()),
|
|
ShuffleVector,
|
|
OperandTraits<ShuffleVectorInst>::op_begin(this),
|
|
OperandTraits<ShuffleVectorInst>::operands(this),
|
|
InsertAtEnd) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
|
|
Op<0>() = V1;
|
|
Op<1>() = V2;
|
|
Op<2>() = Mask;
|
|
setName(Name);
|
|
}
|
|
|
|
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
|
|
const Value *Mask) {
|
|
if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
|
|
return false;
|
|
|
|
const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
|
|
if (!isa<Constant>(Mask) || MaskTy == 0 ||
|
|
MaskTy->getElementType() != Type::getInt32Ty(V1->getContext()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// getMaskValue - Return the index from the shuffle mask for the specified
|
|
/// output result. This is either -1 if the element is undef or a number less
|
|
/// than 2*numelements.
|
|
int ShuffleVectorInst::getMaskValue(unsigned i) const {
|
|
const Constant *Mask = cast<Constant>(getOperand(2));
|
|
if (isa<UndefValue>(Mask)) return -1;
|
|
if (isa<ConstantAggregateZero>(Mask)) return 0;
|
|
const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
|
|
assert(i < MaskCV->getNumOperands() && "Index out of range");
|
|
|
|
if (isa<UndefValue>(MaskCV->getOperand(i)))
|
|
return -1;
|
|
return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
|
|
unsigned NumIdx, const Twine &Name) {
|
|
assert(NumOperands == 2 && "NumOperands not initialized?");
|
|
Op<0>() = Agg;
|
|
Op<1>() = Val;
|
|
|
|
Indices.insert(Indices.end(), Idx, Idx + NumIdx);
|
|
setName(Name);
|
|
}
|
|
|
|
void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
|
|
const Twine &Name) {
|
|
assert(NumOperands == 2 && "NumOperands not initialized?");
|
|
Op<0>() = Agg;
|
|
Op<1>() = Val;
|
|
|
|
Indices.push_back(Idx);
|
|
setName(Name);
|
|
}
|
|
|
|
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
|
|
: Instruction(IVI.getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this), 2),
|
|
Indices(IVI.Indices) {
|
|
Op<0>() = IVI.getOperand(0);
|
|
Op<1>() = IVI.getOperand(1);
|
|
SubclassOptionalData = IVI.SubclassOptionalData;
|
|
}
|
|
|
|
InsertValueInst::InsertValueInst(Value *Agg,
|
|
Value *Val,
|
|
unsigned Idx,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Agg->getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this),
|
|
2, InsertBefore) {
|
|
init(Agg, Val, Idx, Name);
|
|
}
|
|
|
|
InsertValueInst::InsertValueInst(Value *Agg,
|
|
Value *Val,
|
|
unsigned Idx,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Agg->getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this),
|
|
2, InsertAtEnd) {
|
|
init(Agg, Val, Idx, Name);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
|
|
const Twine &Name) {
|
|
assert(NumOperands == 1 && "NumOperands not initialized?");
|
|
|
|
Indices.insert(Indices.end(), Idx, Idx + NumIdx);
|
|
setName(Name);
|
|
}
|
|
|
|
void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
|
|
assert(NumOperands == 1 && "NumOperands not initialized?");
|
|
|
|
Indices.push_back(Idx);
|
|
setName(Name);
|
|
}
|
|
|
|
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
|
|
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
|
|
Indices(EVI.Indices) {
|
|
SubclassOptionalData = EVI.SubclassOptionalData;
|
|
}
|
|
|
|
// getIndexedType - Returns the type of the element that would be extracted
|
|
// with an extractvalue instruction with the specified parameters.
|
|
//
|
|
// A null type is returned if the indices are invalid for the specified
|
|
// pointer type.
|
|
//
|
|
const Type* ExtractValueInst::getIndexedType(const Type *Agg,
|
|
const unsigned *Idxs,
|
|
unsigned NumIdx) {
|
|
unsigned CurIdx = 0;
|
|
for (; CurIdx != NumIdx; ++CurIdx) {
|
|
const CompositeType *CT = dyn_cast<CompositeType>(Agg);
|
|
if (!CT || isa<PointerType>(CT) || isa<VectorType>(CT)) return 0;
|
|
unsigned Index = Idxs[CurIdx];
|
|
if (!CT->indexValid(Index)) return 0;
|
|
Agg = CT->getTypeAtIndex(Index);
|
|
|
|
// If the new type forwards to another type, then it is in the middle
|
|
// of being refined to another type (and hence, may have dropped all
|
|
// references to what it was using before). So, use the new forwarded
|
|
// type.
|
|
if (const Type *Ty = Agg->getForwardedType())
|
|
Agg = Ty;
|
|
}
|
|
return CurIdx == NumIdx ? Agg : 0;
|
|
}
|
|
|
|
const Type* ExtractValueInst::getIndexedType(const Type *Agg,
|
|
unsigned Idx) {
|
|
return getIndexedType(Agg, &Idx, 1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BinaryOperator Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AdjustIType - Map Add, Sub, and Mul to FAdd, FSub, and FMul when the
|
|
/// type is floating-point, to help provide compatibility with an older API.
|
|
///
|
|
static BinaryOperator::BinaryOps AdjustIType(BinaryOperator::BinaryOps iType,
|
|
const Type *Ty) {
|
|
// API compatibility: Adjust integer opcodes to floating-point opcodes.
|
|
if (Ty->isFPOrFPVector()) {
|
|
if (iType == BinaryOperator::Add) iType = BinaryOperator::FAdd;
|
|
else if (iType == BinaryOperator::Sub) iType = BinaryOperator::FSub;
|
|
else if (iType == BinaryOperator::Mul) iType = BinaryOperator::FMul;
|
|
}
|
|
return iType;
|
|
}
|
|
|
|
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
|
|
const Type *Ty, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Ty, AdjustIType(iType, Ty),
|
|
OperandTraits<BinaryOperator>::op_begin(this),
|
|
OperandTraits<BinaryOperator>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = S1;
|
|
Op<1>() = S2;
|
|
init(AdjustIType(iType, Ty));
|
|
setName(Name);
|
|
}
|
|
|
|
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
|
|
const Type *Ty, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Ty, AdjustIType(iType, Ty),
|
|
OperandTraits<BinaryOperator>::op_begin(this),
|
|
OperandTraits<BinaryOperator>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = S1;
|
|
Op<1>() = S2;
|
|
init(AdjustIType(iType, Ty));
|
|
setName(Name);
|
|
}
|
|
|
|
|
|
void BinaryOperator::init(BinaryOps iType) {
|
|
Value *LHS = getOperand(0), *RHS = getOperand(1);
|
|
LHS = LHS; RHS = RHS; // Silence warnings.
|
|
assert(LHS->getType() == RHS->getType() &&
|
|
"Binary operator operand types must match!");
|
|
#ifndef NDEBUG
|
|
switch (iType) {
|
|
case Add: case Sub:
|
|
case Mul:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isIntOrIntVector() &&
|
|
"Tried to create an integer operation on a non-integer type!");
|
|
break;
|
|
case FAdd: case FSub:
|
|
case FMul:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isFPOrFPVector() &&
|
|
"Tried to create a floating-point operation on a "
|
|
"non-floating-point type!");
|
|
break;
|
|
case UDiv:
|
|
case SDiv:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
|
|
cast<VectorType>(getType())->getElementType()->isInteger())) &&
|
|
"Incorrect operand type (not integer) for S/UDIV");
|
|
break;
|
|
case FDiv:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isFPOrFPVector() &&
|
|
"Incorrect operand type (not floating point) for FDIV");
|
|
break;
|
|
case URem:
|
|
case SRem:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
|
|
cast<VectorType>(getType())->getElementType()->isInteger())) &&
|
|
"Incorrect operand type (not integer) for S/UREM");
|
|
break;
|
|
case FRem:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isFPOrFPVector() &&
|
|
"Incorrect operand type (not floating point) for FREM");
|
|
break;
|
|
case Shl:
|
|
case LShr:
|
|
case AShr:
|
|
assert(getType() == LHS->getType() &&
|
|
"Shift operation should return same type as operands!");
|
|
assert((getType()->isInteger() ||
|
|
(isa<VectorType>(getType()) &&
|
|
cast<VectorType>(getType())->getElementType()->isInteger())) &&
|
|
"Tried to create a shift operation on a non-integral type!");
|
|
break;
|
|
case And: case Or:
|
|
case Xor:
|
|
assert(getType() == LHS->getType() &&
|
|
"Logical operation should return same type as operands!");
|
|
assert((getType()->isInteger() ||
|
|
(isa<VectorType>(getType()) &&
|
|
cast<VectorType>(getType())->getElementType()->isInteger())) &&
|
|
"Tried to create a logical operation on a non-integral type!");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(S1->getType() == S2->getType() &&
|
|
"Cannot create binary operator with two operands of differing type!");
|
|
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
BinaryOperator *Res = Create(Op, S1, S2, Name);
|
|
InsertAtEnd->getInstList().push_back(Res);
|
|
return Res;
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return new BinaryOperator(Instruction::Sub,
|
|
zero, Op,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return new BinaryOperator(Instruction::Sub,
|
|
zero, Op,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return new BinaryOperator(Instruction::FSub,
|
|
zero, Op,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return new BinaryOperator(Instruction::FSub,
|
|
zero, Op,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Constant *C;
|
|
if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
|
|
C = Constant::getAllOnesValue(PTy->getElementType());
|
|
C = ConstantVector::get(
|
|
std::vector<Constant*>(PTy->getNumElements(), C));
|
|
} else {
|
|
C = Constant::getAllOnesValue(Op->getType());
|
|
}
|
|
|
|
return new BinaryOperator(Instruction::Xor, Op, C,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Constant *AllOnes;
|
|
if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
|
|
// Create a vector of all ones values.
|
|
Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
|
|
AllOnes = ConstantVector::get(
|
|
std::vector<Constant*>(PTy->getNumElements(), Elt));
|
|
} else {
|
|
AllOnes = Constant::getAllOnesValue(Op->getType());
|
|
}
|
|
|
|
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
|
|
// isConstantAllOnes - Helper function for several functions below
|
|
static inline bool isConstantAllOnes(const Value *V) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
return CI->isAllOnesValue();
|
|
if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
|
|
return CV->isAllOnesValue();
|
|
return false;
|
|
}
|
|
|
|
bool BinaryOperator::isNeg(const Value *V) {
|
|
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
|
|
if (Bop->getOpcode() == Instruction::Sub)
|
|
if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
|
|
return C->isNegativeZeroValue();
|
|
return false;
|
|
}
|
|
|
|
bool BinaryOperator::isFNeg(const Value *V) {
|
|
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
|
|
if (Bop->getOpcode() == Instruction::FSub)
|
|
if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
|
|
return C->isNegativeZeroValue();
|
|
return false;
|
|
}
|
|
|
|
bool BinaryOperator::isNot(const Value *V) {
|
|
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
|
|
return (Bop->getOpcode() == Instruction::Xor &&
|
|
(isConstantAllOnes(Bop->getOperand(1)) ||
|
|
isConstantAllOnes(Bop->getOperand(0))));
|
|
return false;
|
|
}
|
|
|
|
Value *BinaryOperator::getNegArgument(Value *BinOp) {
|
|
return cast<BinaryOperator>(BinOp)->getOperand(1);
|
|
}
|
|
|
|
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
|
|
return getNegArgument(const_cast<Value*>(BinOp));
|
|
}
|
|
|
|
Value *BinaryOperator::getFNegArgument(Value *BinOp) {
|
|
return cast<BinaryOperator>(BinOp)->getOperand(1);
|
|
}
|
|
|
|
const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
|
|
return getFNegArgument(const_cast<Value*>(BinOp));
|
|
}
|
|
|
|
Value *BinaryOperator::getNotArgument(Value *BinOp) {
|
|
assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
|
|
BinaryOperator *BO = cast<BinaryOperator>(BinOp);
|
|
Value *Op0 = BO->getOperand(0);
|
|
Value *Op1 = BO->getOperand(1);
|
|
if (isConstantAllOnes(Op0)) return Op1;
|
|
|
|
assert(isConstantAllOnes(Op1));
|
|
return Op0;
|
|
}
|
|
|
|
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
|
|
return getNotArgument(const_cast<Value*>(BinOp));
|
|
}
|
|
|
|
|
|
// swapOperands - Exchange the two operands to this instruction. This
|
|
// instruction is safe to use on any binary instruction and does not
|
|
// modify the semantics of the instruction. If the instruction is
|
|
// order dependent (SetLT f.e.) the opcode is changed.
|
|
//
|
|
bool BinaryOperator::swapOperands() {
|
|
if (!isCommutative())
|
|
return true; // Can't commute operands
|
|
Op<0>().swap(Op<1>());
|
|
return false;
|
|
}
|
|
|
|
void BinaryOperator::setHasNoUnsignedWrap(bool b) {
|
|
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
|
|
}
|
|
|
|
void BinaryOperator::setHasNoSignedWrap(bool b) {
|
|
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
|
|
}
|
|
|
|
void BinaryOperator::setIsExact(bool b) {
|
|
cast<SDivOperator>(this)->setIsExact(b);
|
|
}
|
|
|
|
bool BinaryOperator::hasNoUnsignedWrap() const {
|
|
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
|
|
}
|
|
|
|
bool BinaryOperator::hasNoSignedWrap() const {
|
|
return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
|
|
}
|
|
|
|
bool BinaryOperator::isExact() const {
|
|
return cast<SDivOperator>(this)->isExact();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CastInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Just determine if this cast only deals with integral->integral conversion.
|
|
bool CastInst::isIntegerCast() const {
|
|
switch (getOpcode()) {
|
|
default: return false;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::Trunc:
|
|
return true;
|
|
case Instruction::BitCast:
|
|
return getOperand(0)->getType()->isInteger() && getType()->isInteger();
|
|
}
|
|
}
|
|
|
|
bool CastInst::isLosslessCast() const {
|
|
// Only BitCast can be lossless, exit fast if we're not BitCast
|
|
if (getOpcode() != Instruction::BitCast)
|
|
return false;
|
|
|
|
// Identity cast is always lossless
|
|
const Type* SrcTy = getOperand(0)->getType();
|
|
const Type* DstTy = getType();
|
|
if (SrcTy == DstTy)
|
|
return true;
|
|
|
|
// Pointer to pointer is always lossless.
|
|
if (isa<PointerType>(SrcTy))
|
|
return isa<PointerType>(DstTy);
|
|
return false; // Other types have no identity values
|
|
}
|
|
|
|
/// This function determines if the CastInst does not require any bits to be
|
|
/// changed in order to effect the cast. Essentially, it identifies cases where
|
|
/// no code gen is necessary for the cast, hence the name no-op cast. For
|
|
/// example, the following are all no-op casts:
|
|
/// # bitcast i32* %x to i8*
|
|
/// # bitcast <2 x i32> %x to <4 x i16>
|
|
/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
|
|
/// @brief Determine if a cast is a no-op.
|
|
bool CastInst::isNoopCast(const Type *IntPtrTy) const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
assert(!"Invalid CastOp");
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
return false; // These always modify bits
|
|
case Instruction::BitCast:
|
|
return true; // BitCast never modifies bits.
|
|
case Instruction::PtrToInt:
|
|
return IntPtrTy->getScalarSizeInBits() ==
|
|
getType()->getScalarSizeInBits();
|
|
case Instruction::IntToPtr:
|
|
return IntPtrTy->getScalarSizeInBits() ==
|
|
getOperand(0)->getType()->getScalarSizeInBits();
|
|
}
|
|
}
|
|
|
|
/// This function determines if a pair of casts can be eliminated and what
|
|
/// opcode should be used in the elimination. This assumes that there are two
|
|
/// instructions like this:
|
|
/// * %F = firstOpcode SrcTy %x to MidTy
|
|
/// * %S = secondOpcode MidTy %F to DstTy
|
|
/// The function returns a resultOpcode so these two casts can be replaced with:
|
|
/// * %Replacement = resultOpcode %SrcTy %x to DstTy
|
|
/// If no such cast is permited, the function returns 0.
|
|
unsigned CastInst::isEliminableCastPair(
|
|
Instruction::CastOps firstOp, Instruction::CastOps secondOp,
|
|
const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
|
|
{
|
|
// Define the 144 possibilities for these two cast instructions. The values
|
|
// in this matrix determine what to do in a given situation and select the
|
|
// case in the switch below. The rows correspond to firstOp, the columns
|
|
// correspond to secondOp. In looking at the table below, keep in mind
|
|
// the following cast properties:
|
|
//
|
|
// Size Compare Source Destination
|
|
// Operator Src ? Size Type Sign Type Sign
|
|
// -------- ------------ ------------------- ---------------------
|
|
// TRUNC > Integer Any Integral Any
|
|
// ZEXT < Integral Unsigned Integer Any
|
|
// SEXT < Integral Signed Integer Any
|
|
// FPTOUI n/a FloatPt n/a Integral Unsigned
|
|
// FPTOSI n/a FloatPt n/a Integral Signed
|
|
// UITOFP n/a Integral Unsigned FloatPt n/a
|
|
// SITOFP n/a Integral Signed FloatPt n/a
|
|
// FPTRUNC > FloatPt n/a FloatPt n/a
|
|
// FPEXT < FloatPt n/a FloatPt n/a
|
|
// PTRTOINT n/a Pointer n/a Integral Unsigned
|
|
// INTTOPTR n/a Integral Unsigned Pointer n/a
|
|
// BITCONVERT = FirstClass n/a FirstClass n/a
|
|
//
|
|
// NOTE: some transforms are safe, but we consider them to be non-profitable.
|
|
// For example, we could merge "fptoui double to i32" + "zext i32 to i64",
|
|
// into "fptoui double to i64", but this loses information about the range
|
|
// of the produced value (we no longer know the top-part is all zeros).
|
|
// Further this conversion is often much more expensive for typical hardware,
|
|
// and causes issues when building libgcc. We disallow fptosi+sext for the
|
|
// same reason.
|
|
const unsigned numCastOps =
|
|
Instruction::CastOpsEnd - Instruction::CastOpsBegin;
|
|
static const uint8_t CastResults[numCastOps][numCastOps] = {
|
|
// T F F U S F F P I B -+
|
|
// R Z S P P I I T P 2 N T |
|
|
// U E E 2 2 2 2 R E I T C +- secondOp
|
|
// N X X U S F F N X N 2 V |
|
|
// C T T I I P P C T T P T -+
|
|
{ 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
|
|
{ 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
|
|
{ 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
|
|
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
|
|
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
|
|
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
|
|
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
|
|
{ 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
|
|
{ 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
|
|
{ 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
|
|
{ 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
|
|
{ 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
|
|
};
|
|
|
|
int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
|
|
[secondOp-Instruction::CastOpsBegin];
|
|
switch (ElimCase) {
|
|
case 0:
|
|
// categorically disallowed
|
|
return 0;
|
|
case 1:
|
|
// allowed, use first cast's opcode
|
|
return firstOp;
|
|
case 2:
|
|
// allowed, use second cast's opcode
|
|
return secondOp;
|
|
case 3:
|
|
// no-op cast in second op implies firstOp as long as the DestTy
|
|
// is integer
|
|
if (DstTy->isInteger())
|
|
return firstOp;
|
|
return 0;
|
|
case 4:
|
|
// no-op cast in second op implies firstOp as long as the DestTy
|
|
// is floating point
|
|
if (DstTy->isFloatingPoint())
|
|
return firstOp;
|
|
return 0;
|
|
case 5:
|
|
// no-op cast in first op implies secondOp as long as the SrcTy
|
|
// is an integer
|
|
if (SrcTy->isInteger())
|
|
return secondOp;
|
|
return 0;
|
|
case 6:
|
|
// no-op cast in first op implies secondOp as long as the SrcTy
|
|
// is a floating point
|
|
if (SrcTy->isFloatingPoint())
|
|
return secondOp;
|
|
return 0;
|
|
case 7: {
|
|
// ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
|
|
if (!IntPtrTy)
|
|
return 0;
|
|
unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
|
|
unsigned MidSize = MidTy->getScalarSizeInBits();
|
|
if (MidSize >= PtrSize)
|
|
return Instruction::BitCast;
|
|
return 0;
|
|
}
|
|
case 8: {
|
|
// ext, trunc -> bitcast, if the SrcTy and DstTy are same size
|
|
// ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
|
|
// ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
|
|
unsigned SrcSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DstSize = DstTy->getScalarSizeInBits();
|
|
if (SrcSize == DstSize)
|
|
return Instruction::BitCast;
|
|
else if (SrcSize < DstSize)
|
|
return firstOp;
|
|
return secondOp;
|
|
}
|
|
case 9: // zext, sext -> zext, because sext can't sign extend after zext
|
|
return Instruction::ZExt;
|
|
case 10:
|
|
// fpext followed by ftrunc is allowed if the bit size returned to is
|
|
// the same as the original, in which case its just a bitcast
|
|
if (SrcTy == DstTy)
|
|
return Instruction::BitCast;
|
|
return 0; // If the types are not the same we can't eliminate it.
|
|
case 11:
|
|
// bitcast followed by ptrtoint is allowed as long as the bitcast
|
|
// is a pointer to pointer cast.
|
|
if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
|
|
return secondOp;
|
|
return 0;
|
|
case 12:
|
|
// inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
|
|
if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
|
|
return firstOp;
|
|
return 0;
|
|
case 13: {
|
|
// inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
|
|
if (!IntPtrTy)
|
|
return 0;
|
|
unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
|
|
unsigned SrcSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DstSize = DstTy->getScalarSizeInBits();
|
|
if (SrcSize <= PtrSize && SrcSize == DstSize)
|
|
return Instruction::BitCast;
|
|
return 0;
|
|
}
|
|
case 99:
|
|
// cast combination can't happen (error in input). This is for all cases
|
|
// where the MidTy is not the same for the two cast instructions.
|
|
assert(!"Invalid Cast Combination");
|
|
return 0;
|
|
default:
|
|
assert(!"Error in CastResults table!!!");
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
|
|
const Twine &Name, Instruction *InsertBefore) {
|
|
// Construct and return the appropriate CastInst subclass
|
|
switch (op) {
|
|
case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
|
|
case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
|
|
case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
|
|
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
|
|
case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
|
|
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
|
|
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
|
|
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
|
|
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
|
|
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
|
|
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
|
|
case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
|
|
default:
|
|
assert(!"Invalid opcode provided");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
|
|
const Twine &Name, BasicBlock *InsertAtEnd) {
|
|
// Construct and return the appropriate CastInst subclass
|
|
switch (op) {
|
|
case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
|
|
case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
|
|
case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
|
|
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
|
|
case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
|
|
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
|
|
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
|
|
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
|
|
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
|
|
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
|
|
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
|
|
case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
|
|
default:
|
|
assert(!"Invalid opcode provided");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(isa<PointerType>(S->getType()) && "Invalid cast");
|
|
assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
|
|
"Invalid cast");
|
|
|
|
if (Ty->isInteger())
|
|
return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
/// @brief Create a BitCast or a PtrToInt cast instruction
|
|
CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(isa<PointerType>(S->getType()) && "Invalid cast");
|
|
assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
|
|
"Invalid cast");
|
|
|
|
if (Ty->isInteger())
|
|
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
|
|
bool isSigned, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::Trunc :
|
|
(isSigned ? Instruction::SExt : Instruction::ZExt)));
|
|
return Create(opcode, C, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
|
|
bool isSigned, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(C->getType()->isIntOrIntVector() && Ty->isIntOrIntVector() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::Trunc :
|
|
(isSigned ? Instruction::SExt : Instruction::ZExt)));
|
|
return Create(opcode, C, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
|
|
return Create(opcode, C, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
|
|
return Create(opcode, C, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
// Check whether it is valid to call getCastOpcode for these types.
|
|
// This routine must be kept in sync with getCastOpcode.
|
|
bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
|
|
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
|
|
return false;
|
|
|
|
if (SrcTy == DestTy)
|
|
return true;
|
|
|
|
// Get the bit sizes, we'll need these
|
|
unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
|
|
unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
|
|
|
|
// Run through the possibilities ...
|
|
if (DestTy->isInteger()) { // Casting to integral
|
|
if (SrcTy->isInteger()) { // Casting from integral
|
|
return true;
|
|
} else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
|
|
return true;
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
|
|
// Casting from vector
|
|
return DestBits == PTy->getBitWidth();
|
|
} else { // Casting from something else
|
|
return isa<PointerType>(SrcTy);
|
|
}
|
|
} else if (DestTy->isFloatingPoint()) { // Casting to floating pt
|
|
if (SrcTy->isInteger()) { // Casting from integral
|
|
return true;
|
|
} else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
|
|
return true;
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
|
|
// Casting from vector
|
|
return DestBits == PTy->getBitWidth();
|
|
} else { // Casting from something else
|
|
return false;
|
|
}
|
|
} else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
|
|
// Casting to vector
|
|
if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
|
|
// Casting from vector
|
|
return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
|
|
} else { // Casting from something else
|
|
return DestPTy->getBitWidth() == SrcBits;
|
|
}
|
|
} else if (isa<PointerType>(DestTy)) { // Casting to pointer
|
|
if (isa<PointerType>(SrcTy)) { // Casting from pointer
|
|
return true;
|
|
} else if (SrcTy->isInteger()) { // Casting from integral
|
|
return true;
|
|
} else { // Casting from something else
|
|
return false;
|
|
}
|
|
} else { // Casting to something else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Provide a way to get a "cast" where the cast opcode is inferred from the
|
|
// types and size of the operand. This, basically, is a parallel of the
|
|
// logic in the castIsValid function below. This axiom should hold:
|
|
// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
|
|
// should not assert in castIsValid. In other words, this produces a "correct"
|
|
// casting opcode for the arguments passed to it.
|
|
// This routine must be kept in sync with isCastable.
|
|
Instruction::CastOps
|
|
CastInst::getCastOpcode(
|
|
const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
|
|
// Get the bit sizes, we'll need these
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
|
|
unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
|
|
|
|
assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
|
|
"Only first class types are castable!");
|
|
|
|
// Run through the possibilities ...
|
|
if (DestTy->isInteger()) { // Casting to integral
|
|
if (SrcTy->isInteger()) { // Casting from integral
|
|
if (DestBits < SrcBits)
|
|
return Trunc; // int -> smaller int
|
|
else if (DestBits > SrcBits) { // its an extension
|
|
if (SrcIsSigned)
|
|
return SExt; // signed -> SEXT
|
|
else
|
|
return ZExt; // unsigned -> ZEXT
|
|
} else {
|
|
return BitCast; // Same size, No-op cast
|
|
}
|
|
} else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
|
|
if (DestIsSigned)
|
|
return FPToSI; // FP -> sint
|
|
else
|
|
return FPToUI; // FP -> uint
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
|
|
assert(DestBits == PTy->getBitWidth() &&
|
|
"Casting vector to integer of different width");
|
|
PTy = NULL;
|
|
return BitCast; // Same size, no-op cast
|
|
} else {
|
|
assert(isa<PointerType>(SrcTy) &&
|
|
"Casting from a value that is not first-class type");
|
|
return PtrToInt; // ptr -> int
|
|
}
|
|
} else if (DestTy->isFloatingPoint()) { // Casting to floating pt
|
|
if (SrcTy->isInteger()) { // Casting from integral
|
|
if (SrcIsSigned)
|
|
return SIToFP; // sint -> FP
|
|
else
|
|
return UIToFP; // uint -> FP
|
|
} else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
|
|
if (DestBits < SrcBits) {
|
|
return FPTrunc; // FP -> smaller FP
|
|
} else if (DestBits > SrcBits) {
|
|
return FPExt; // FP -> larger FP
|
|
} else {
|
|
return BitCast; // same size, no-op cast
|
|
}
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
|
|
assert(DestBits == PTy->getBitWidth() &&
|
|
"Casting vector to floating point of different width");
|
|
PTy = NULL;
|
|
return BitCast; // same size, no-op cast
|
|
} else {
|
|
llvm_unreachable("Casting pointer or non-first class to float");
|
|
}
|
|
} else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
|
|
if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
|
|
assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
|
|
"Casting vector to vector of different widths");
|
|
SrcPTy = NULL;
|
|
return BitCast; // vector -> vector
|
|
} else if (DestPTy->getBitWidth() == SrcBits) {
|
|
return BitCast; // float/int -> vector
|
|
} else {
|
|
assert(!"Illegal cast to vector (wrong type or size)");
|
|
}
|
|
} else if (isa<PointerType>(DestTy)) {
|
|
if (isa<PointerType>(SrcTy)) {
|
|
return BitCast; // ptr -> ptr
|
|
} else if (SrcTy->isInteger()) {
|
|
return IntToPtr; // int -> ptr
|
|
} else {
|
|
assert(!"Casting pointer to other than pointer or int");
|
|
}
|
|
} else {
|
|
assert(!"Casting to type that is not first-class");
|
|
}
|
|
|
|
// If we fall through to here we probably hit an assertion cast above
|
|
// and assertions are not turned on. Anything we return is an error, so
|
|
// BitCast is as good a choice as any.
|
|
return BitCast;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CastInst SubClass Constructors
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Check that the construction parameters for a CastInst are correct. This
|
|
/// could be broken out into the separate constructors but it is useful to have
|
|
/// it in one place and to eliminate the redundant code for getting the sizes
|
|
/// of the types involved.
|
|
bool
|
|
CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
|
|
|
|
// Check for type sanity on the arguments
|
|
const Type *SrcTy = S->getType();
|
|
if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
|
|
return false;
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DstBitSize = DstTy->getScalarSizeInBits();
|
|
|
|
// Switch on the opcode provided
|
|
switch (op) {
|
|
default: return false; // This is an input error
|
|
case Instruction::Trunc:
|
|
return SrcTy->isIntOrIntVector() &&
|
|
DstTy->isIntOrIntVector()&& SrcBitSize > DstBitSize;
|
|
case Instruction::ZExt:
|
|
return SrcTy->isIntOrIntVector() &&
|
|
DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
|
|
case Instruction::SExt:
|
|
return SrcTy->isIntOrIntVector() &&
|
|
DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
|
|
case Instruction::FPTrunc:
|
|
return SrcTy->isFPOrFPVector() &&
|
|
DstTy->isFPOrFPVector() &&
|
|
SrcBitSize > DstBitSize;
|
|
case Instruction::FPExt:
|
|
return SrcTy->isFPOrFPVector() &&
|
|
DstTy->isFPOrFPVector() &&
|
|
SrcBitSize < DstBitSize;
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
|
|
if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
|
|
return SVTy->getElementType()->isIntOrIntVector() &&
|
|
DVTy->getElementType()->isFPOrFPVector() &&
|
|
SVTy->getNumElements() == DVTy->getNumElements();
|
|
}
|
|
}
|
|
return SrcTy->isIntOrIntVector() && DstTy->isFPOrFPVector();
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
|
|
if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
|
|
return SVTy->getElementType()->isFPOrFPVector() &&
|
|
DVTy->getElementType()->isIntOrIntVector() &&
|
|
SVTy->getNumElements() == DVTy->getNumElements();
|
|
}
|
|
}
|
|
return SrcTy->isFPOrFPVector() && DstTy->isIntOrIntVector();
|
|
case Instruction::PtrToInt:
|
|
return isa<PointerType>(SrcTy) && DstTy->isInteger();
|
|
case Instruction::IntToPtr:
|
|
return SrcTy->isInteger() && isa<PointerType>(DstTy);
|
|
case Instruction::BitCast:
|
|
// BitCast implies a no-op cast of type only. No bits change.
|
|
// However, you can't cast pointers to anything but pointers.
|
|
if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
|
|
return false;
|
|
|
|
// Now we know we're not dealing with a pointer/non-pointer mismatch. In all
|
|
// these cases, the cast is okay if the source and destination bit widths
|
|
// are identical.
|
|
return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
|
|
}
|
|
}
|
|
|
|
TruncInst::TruncInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
|
|
}
|
|
|
|
TruncInst::TruncInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
|
|
}
|
|
|
|
ZExtInst::ZExtInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
|
|
}
|
|
|
|
ZExtInst::ZExtInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
|
|
}
|
|
SExtInst::SExtInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, SExt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
|
|
}
|
|
|
|
SExtInst::SExtInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
|
|
}
|
|
|
|
FPTruncInst::FPTruncInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
|
|
}
|
|
|
|
FPTruncInst::FPTruncInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
|
|
}
|
|
|
|
FPExtInst::FPExtInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
|
|
}
|
|
|
|
FPExtInst::FPExtInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
|
|
}
|
|
|
|
UIToFPInst::UIToFPInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
|
|
}
|
|
|
|
UIToFPInst::UIToFPInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
|
|
}
|
|
|
|
SIToFPInst::SIToFPInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
|
|
}
|
|
|
|
SIToFPInst::SIToFPInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
|
|
}
|
|
|
|
FPToUIInst::FPToUIInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
|
|
}
|
|
|
|
FPToUIInst::FPToUIInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
|
|
}
|
|
|
|
FPToSIInst::FPToSIInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
|
|
}
|
|
|
|
FPToSIInst::FPToSIInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
|
|
}
|
|
|
|
PtrToIntInst::PtrToIntInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
|
|
}
|
|
|
|
PtrToIntInst::PtrToIntInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
|
|
}
|
|
|
|
IntToPtrInst::IntToPtrInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
|
|
}
|
|
|
|
IntToPtrInst::IntToPtrInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
|
|
}
|
|
|
|
BitCastInst::BitCastInst(
|
|
Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
|
|
}
|
|
|
|
BitCastInst::BitCastInst(
|
|
Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CmpInst Classes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
|
|
Value *LHS, Value *RHS, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(ty, op,
|
|
OperandTraits<CmpInst>::op_begin(this),
|
|
OperandTraits<CmpInst>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = LHS;
|
|
Op<1>() = RHS;
|
|
SubclassData = predicate;
|
|
setName(Name);
|
|
}
|
|
|
|
CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
|
|
Value *LHS, Value *RHS, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(ty, op,
|
|
OperandTraits<CmpInst>::op_begin(this),
|
|
OperandTraits<CmpInst>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = LHS;
|
|
Op<1>() = RHS;
|
|
SubclassData = predicate;
|
|
setName(Name);
|
|
}
|
|
|
|
CmpInst *
|
|
CmpInst::Create(OtherOps Op, unsigned short predicate,
|
|
Value *S1, Value *S2,
|
|
const Twine &Name, Instruction *InsertBefore) {
|
|
if (Op == Instruction::ICmp) {
|
|
if (InsertBefore)
|
|
return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
else
|
|
return new ICmpInst(CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
|
|
if (InsertBefore)
|
|
return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
else
|
|
return new FCmpInst(CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
|
|
CmpInst *
|
|
CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
|
|
const Twine &Name, BasicBlock *InsertAtEnd) {
|
|
if (Op == Instruction::ICmp) {
|
|
return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
|
|
void CmpInst::swapOperands() {
|
|
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
|
|
IC->swapOperands();
|
|
else
|
|
cast<FCmpInst>(this)->swapOperands();
|
|
}
|
|
|
|
bool CmpInst::isCommutative() {
|
|
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
|
|
return IC->isCommutative();
|
|
return cast<FCmpInst>(this)->isCommutative();
|
|
}
|
|
|
|
bool CmpInst::isEquality() {
|
|
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
|
|
return IC->isEquality();
|
|
return cast<FCmpInst>(this)->isEquality();
|
|
}
|
|
|
|
|
|
CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: assert(!"Unknown cmp predicate!");
|
|
case ICMP_EQ: return ICMP_NE;
|
|
case ICMP_NE: return ICMP_EQ;
|
|
case ICMP_UGT: return ICMP_ULE;
|
|
case ICMP_ULT: return ICMP_UGE;
|
|
case ICMP_UGE: return ICMP_ULT;
|
|
case ICMP_ULE: return ICMP_UGT;
|
|
case ICMP_SGT: return ICMP_SLE;
|
|
case ICMP_SLT: return ICMP_SGE;
|
|
case ICMP_SGE: return ICMP_SLT;
|
|
case ICMP_SLE: return ICMP_SGT;
|
|
|
|
case FCMP_OEQ: return FCMP_UNE;
|
|
case FCMP_ONE: return FCMP_UEQ;
|
|
case FCMP_OGT: return FCMP_ULE;
|
|
case FCMP_OLT: return FCMP_UGE;
|
|
case FCMP_OGE: return FCMP_ULT;
|
|
case FCMP_OLE: return FCMP_UGT;
|
|
case FCMP_UEQ: return FCMP_ONE;
|
|
case FCMP_UNE: return FCMP_OEQ;
|
|
case FCMP_UGT: return FCMP_OLE;
|
|
case FCMP_ULT: return FCMP_OGE;
|
|
case FCMP_UGE: return FCMP_OLT;
|
|
case FCMP_ULE: return FCMP_OGT;
|
|
case FCMP_ORD: return FCMP_UNO;
|
|
case FCMP_UNO: return FCMP_ORD;
|
|
case FCMP_TRUE: return FCMP_FALSE;
|
|
case FCMP_FALSE: return FCMP_TRUE;
|
|
}
|
|
}
|
|
|
|
ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: assert(! "Unknown icmp predicate!");
|
|
case ICMP_EQ: case ICMP_NE:
|
|
case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
|
|
return pred;
|
|
case ICMP_UGT: return ICMP_SGT;
|
|
case ICMP_ULT: return ICMP_SLT;
|
|
case ICMP_UGE: return ICMP_SGE;
|
|
case ICMP_ULE: return ICMP_SLE;
|
|
}
|
|
}
|
|
|
|
ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: assert(! "Unknown icmp predicate!");
|
|
case ICMP_EQ: case ICMP_NE:
|
|
case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
|
|
return pred;
|
|
case ICMP_SGT: return ICMP_UGT;
|
|
case ICMP_SLT: return ICMP_ULT;
|
|
case ICMP_SGE: return ICMP_UGE;
|
|
case ICMP_SLE: return ICMP_ULE;
|
|
}
|
|
}
|
|
|
|
bool ICmpInst::isSignedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: assert(! "Unknown icmp predicate!");
|
|
case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
|
|
return true;
|
|
case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
|
|
case ICMP_UGE: case ICMP_ULE:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Initialize a set of values that all satisfy the condition with C.
|
|
///
|
|
ConstantRange
|
|
ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
|
|
APInt Lower(C);
|
|
APInt Upper(C);
|
|
uint32_t BitWidth = C.getBitWidth();
|
|
switch (pred) {
|
|
default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
|
|
case ICmpInst::ICMP_EQ: Upper++; break;
|
|
case ICmpInst::ICMP_NE: Lower++; break;
|
|
case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
|
|
case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
|
|
case ICmpInst::ICMP_UGT:
|
|
Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
|
|
break;
|
|
case ICmpInst::ICMP_SGT:
|
|
Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
|
|
break;
|
|
case ICmpInst::ICMP_ULE:
|
|
Lower = APInt::getMinValue(BitWidth); Upper++;
|
|
break;
|
|
case ICmpInst::ICMP_SLE:
|
|
Lower = APInt::getSignedMinValue(BitWidth); Upper++;
|
|
break;
|
|
case ICmpInst::ICMP_UGE:
|
|
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
|
|
break;
|
|
case ICmpInst::ICMP_SGE:
|
|
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
|
|
break;
|
|
}
|
|
return ConstantRange(Lower, Upper);
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: assert(!"Unknown cmp predicate!");
|
|
case ICMP_EQ: case ICMP_NE:
|
|
return pred;
|
|
case ICMP_SGT: return ICMP_SLT;
|
|
case ICMP_SLT: return ICMP_SGT;
|
|
case ICMP_SGE: return ICMP_SLE;
|
|
case ICMP_SLE: return ICMP_SGE;
|
|
case ICMP_UGT: return ICMP_ULT;
|
|
case ICMP_ULT: return ICMP_UGT;
|
|
case ICMP_UGE: return ICMP_ULE;
|
|
case ICMP_ULE: return ICMP_UGE;
|
|
|
|
case FCMP_FALSE: case FCMP_TRUE:
|
|
case FCMP_OEQ: case FCMP_ONE:
|
|
case FCMP_UEQ: case FCMP_UNE:
|
|
case FCMP_ORD: case FCMP_UNO:
|
|
return pred;
|
|
case FCMP_OGT: return FCMP_OLT;
|
|
case FCMP_OLT: return FCMP_OGT;
|
|
case FCMP_OGE: return FCMP_OLE;
|
|
case FCMP_OLE: return FCMP_OGE;
|
|
case FCMP_UGT: return FCMP_ULT;
|
|
case FCMP_ULT: return FCMP_UGT;
|
|
case FCMP_UGE: return FCMP_ULE;
|
|
case FCMP_ULE: return FCMP_UGE;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isUnsigned(unsigned short predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
|
|
case ICmpInst::ICMP_UGE: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isSigned(unsigned short predicate){
|
|
switch (predicate) {
|
|
default: return false;
|
|
case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
|
|
case ICmpInst::ICMP_SGE: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isOrdered(unsigned short predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
|
|
case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
|
|
case FCmpInst::FCMP_ORD: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isUnordered(unsigned short predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
|
|
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
|
|
case FCmpInst::FCMP_UNO: return true;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
|
|
assert(Value && Default);
|
|
ReservedSpace = 2+NumCases*2;
|
|
NumOperands = 2;
|
|
OperandList = allocHungoffUses(ReservedSpace);
|
|
|
|
OperandList[0] = Value;
|
|
OperandList[1] = Default;
|
|
}
|
|
|
|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
|
|
/// switch on and a default destination. The number of additional cases can
|
|
/// be specified here to make memory allocation more efficient. This
|
|
/// constructor can also autoinsert before another instruction.
|
|
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
Instruction *InsertBefore)
|
|
: TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
|
|
0, 0, InsertBefore) {
|
|
init(Value, Default, NumCases);
|
|
}
|
|
|
|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
|
|
/// switch on and a default destination. The number of additional cases can
|
|
/// be specified here to make memory allocation more efficient. This
|
|
/// constructor also autoinserts at the end of the specified BasicBlock.
|
|
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
|
|
0, 0, InsertAtEnd) {
|
|
init(Value, Default, NumCases);
|
|
}
|
|
|
|
SwitchInst::SwitchInst(const SwitchInst &SI)
|
|
: TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch,
|
|
allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
|
|
Use *OL = OperandList, *InOL = SI.OperandList;
|
|
for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
|
|
OL[i] = InOL[i];
|
|
OL[i+1] = InOL[i+1];
|
|
}
|
|
SubclassOptionalData = SI.SubclassOptionalData;
|
|
}
|
|
|
|
SwitchInst::~SwitchInst() {
|
|
dropHungoffUses(OperandList);
|
|
}
|
|
|
|
|
|
/// addCase - Add an entry to the switch instruction...
|
|
///
|
|
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
|
|
unsigned OpNo = NumOperands;
|
|
if (OpNo+2 > ReservedSpace)
|
|
resizeOperands(0); // Get more space!
|
|
// Initialize some new operands.
|
|
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
|
|
NumOperands = OpNo+2;
|
|
OperandList[OpNo] = OnVal;
|
|
OperandList[OpNo+1] = Dest;
|
|
}
|
|
|
|
/// removeCase - This method removes the specified successor from the switch
|
|
/// instruction. Note that this cannot be used to remove the default
|
|
/// destination (successor #0).
|
|
///
|
|
void SwitchInst::removeCase(unsigned idx) {
|
|
assert(idx != 0 && "Cannot remove the default case!");
|
|
assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
|
|
|
|
unsigned NumOps = getNumOperands();
|
|
Use *OL = OperandList;
|
|
|
|
// Move everything after this operand down.
|
|
//
|
|
// FIXME: we could just swap with the end of the list, then erase. However,
|
|
// client might not expect this to happen. The code as it is thrashes the
|
|
// use/def lists, which is kinda lame.
|
|
for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
|
|
OL[i-2] = OL[i];
|
|
OL[i-2+1] = OL[i+1];
|
|
}
|
|
|
|
// Nuke the last value.
|
|
OL[NumOps-2].set(0);
|
|
OL[NumOps-2+1].set(0);
|
|
NumOperands = NumOps-2;
|
|
}
|
|
|
|
/// resizeOperands - resize operands - This adjusts the length of the operands
|
|
/// list according to the following behavior:
|
|
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
|
|
/// of operation. This grows the number of ops by 3 times.
|
|
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
|
|
/// 3. If NumOps == NumOperands, trim the reserved space.
|
|
///
|
|
void SwitchInst::resizeOperands(unsigned NumOps) {
|
|
unsigned e = getNumOperands();
|
|
if (NumOps == 0) {
|
|
NumOps = e*3;
|
|
} else if (NumOps*2 > NumOperands) {
|
|
// No resize needed.
|
|
if (ReservedSpace >= NumOps) return;
|
|
} else if (NumOps == NumOperands) {
|
|
if (ReservedSpace == NumOps) return;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
ReservedSpace = NumOps;
|
|
Use *NewOps = allocHungoffUses(NumOps);
|
|
Use *OldOps = OperandList;
|
|
for (unsigned i = 0; i != e; ++i) {
|
|
NewOps[i] = OldOps[i];
|
|
}
|
|
OperandList = NewOps;
|
|
if (OldOps) Use::zap(OldOps, OldOps + e, true);
|
|
}
|
|
|
|
|
|
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
|
|
return getSuccessor(idx);
|
|
}
|
|
unsigned SwitchInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
|
|
setSuccessor(idx, B);
|
|
}
|
|
|
|
// Define these methods here so vtables don't get emitted into every translation
|
|
// unit that uses these classes.
|
|
|
|
GetElementPtrInst *GetElementPtrInst::clone() const {
|
|
GetElementPtrInst *New = new(getNumOperands()) GetElementPtrInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::clone() const {
|
|
BinaryOperator *New = Create(getOpcode(), Op<0>(), Op<1>());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
FCmpInst* FCmpInst::clone() const {
|
|
FCmpInst *New = new FCmpInst(getPredicate(), Op<0>(), Op<1>());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
ICmpInst* ICmpInst::clone() const {
|
|
ICmpInst *New = new ICmpInst(getPredicate(), Op<0>(), Op<1>());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
ExtractValueInst *ExtractValueInst::clone() const {
|
|
ExtractValueInst *New = new ExtractValueInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
InsertValueInst *InsertValueInst::clone() const {
|
|
InsertValueInst *New = new InsertValueInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
AllocaInst *AllocaInst::clone() const {
|
|
AllocaInst *New = new AllocaInst(getAllocatedType(),
|
|
(Value*)getOperand(0),
|
|
getAlignment());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
FreeInst *FreeInst::clone() const {
|
|
FreeInst *New = new FreeInst(getOperand(0));
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
LoadInst *LoadInst::clone() const {
|
|
LoadInst *New = new LoadInst(getOperand(0),
|
|
Twine(), isVolatile(),
|
|
getAlignment());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
StoreInst *StoreInst::clone() const {
|
|
StoreInst *New = new StoreInst(getOperand(0), getOperand(1),
|
|
isVolatile(), getAlignment());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
TruncInst *TruncInst::clone() const {
|
|
TruncInst *New = new TruncInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
ZExtInst *ZExtInst::clone() const {
|
|
ZExtInst *New = new ZExtInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
SExtInst *SExtInst::clone() const {
|
|
SExtInst *New = new SExtInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
FPTruncInst *FPTruncInst::clone() const {
|
|
FPTruncInst *New = new FPTruncInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
FPExtInst *FPExtInst::clone() const {
|
|
FPExtInst *New = new FPExtInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
UIToFPInst *UIToFPInst::clone() const {
|
|
UIToFPInst *New = new UIToFPInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
SIToFPInst *SIToFPInst::clone() const {
|
|
SIToFPInst *New = new SIToFPInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
FPToUIInst *FPToUIInst::clone() const {
|
|
FPToUIInst *New = new FPToUIInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
FPToSIInst *FPToSIInst::clone() const {
|
|
FPToSIInst *New = new FPToSIInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
PtrToIntInst *PtrToIntInst::clone() const {
|
|
PtrToIntInst *New = new PtrToIntInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
IntToPtrInst *IntToPtrInst::clone() const {
|
|
IntToPtrInst *New = new IntToPtrInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
BitCastInst *BitCastInst::clone() const {
|
|
BitCastInst *New = new BitCastInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
CallInst *CallInst::clone() const {
|
|
CallInst *New = new(getNumOperands()) CallInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
SelectInst *SelectInst::clone() const {
|
|
SelectInst *New = SelectInst::Create(getOperand(0),
|
|
getOperand(1),
|
|
getOperand(2));
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
VAArgInst *VAArgInst::clone() const {
|
|
VAArgInst *New = new VAArgInst(getOperand(0), getType());
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
ExtractElementInst *ExtractElementInst::clone() const {
|
|
ExtractElementInst *New = ExtractElementInst::Create(getOperand(0),
|
|
getOperand(1));
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
InsertElementInst *InsertElementInst::clone() const {
|
|
InsertElementInst *New = InsertElementInst::Create(getOperand(0),
|
|
getOperand(1),
|
|
getOperand(2));
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
ShuffleVectorInst *ShuffleVectorInst::clone() const {
|
|
ShuffleVectorInst *New = new ShuffleVectorInst(getOperand(0),
|
|
getOperand(1),
|
|
getOperand(2));
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
PHINode *PHINode::clone() const {
|
|
PHINode *New = new PHINode(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
ReturnInst *ReturnInst::clone() const {
|
|
ReturnInst *New = new(getNumOperands()) ReturnInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
BranchInst *BranchInst::clone() const {
|
|
unsigned Ops(getNumOperands());
|
|
BranchInst *New = new(Ops, Ops == 1) BranchInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
SwitchInst *SwitchInst::clone() const {
|
|
SwitchInst *New = new SwitchInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
InvokeInst *InvokeInst::clone() const {
|
|
InvokeInst *New = new(getNumOperands()) InvokeInst(*this);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata()) {
|
|
LLVMContext &Context = getContext();
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
}
|
|
return New;
|
|
}
|
|
|
|
UnwindInst *UnwindInst::clone() const {
|
|
LLVMContext &Context = getContext();
|
|
UnwindInst *New = new UnwindInst(Context);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata())
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
return New;
|
|
}
|
|
|
|
UnreachableInst *UnreachableInst::clone() const {
|
|
LLVMContext &Context = getContext();
|
|
UnreachableInst *New = new UnreachableInst(Context);
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (hasMetadata())
|
|
Context.pImpl->TheMetadata.ValueIsCloned(this, New);
|
|
return New;
|
|
}
|