llvm-6502/lib/Target/Mips/MipsInstrInfo.td
2011-08-17 22:59:46 +00:00

882 lines
35 KiB
TableGen

//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_MipsMAddMSub : SDTypeProfile<0, 4,
[SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<2, 3>]>;
def SDT_MipsDivRem : SDTypeProfile<0, 2,
[SDTCisVT<0, i32>,
SDTCisSameAs<0, 1>]>;
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
SDTCisVT<1, iPTR>]>;
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def SDT_Ext : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
SDTCisInt<2>, SDTCisSameAs<2, 3>]>;
def SDT_Ins : SDTypeProfile<1, 4, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
SDTCisInt<2>, SDTCisSameAs<2, 3>,
SDTCisSameAs<0, 4>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// TlsGd node is used to handle General Dynamic TLS
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
// TprelHi and TprelLo nodes are used to handle Local Exec TLS
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
// Thread pointer
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInGlue]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// MAdd*/MSub* nodes
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
// DivRem(u) nodes
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
[SDNPOutGlue]>;
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
[SDNPOutGlue]>;
// Target constant nodes that are not part of any isel patterns and remain
// unchanged can cause instructions with illegal operands to be emitted.
// Wrapper node patterns give the instruction selector a chance to replace
// target constant nodes that would otherwise remain unchanged with ADDiu
// nodes. Without these wrapper node patterns, the following conditional move
// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
// compiled:
// movn %got(d)($gp), %got(c)($gp), $4
// This instruction is illegal since movn can take only register operands.
def MipsWrapperPIC : SDNode<"MipsISD::WrapperPIC", SDTIntUnaryOp>;
// Pointer to dynamically allocated stack area.
def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
[SDNPHasChain, SDNPInGlue]>;
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>;
def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">;
def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
def HasSwap : Predicate<"Subtarget.hasSwap()">;
def HasCondMov : Predicate<"Subtarget.hasCondMov()">;
def IsMips32 : Predicate<"Subtarget.isMips32()">;
def IsMips32r2 : Predicate<"Subtarget.isMips32r2()">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def simm16 : Operand<i32>;
def shamt : Operand<i32>;
// Unsigned Operand
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPURegs, simm16);
}
def mem_ea : Operand<i32> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops CPURegs, simm16);
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin, bit isComm = 0>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin> {
let isCommutable = isComm;
}
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
bit isComm = 0>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"), [], IIAlu> {
let isCommutable = isComm;
}
// Arithmetic 2 register operands
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"), [], IIAlu>;
// Arithmetic Multiply ADD/SUB
let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
!strconcat(instr_asm, "\t$rs, $rt"),
[(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
let isCommutable = isComm;
}
// Logical
let isCommutable = 1 in
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt16:$c))], IIAlu>;
let isCommutable = 1 in
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;
// Shifts
class LogicR_shift_rotate_imm<bits<6> func, bits<5> _rs, string instr_asm,
SDNode OpNode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, shamt:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu> {
let rs = _rs;
}
class LogicR_shift_rotate_reg<bits<6> func, bits<5> _shamt, string instr_asm,
SDNode OpNode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$c, CPURegs:$b),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu> {
let shamt = _shamt;
}
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
FI< op,
(outs CPURegs:$dst),
(ins uimm16:$imm),
!strconcat(instr_asm, "\t$dst, $imm"),
[], IIAlu>;
// Memory Load/Store
let canFoldAsLoad = 1, hasDelaySlot = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI<op, (outs CPURegs:$dst), (ins mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI<op, (outs), (ins CPURegs:$dst, mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(OpNode CPURegs:$dst, addr:$addr)], IIStore>;
// Conditional Branch
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
FI<op, (outs), (ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, "\t$a, $b, $offset"),
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
IIBranch>;
class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
FI<op, (outs), (ins CPURegs:$src, brtarget:$offset),
!strconcat(instr_asm, "\t$src, $offset"),
[(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
IIBranch>;
}
// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
PatFrag cond_op>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
IIAlu>;
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
Operand Od, PatLeaf imm_type>:
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
IIAlu>;
// Unconditional branch
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFJ<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins brtarget:$target),
!strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>;
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs), (ins CPURegs:$target),
!strconcat(instr_asm, "\t$target"), [(brind CPURegs:$target)], IIBranch>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
// All calls clobber the non-callee saved registers...
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
class JumpLink<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins calltarget:$target, variable_ops),
!strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
IIBranch>;
let rd=31 in
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs), (ins CPURegs:$rs, variable_ops),
!strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch>;
class BranchLink<string instr_asm>:
FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$target, variable_ops),
!strconcat(instr_asm, "\t$rs, $target"), [], IIBranch>;
}
// Mul, Div
let Defs = [HI, LO] in {
let isCommutable = 1 in
class Mul<bits<6> func, string instr_asm, InstrItinClass itin>:
FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, "\t$a, $b"), [], itin>;
class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, "\t$$zero, $a, $b"),
[(op CPURegs:$a, CPURegs:$b)], itin>;
}
// Move from Hi/Lo
class MoveFromLOHI<bits<6> func, string instr_asm>:
FR<0x00, func, (outs CPURegs:$dst), (ins),
!strconcat(instr_asm, "\t$dst"), [], IIHiLo>;
class MoveToLOHI<bits<6> func, string instr_asm>:
FR<0x00, func, (outs), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$src"), [], IIHiLo>;
class EffectiveAddress<string instr_asm> :
FI<0x09, (outs CPURegs:$dst), (ins mem_ea:$addr),
instr_asm, [(set CPURegs:$dst, addr:$addr)], IIAlu>;
// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm, list<dag> pattern>:
FR<0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"), pattern, IIAlu>,
Requires<[HasBitCount]> {
let shamt = 0;
let rt = rd;
}
// Sign Extend in Register.
class SignExtInReg<bits<6> func, string instr_asm, ValueType vt>:
FR<0x3f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (sext_inreg CPURegs:$src, vt))], NoItinerary>;
// Byte Swap
class ByteSwap<bits<6> func, string instr_asm>:
FR<0x1f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (bswap CPURegs:$src))], NoItinerary>;
// Conditional Move
class CondMov<bits<6> func, string instr_asm, PatLeaf MovCode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$F, CPURegs:$T,
CPURegs:$cond), !strconcat(instr_asm, "\t$dst, $T, $cond"),
[], NoItinerary>;
// Read Hardware
class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$dst), (ins HWRegs:$src),
"rdhwr\t$dst, $src", [], IIAlu> {
let rs = 0;
let shamt = 0;
}
// Ext and Ins
class ExtIns<bits<6> _funct, string instr_asm, dag ins,
list<dag> pattern, InstrItinClass itin>:
FR<0x1f, _funct, (outs CPURegs:$rt), ins,
!strconcat(instr_asm, "\t$rt, $rs, $pos, $size"), pattern, itin> {
bits<5> src;
bits<5> pos;
bits<5> size;
let rs = src;
let rd = size;
let shamt = pos;
}
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
class Atomic2Ops<PatFrag Op, string Opstr> :
MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr),
!strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
[(set CPURegs:$dst,
(Op CPURegs:$ptr, CPURegs:$incr))]>;
// Atomic Compare & Swap.
class AtomicCmpSwap<PatFrag Op, string Width> :
MipsPseudo<(outs CPURegs:$dst),
(ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap),
!strconcat("atomic_cmp_swap_", Width,
"\t$dst, $ptr, $cmp, $swap"),
[(set CPURegs:$dst,
(Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Some assembly macros need to avoid pseudoinstructions and assembler
// automatic reodering, we should reorder ourselves.
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>;
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>;
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>;
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
// These macros are inserted to prevent GAS from complaining
// when using the AT register.
def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>;
def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>;
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>;
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, "load_add_8">;
def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, "load_add_16">;
def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, "load_add_32">;
def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, "load_sub_8">;
def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, "load_sub_16">;
def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, "load_sub_32">;
def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, "load_and_8">;
def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, "load_and_16">;
def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, "load_and_32">;
def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, "load_or_8">;
def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, "load_or_16">;
def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, "load_or_32">;
def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, "load_xor_8">;
def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, "load_xor_16">;
def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, "load_xor_32">;
def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, "load_nand_8">;
def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">;
def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">;
def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, "swap_8">;
def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, "swap_16">;
def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, "swap_32">;
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, "8">;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, "16">;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, "32">;
}
// Unaligned loads and stores.
// Replaces LW or SW during MCInstLowering if memory access is unaligned.
def ULW :
MipsPseudo<(outs CPURegs:$dst), (ins mem:$addr), "ulw\t$dst, $addr", []>;
def ULH :
MipsPseudo<(outs CPURegs:$dst), (ins mem:$addr), "ulh\t$dst, $addr", []>;
def ULHu :
MipsPseudo<(outs CPURegs:$dst), (ins mem:$addr), "ulhu\t$dst, $addr", []>;
def USW :
MipsPseudo<(outs), (ins CPURegs:$dst, mem:$addr), "usw\t$dst, $addr", []>;
def USH :
MipsPseudo<(outs), (ins CPURegs:$dst, mem:$addr), "ush\t$dst, $addr", []>;
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def ADDiu : ArithI<0x09, "addiu", add, simm16, immSExt16>;
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16>;
def ANDi : LogicI<0x0c, "andi", and>;
def ORi : LogicI<0x0d, "ori", or>;
def XORi : LogicI<0x0e, "xori", xor>;
def LUi : LoadUpper<0x0f, "lui">;
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu, 1>;
def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
def ADD : ArithOverflowR<0x00, 0x20, "add", 1>;
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
def AND : LogicR<0x24, "and", and>;
def OR : LogicR<0x25, "or", or>;
def XOR : LogicR<0x26, "xor", xor>;
def NOR : LogicNOR<0x00, 0x27, "nor">;
/// Shift Instructions
def SLL : LogicR_shift_rotate_imm<0x00, 0x00, "sll", shl>;
def SRL : LogicR_shift_rotate_imm<0x02, 0x00, "srl", srl>;
def SRA : LogicR_shift_rotate_imm<0x03, 0x00, "sra", sra>;
def SLLV : LogicR_shift_rotate_reg<0x04, 0x00, "sllv", shl>;
def SRLV : LogicR_shift_rotate_reg<0x06, 0x00, "srlv", srl>;
def SRAV : LogicR_shift_rotate_reg<0x07, 0x00, "srav", sra>;
// Rotate Instructions
let Predicates = [IsMips32r2] in {
def ROTR : LogicR_shift_rotate_imm<0x02, 0x01, "rotr", rotr>;
def ROTRV : LogicR_shift_rotate_reg<0x06, 0x01, "rotrv", rotr>;
}
/// Load and Store Instructions
def LB : LoadM<0x20, "lb", sextloadi8>;
def LBu : LoadM<0x24, "lbu", zextloadi8>;
def LH : LoadM<0x21, "lh", sextloadi16>;
def LHu : LoadM<0x25, "lhu", zextloadi16>;
def LW : LoadM<0x23, "lw", load>;
def SB : StoreM<0x28, "sb", truncstorei8>;
def SH : StoreM<0x29, "sh", truncstorei16>;
def SW : StoreM<0x2b, "sw", store>;
let hasSideEffects = 1 in
def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
[(MipsSync imm:$stype)], NoItinerary>
{
let opcode = 0;
let Inst{25-11} = 0;
let Inst{5-0} = 15;
}
/// Load-linked, Store-conditional
let mayLoad = 1, hasDelaySlot = 1 in
def LL : FI<0x30, (outs CPURegs:$dst), (ins mem:$addr),
"ll\t$dst, $addr", [], IILoad>;
let mayStore = 1, Constraints = "$src = $dst" in
def SC : FI<0x38, (outs CPURegs:$dst), (ins CPURegs:$src, mem:$addr),
"sc\t$src, $addr", [], IIStore>;
/// Jump and Branch Instructions
def J : JumpFJ<0x02, "j">;
let isIndirectBranch = 1 in
def JR : JumpFR<0x00, 0x08, "jr">;
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
def BEQ : CBranch<0x04, "beq", seteq>;
def BNE : CBranch<0x05, "bne", setne>;
let rt=1 in
def BGEZ : CBranchZero<0x01, "bgez", setge>;
let rt=0 in {
def BGTZ : CBranchZero<0x07, "bgtz", setgt>;
def BLEZ : CBranchZero<0x07, "blez", setle>;
def BLTZ : CBranchZero<0x01, "bltz", setlt>;
}
def BGEZAL : BranchLink<"bgezal">;
def BLTZAL : BranchLink<"bltzal">;
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
/// Multiply and Divide Instructions.
def MULT : Mul<0x18, "mult", IIImul>;
def MULTu : Mul<0x19, "multu", IIImul>;
def SDIV : Div<MipsDivRem, 0x1a, "div", IIIdiv>;
def UDIV : Div<MipsDivRemU, 0x1b, "divu", IIIdiv>;
let Defs = [HI] in
def MTHI : MoveToLOHI<0x11, "mthi">;
let Defs = [LO] in
def MTLO : MoveToLOHI<0x13, "mtlo">;
let Uses = [HI] in
def MFHI : MoveFromLOHI<0x10, "mfhi">;
let Uses = [LO] in
def MFLO : MoveFromLOHI<0x12, "mflo">;
/// Sign Ext In Register Instructions.
let Predicates = [HasSEInReg] in {
let shamt = 0x10, rs = 0 in
def SEB : SignExtInReg<0x21, "seb", i8>;
let shamt = 0x18, rs = 0 in
def SEH : SignExtInReg<0x20, "seh", i16>;
}
/// Count Leading
def CLZ : CountLeading<0b100000, "clz",
[(set CPURegs:$dst, (ctlz CPURegs:$src))]>;
def CLO : CountLeading<0b100001, "clo",
[(set CPURegs:$dst, (ctlz (not CPURegs:$src)))]>;
/// Byte Swap
let Predicates = [HasSwap] in {
let shamt = 0x3, rs = 0 in
def WSBW : ByteSwap<0x20, "wsbw">;
}
/// Conditional Move
def MIPS_CMOV_ZERO : PatLeaf<(i32 0)>;
def MIPS_CMOV_NZERO : PatLeaf<(i32 1)>;
// Conditional moves:
// These instructions are expanded in
// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
// conditional move instructions.
// flag:int, data:int
let usesCustomInserter = 1, shamt = 0, Constraints = "$F = $dst" in
class CondMovIntInt<bits<6> funct, string instr_asm> :
FR<0, funct, (outs CPURegs:$dst),
(ins CPURegs:$T, CPURegs:$cond, CPURegs:$F),
!strconcat(instr_asm, "\t$dst, $T, $cond"), [], NoItinerary>;
def MOVZ_I : CondMovIntInt<0x0a, "movz">;
def MOVN_I : CondMovIntInt<0x0b, "movn">;
/// No operation
let addr=0 in
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu\t$dst, $addr">;
// DynAlloc node points to dynamically allocated stack space.
// $sp is added to the list of implicitly used registers to prevent dead code
// elimination from removing instructions that modify $sp.
let Uses = [SP] in
def DynAlloc : EffectiveAddress<"addiu\t$dst, $addr">;
// MADD*/MSUB*
def MADD : MArithR<0, "madd", MipsMAdd, 1>;
def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
def MSUB : MArithR<4, "msub", MipsMSub>;
def MSUBU : MArithR<5, "msubu", MipsMSubu>;
// MUL is a assembly macro in the current used ISAs. In recent ISA's
// it is a real instruction.
def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul, 1>, Requires<[IsMips32]>;
def RDHWR : ReadHardware;
let Predicates = [IsMips32r2] in {
def EXT : ExtIns<0, "ext", (ins CPURegs:$rs, uimm16:$pos, uimm16:$size),
[(set CPURegs:$rt,
(MipsExt CPURegs:$rs, immZExt5:$pos, immZExt5:$size))],
NoItinerary>;
let Constraints = "$src = $rt" in
def INS : ExtIns<4, "ins",
(ins CPURegs:$rs, uimm16:$pos, uimm16:$size, CPURegs:$src),
[(set CPURegs:$rt,
(MipsIns CPURegs:$rs, immZExt5:$pos, immZExt5:$size,
CPURegs:$src))],
NoItinerary>;
}
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry patterns
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
(SUBu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
(ADDu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$src, immSExt16:$imm),
(ADDiu CPURegs:$src, imm:$imm)>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
//def : Pat<(MipsJmpLink CPURegs:$dst),
// (JALR CPURegs:$dst)>;
// hi/lo relocs
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
(ADDiu CPURegs:$hi, tblockaddress:$lo)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
(ADDiu CPURegs:$hi, tconstpool:$lo)>;
// gp_rel relocs
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu CPURegs:$gp, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu CPURegs:$gp, tconstpool:$in)>;
// tlsgd
def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)),
(ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>;
// tprel hi/lo
def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)),
(ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
// wrapper_pic
class WrapperPICPat<SDNode node>:
Pat<(MipsWrapperPIC node:$in),
(ADDiu GP, node:$in)>;
def : WrapperPICPat<tglobaladdr>;
def : WrapperPICPat<tconstpool>;
def : WrapperPICPat<texternalsym>;
def : WrapperPICPat<tblockaddress>;
def : WrapperPICPat<tjumptable>;
// Mips does not have "not", so we expand our way
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, ZERO)>;
// extended load and stores
def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi16 addr:$src), (LHu addr:$src)>;
// peepholes
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
// brcond patterns
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
(BEQ CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTiu CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond CPURegs:$cond, bb:$dst),
(BNE CPURegs:$cond, ZERO, bb:$dst)>;
// select patterns
multiclass MovzPats<RegisterClass RC, Instruction MOVZInst> {
def : Pat<(select (setge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLT CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select (setuge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select (setge CPURegs:$lhs, immSExt16:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs), RC:$F)>;
def : Pat<(select (setuge CPURegs:$lh, immSExt16:$rh), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTiu CPURegs:$lh, immSExt16:$rh), RC:$F)>;
def : Pat<(select (setle CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLT CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
def : Pat<(select (setule CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
def : Pat<(select (seteq CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select (seteq CPURegs:$lhs, 0), RC:$T, RC:$F),
(MOVZInst RC:$T, CPURegs:$lhs, RC:$F)>;
}
multiclass MovnPats<RegisterClass RC, Instruction MOVNInst> {
def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVNInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select CPURegs:$cond, RC:$T, RC:$F),
(MOVNInst RC:$T, CPURegs:$cond, RC:$F)>;
def : Pat<(select (setne CPURegs:$lhs, 0), RC:$T, RC:$F),
(MOVNInst RC:$T, CPURegs:$lhs, RC:$F)>;
}
defm : MovzPats<CPURegs, MOVZ_I>;
defm : MovnPats<CPURegs, MOVN_I>;
// setcc patterns
def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
(SLTu (XOR CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
(SLTu ZERO, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
(SLTu CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTiu CPURegs:$lhs, immSExt16:$rhs), 1)>;
// select MipsDynAlloc
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MipsInstrFPU.td"