llvm-6502/include/llvm/ADT/ImmutableSet.h
Zhongxing Xu 746f5b6eb1 Add an immutable interval map, prepared to be used by flat memory model
in the analyzer. WIP.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94976 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-01 10:43:31 +00:00

1056 lines
33 KiB
C++

//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImutAVLTree and ImmutableSet classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMSET_H
#define LLVM_ADT_IMSET_H
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/System/DataTypes.h"
#include <cassert>
#include <functional>
namespace llvm {
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Definition.
//===----------------------------------------------------------------------===//
template <typename ImutInfo> class ImutAVLFactory;
template <typename ImutInfo> class ImutIntervalAVLFactory;
template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
template <typename ImutInfo> class ImutAVLTreeGenericIterator;
template <typename ImutInfo >
class ImutAVLTree : public FoldingSetNode {
public:
typedef typename ImutInfo::key_type_ref key_type_ref;
typedef typename ImutInfo::value_type value_type;
typedef typename ImutInfo::value_type_ref value_type_ref;
typedef ImutAVLFactory<ImutInfo> Factory;
friend class ImutAVLFactory<ImutInfo>;
friend class ImutIntervalAVLFactory<ImutInfo>;
friend class ImutAVLTreeGenericIterator<ImutInfo>;
friend class FoldingSet<ImutAVLTree>;
typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator;
//===----------------------------------------------------===//
// Public Interface.
//===----------------------------------------------------===//
/// getLeft - Returns a pointer to the left subtree. This value
/// is NULL if there is no left subtree.
ImutAVLTree *getLeft() const { return Left; }
/// getRight - Returns a pointer to the right subtree. This value is
/// NULL if there is no right subtree.
ImutAVLTree *getRight() const { return Right; }
/// getHeight - Returns the height of the tree. A tree with no subtrees
/// has a height of 1.
unsigned getHeight() const { return Height; }
/// getValue - Returns the data value associated with the tree node.
const value_type& getValue() const { return Value; }
/// find - Finds the subtree associated with the specified key value.
/// This method returns NULL if no matching subtree is found.
ImutAVLTree* find(key_type_ref K) {
ImutAVLTree *T = this;
while (T) {
key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
if (ImutInfo::isEqual(K,CurrentKey))
return T;
else if (ImutInfo::isLess(K,CurrentKey))
T = T->getLeft();
else
T = T->getRight();
}
return NULL;
}
/// getMaxElement - Find the subtree associated with the highest ranged
/// key value.
ImutAVLTree* getMaxElement() {
ImutAVLTree *T = this;
ImutAVLTree *Right = T->getRight();
while (Right) { T = Right; Right = T->getRight(); }
return T;
}
/// size - Returns the number of nodes in the tree, which includes
/// both leaves and non-leaf nodes.
unsigned size() const {
unsigned n = 1;
if (const ImutAVLTree* L = getLeft()) n += L->size();
if (const ImutAVLTree* R = getRight()) n += R->size();
return n;
}
/// begin - Returns an iterator that iterates over the nodes of the tree
/// in an inorder traversal. The returned iterator thus refers to the
/// the tree node with the minimum data element.
iterator begin() const { return iterator(this); }
/// end - Returns an iterator for the tree that denotes the end of an
/// inorder traversal.
iterator end() const { return iterator(); }
bool ElementEqual(value_type_ref V) const {
// Compare the keys.
if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(V)))
return false;
// Also compare the data values.
if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
ImutInfo::DataOfValue(V)))
return false;
return true;
}
bool ElementEqual(const ImutAVLTree* RHS) const {
return ElementEqual(RHS->getValue());
}
/// isEqual - Compares two trees for structural equality and returns true
/// if they are equal. This worst case performance of this operation is
// linear in the sizes of the trees.
bool isEqual(const ImutAVLTree& RHS) const {
if (&RHS == this)
return true;
iterator LItr = begin(), LEnd = end();
iterator RItr = RHS.begin(), REnd = RHS.end();
while (LItr != LEnd && RItr != REnd) {
if (*LItr == *RItr) {
LItr.SkipSubTree();
RItr.SkipSubTree();
continue;
}
if (!LItr->ElementEqual(*RItr))
return false;
++LItr;
++RItr;
}
return LItr == LEnd && RItr == REnd;
}
/// isNotEqual - Compares two trees for structural inequality. Performance
/// is the same is isEqual.
bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
/// contains - Returns true if this tree contains a subtree (node) that
/// has an data element that matches the specified key. Complexity
/// is logarithmic in the size of the tree.
bool contains(key_type_ref K) { return (bool) find(K); }
/// foreach - A member template the accepts invokes operator() on a functor
/// object (specifed by Callback) for every node/subtree in the tree.
/// Nodes are visited using an inorder traversal.
template <typename Callback>
void foreach(Callback& C) {
if (ImutAVLTree* L = getLeft()) L->foreach(C);
C(Value);
if (ImutAVLTree* R = getRight()) R->foreach(C);
}
/// verify - A utility method that checks that the balancing and
/// ordering invariants of the tree are satisifed. It is a recursive
/// method that returns the height of the tree, which is then consumed
/// by the enclosing verify call. External callers should ignore the
/// return value. An invalid tree will cause an assertion to fire in
/// a debug build.
unsigned verify() const {
unsigned HL = getLeft() ? getLeft()->verify() : 0;
unsigned HR = getRight() ? getRight()->verify() : 0;
assert(getHeight() == ( HL > HR ? HL : HR ) + 1
&& "Height calculation wrong");
assert((HL > HR ? HL-HR : HR-HL) <= 2
&& "Balancing invariant violated");
assert(!getLeft()
|| ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
ImutInfo::KeyOfValue(getValue()))
&& "Value in left child is not less that current value");
assert(!getRight()
|| ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
ImutInfo::KeyOfValue(getRight()->getValue()))
&& "Current value is not less that value of right child");
return getHeight();
}
/// Profile - Profiling for ImutAVLTree.
void Profile(llvm::FoldingSetNodeID& ID) {
ID.AddInteger(ComputeDigest());
}
//===----------------------------------------------------===//
// Internal Values.
//===----------------------------------------------------===//
private:
ImutAVLTree* Left;
ImutAVLTree* Right;
unsigned Height : 28;
unsigned Mutable : 1;
unsigned CachedDigest : 1;
value_type Value;
uint32_t Digest;
//===----------------------------------------------------===//
// Internal methods (node manipulation; used by Factory).
//===----------------------------------------------------===//
private:
/// ImutAVLTree - Internal constructor that is only called by
/// ImutAVLFactory.
ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
unsigned height)
: Left(l), Right(r), Height(height), Mutable(true), CachedDigest(false),
Value(v), Digest(0) {}
/// isMutable - Returns true if the left and right subtree references
/// (as well as height) can be changed. If this method returns false,
/// the tree is truly immutable. Trees returned from an ImutAVLFactory
/// object should always have this method return true. Further, if this
/// method returns false for an instance of ImutAVLTree, all subtrees
/// will also have this method return false. The converse is not true.
bool isMutable() const { return Mutable; }
/// hasCachedDigest - Returns true if the digest for this tree is cached.
/// This can only be true if the tree is immutable.
bool hasCachedDigest() const { return CachedDigest; }
//===----------------------------------------------------===//
// Mutating operations. A tree root can be manipulated as
// long as its reference has not "escaped" from internal
// methods of a factory object (see below). When a tree
// pointer is externally viewable by client code, the
// internal "mutable bit" is cleared to mark the tree
// immutable. Note that a tree that still has its mutable
// bit set may have children (subtrees) that are themselves
// immutable.
//===----------------------------------------------------===//
/// MarkImmutable - Clears the mutable flag for a tree. After this happens,
/// it is an error to call setLeft(), setRight(), and setHeight().
void MarkImmutable() {
assert(isMutable() && "Mutable flag already removed.");
Mutable = false;
}
/// MarkedCachedDigest - Clears the NoCachedDigest flag for a tree.
void MarkedCachedDigest() {
assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
CachedDigest = true;
}
/// setLeft - Changes the reference of the left subtree. Used internally
/// by ImutAVLFactory.
void setLeft(ImutAVLTree* NewLeft) {
assert(isMutable() &&
"Only a mutable tree can have its left subtree changed.");
Left = NewLeft;
CachedDigest = false;
}
/// setRight - Changes the reference of the right subtree. Used internally
/// by ImutAVLFactory.
void setRight(ImutAVLTree* NewRight) {
assert(isMutable() &&
"Only a mutable tree can have its right subtree changed.");
Right = NewRight;
CachedDigest = false;
}
/// setHeight - Changes the height of the tree. Used internally by
/// ImutAVLFactory.
void setHeight(unsigned h) {
assert(isMutable() && "Only a mutable tree can have its height changed.");
Height = h;
}
static inline
uint32_t ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) {
uint32_t digest = 0;
if (L)
digest += L->ComputeDigest();
// Compute digest of stored data.
FoldingSetNodeID ID;
ImutInfo::Profile(ID,V);
digest += ID.ComputeHash();
if (R)
digest += R->ComputeDigest();
return digest;
}
inline uint32_t ComputeDigest() {
// Check the lowest bit to determine if digest has actually been
// pre-computed.
if (hasCachedDigest())
return Digest;
uint32_t X = ComputeDigest(getLeft(), getRight(), getValue());
Digest = X;
MarkedCachedDigest();
return X;
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Factory class.
//===----------------------------------------------------------------------===//
template <typename ImutInfo >
class ImutAVLFactory {
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef typename TreeTy::value_type_ref value_type_ref;
typedef typename TreeTy::key_type_ref key_type_ref;
typedef FoldingSet<TreeTy> CacheTy;
CacheTy Cache;
uintptr_t Allocator;
bool ownsAllocator() const {
return Allocator & 0x1 ? false : true;
}
BumpPtrAllocator& getAllocator() const {
return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
}
//===--------------------------------------------------===//
// Public interface.
//===--------------------------------------------------===//
public:
ImutAVLFactory()
: Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
ImutAVLFactory(BumpPtrAllocator& Alloc)
: Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
~ImutAVLFactory() {
if (ownsAllocator()) delete &getAllocator();
}
TreeTy* Add(TreeTy* T, value_type_ref V) {
T = Add_internal(V,T);
MarkImmutable(T);
return T;
}
TreeTy* Remove(TreeTy* T, key_type_ref V) {
T = Remove_internal(V,T);
MarkImmutable(T);
return T;
}
TreeTy* GetEmptyTree() const { return NULL; }
//===--------------------------------------------------===//
// A bunch of quick helper functions used for reasoning
// about the properties of trees and their children.
// These have succinct names so that the balancing code
// is as terse (and readable) as possible.
//===--------------------------------------------------===//
protected:
bool isEmpty(TreeTy* T) const { return !T; }
unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; }
TreeTy* Left(TreeTy* T) const { return T->getLeft(); }
TreeTy* Right(TreeTy* T) const { return T->getRight(); }
value_type_ref Value(TreeTy* T) const { return T->Value; }
unsigned IncrementHeight(TreeTy* L, TreeTy* R) const {
unsigned hl = Height(L);
unsigned hr = Height(R);
return (hl > hr ? hl : hr) + 1;
}
static bool CompareTreeWithSection(TreeTy* T,
typename TreeTy::iterator& TI,
typename TreeTy::iterator& TE) {
typename TreeTy::iterator I = T->begin(), E = T->end();
for ( ; I!=E ; ++I, ++TI)
if (TI == TE || !I->ElementEqual(*TI))
return false;
return true;
}
//===--------------------------------------------------===//
// "CreateNode" is used to generate new tree roots that link
// to other trees. The functon may also simply move links
// in an existing root if that root is still marked mutable.
// This is necessary because otherwise our balancing code
// would leak memory as it would create nodes that are
// then discarded later before the finished tree is
// returned to the caller.
//===--------------------------------------------------===//
TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) {
BumpPtrAllocator& A = getAllocator();
TreeTy* T = (TreeTy*) A.Allocate<TreeTy>();
new (T) TreeTy(L, R, V, IncrementHeight(L,R));
return T;
}
TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) {
assert(!isEmpty(OldTree));
if (OldTree->isMutable()) {
OldTree->setLeft(L);
OldTree->setRight(R);
OldTree->setHeight(IncrementHeight(L, R));
return OldTree;
}
else
return CreateNode(L, Value(OldTree), R);
}
/// Balance - Used by Add_internal and Remove_internal to
/// balance a newly created tree.
TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) {
unsigned hl = Height(L);
unsigned hr = Height(R);
if (hl > hr + 2) {
assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
TreeTy* LL = Left(L);
TreeTy* LR = Right(L);
if (Height(LL) >= Height(LR))
return CreateNode(LL, L, CreateNode(LR,V,R));
assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
TreeTy* LRL = Left(LR);
TreeTy* LRR = Right(LR);
return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R));
}
else if (hr > hl + 2) {
assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
TreeTy* RL = Left(R);
TreeTy* RR = Right(R);
if (Height(RR) >= Height(RL))
return CreateNode(CreateNode(L,V,RL), R, RR);
assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
TreeTy* RLL = Left(RL);
TreeTy* RLR = Right(RL);
return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR));
}
else
return CreateNode(L,V,R);
}
/// Add_internal - Creates a new tree that includes the specified
/// data and the data from the original tree. If the original tree
/// already contained the data item, the original tree is returned.
TreeTy* Add_internal(value_type_ref V, TreeTy* T) {
if (isEmpty(T))
return CreateNode(T, V, T);
assert(!T->isMutable());
key_type_ref K = ImutInfo::KeyOfValue(V);
key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
if (ImutInfo::isEqual(K,KCurrent))
return CreateNode(Left(T), V, Right(T));
else if (ImutInfo::isLess(K,KCurrent))
return Balance(Add_internal(V,Left(T)), Value(T), Right(T));
else
return Balance(Left(T), Value(T), Add_internal(V,Right(T)));
}
/// Remove_internal - Creates a new tree that includes all the data
/// from the original tree except the specified data. If the
/// specified data did not exist in the original tree, the original
/// tree is returned.
TreeTy* Remove_internal(key_type_ref K, TreeTy* T) {
if (isEmpty(T))
return T;
assert(!T->isMutable());
key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T));
if (ImutInfo::isEqual(K,KCurrent))
return CombineLeftRightTrees(Left(T),Right(T));
else if (ImutInfo::isLess(K,KCurrent))
return Balance(Remove_internal(K,Left(T)), Value(T), Right(T));
else
return Balance(Left(T), Value(T), Remove_internal(K,Right(T)));
}
TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) {
if (isEmpty(L)) return R;
if (isEmpty(R)) return L;
TreeTy* OldNode;
TreeTy* NewRight = RemoveMinBinding(R,OldNode);
return Balance(L,Value(OldNode),NewRight);
}
TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) {
assert(!isEmpty(T));
if (isEmpty(Left(T))) {
NodeRemoved = T;
return Right(T);
}
return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T));
}
/// MarkImmutable - Clears the mutable bits of a root and all of its
/// descendants.
void MarkImmutable(TreeTy* T) {
if (!T || !T->isMutable())
return;
T->MarkImmutable();
MarkImmutable(Left(T));
MarkImmutable(Right(T));
}
public:
TreeTy *GetCanonicalTree(TreeTy *TNew) {
if (!TNew)
return NULL;
// Search the FoldingSet bucket for a Tree with the same digest.
FoldingSetNodeID ID;
unsigned digest = TNew->ComputeDigest();
ID.AddInteger(digest);
unsigned hash = ID.ComputeHash();
typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash);
typename CacheTy::bucket_iterator E = Cache.bucket_end(hash);
for (; I != E; ++I) {
TreeTy *T = &*I;
if (T->ComputeDigest() != digest)
continue;
// We found a collision. Perform a comparison of Contents('T')
// with Contents('TNew')
typename TreeTy::iterator TI = T->begin(), TE = T->end();
if (!CompareTreeWithSection(TNew, TI, TE))
continue;
if (TI != TE)
continue; // T has more contents than TNew.
// Trees did match! Return 'T'.
return T;
}
// 'TNew' is the only tree of its kind. Return it.
Cache.InsertNode(TNew, (void*) &*Cache.bucket_end(hash));
return TNew;
}
};
//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Iterators.
//===----------------------------------------------------------------------===//
template <typename ImutInfo>
class ImutAVLTreeGenericIterator {
SmallVector<uintptr_t,20> stack;
public:
enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
Flags=0x3 };
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef ImutAVLTreeGenericIterator<ImutInfo> _Self;
inline ImutAVLTreeGenericIterator() {}
inline ImutAVLTreeGenericIterator(const TreeTy* Root) {
if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
}
TreeTy* operator*() const {
assert(!stack.empty());
return reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
}
uintptr_t getVisitState() {
assert(!stack.empty());
return stack.back() & Flags;
}
bool AtEnd() const { return stack.empty(); }
bool AtBeginning() const {
return stack.size() == 1 && getVisitState() == VisitedNone;
}
void SkipToParent() {
assert(!stack.empty());
stack.pop_back();
if (stack.empty())
return;
switch (getVisitState()) {
case VisitedNone:
stack.back() |= VisitedLeft;
break;
case VisitedLeft:
stack.back() |= VisitedRight;
break;
default:
assert(false && "Unreachable.");
}
}
inline bool operator==(const _Self& x) const {
if (stack.size() != x.stack.size())
return false;
for (unsigned i = 0 ; i < stack.size(); i++)
if (stack[i] != x.stack[i])
return false;
return true;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
_Self& operator++() {
assert(!stack.empty());
TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
assert(Current);
switch (getVisitState()) {
case VisitedNone:
if (TreeTy* L = Current->getLeft())
stack.push_back(reinterpret_cast<uintptr_t>(L));
else
stack.back() |= VisitedLeft;
break;
case VisitedLeft:
if (TreeTy* R = Current->getRight())
stack.push_back(reinterpret_cast<uintptr_t>(R));
else
stack.back() |= VisitedRight;
break;
case VisitedRight:
SkipToParent();
break;
default:
assert(false && "Unreachable.");
}
return *this;
}
_Self& operator--() {
assert(!stack.empty());
TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
assert(Current);
switch (getVisitState()) {
case VisitedNone:
stack.pop_back();
break;
case VisitedLeft:
stack.back() &= ~Flags; // Set state to "VisitedNone."
if (TreeTy* L = Current->getLeft())
stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
break;
case VisitedRight:
stack.back() &= ~Flags;
stack.back() |= VisitedLeft;
if (TreeTy* R = Current->getRight())
stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
break;
default:
assert(false && "Unreachable.");
}
return *this;
}
};
template <typename ImutInfo>
class ImutAVLTreeInOrderIterator {
typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
InternalIteratorTy InternalItr;
public:
typedef ImutAVLTree<ImutInfo> TreeTy;
typedef ImutAVLTreeInOrderIterator<ImutInfo> _Self;
ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
if (Root) operator++(); // Advance to first element.
}
ImutAVLTreeInOrderIterator() : InternalItr() {}
inline bool operator==(const _Self& x) const {
return InternalItr == x.InternalItr;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline TreeTy* operator*() const { return *InternalItr; }
inline TreeTy* operator->() const { return *InternalItr; }
inline _Self& operator++() {
do ++InternalItr;
while (!InternalItr.AtEnd() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this;
}
inline _Self& operator--() {
do --InternalItr;
while (!InternalItr.AtBeginning() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
return *this;
}
inline void SkipSubTree() {
InternalItr.SkipToParent();
while (!InternalItr.AtEnd() &&
InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
++InternalItr;
}
};
//===----------------------------------------------------------------------===//
// Trait classes for Profile information.
//===----------------------------------------------------------------------===//
/// Generic profile template. The default behavior is to invoke the
/// profile method of an object. Specializations for primitive integers
/// and generic handling of pointers is done below.
template <typename T>
struct ImutProfileInfo {
typedef const T value_type;
typedef const T& value_type_ref;
static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
FoldingSetTrait<T>::Profile(X,ID);
}
};
/// Profile traits for integers.
template <typename T>
struct ImutProfileInteger {
typedef const T value_type;
typedef const T& value_type_ref;
static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) {
ID.AddInteger(X);
}
};
#define PROFILE_INTEGER_INFO(X)\
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
PROFILE_INTEGER_INFO(char)
PROFILE_INTEGER_INFO(unsigned char)
PROFILE_INTEGER_INFO(short)
PROFILE_INTEGER_INFO(unsigned short)
PROFILE_INTEGER_INFO(unsigned)
PROFILE_INTEGER_INFO(signed)
PROFILE_INTEGER_INFO(long)
PROFILE_INTEGER_INFO(unsigned long)
PROFILE_INTEGER_INFO(long long)
PROFILE_INTEGER_INFO(unsigned long long)
#undef PROFILE_INTEGER_INFO
/// Generic profile trait for pointer types. We treat pointers as
/// references to unique objects.
template <typename T>
struct ImutProfileInfo<T*> {
typedef const T* value_type;
typedef value_type value_type_ref;
static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) {
ID.AddPointer(X);
}
};
//===----------------------------------------------------------------------===//
// Trait classes that contain element comparison operators and type
// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These
// inherit from the profile traits (ImutProfileInfo) to include operations
// for element profiling.
//===----------------------------------------------------------------------===//
/// ImutContainerInfo - Generic definition of comparison operations for
/// elements of immutable containers that defaults to using
/// std::equal_to<> and std::less<> to perform comparison of elements.
template <typename T>
struct ImutContainerInfo : public ImutProfileInfo<T> {
typedef typename ImutProfileInfo<T>::value_type value_type;
typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
typedef bool data_type;
typedef bool data_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
static inline data_type_ref DataOfValue(value_type_ref) { return true; }
static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
return std::equal_to<key_type>()(LHS,RHS);
}
static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
return std::less<key_type>()(LHS,RHS);
}
static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
};
/// ImutContainerInfo - Specialization for pointer values to treat pointers
/// as references to unique objects. Pointers are thus compared by
/// their addresses.
template <typename T>
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
typedef typename ImutProfileInfo<T*>::value_type value_type;
typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref;
typedef value_type key_type;
typedef value_type_ref key_type_ref;
typedef bool data_type;
typedef bool data_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref D) { return D; }
static inline data_type_ref DataOfValue(value_type_ref) { return true; }
static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) {
return LHS == RHS;
}
static inline bool isLess(key_type_ref LHS, key_type_ref RHS) {
return LHS < RHS;
}
static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; }
};
//===----------------------------------------------------------------------===//
// Immutable Set
//===----------------------------------------------------------------------===//
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSet {
public:
typedef typename ValInfo::value_type value_type;
typedef typename ValInfo::value_type_ref value_type_ref;
typedef ImutAVLTree<ValInfo> TreeTy;
private:
TreeTy *Root;
public:
/// Constructs a set from a pointer to a tree root. In general one
/// should use a Factory object to create sets instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableSet(TreeTy* R) : Root(R) {}
class Factory {
typename TreeTy::Factory F;
const bool Canonicalize;
public:
Factory(bool canonicalize = true)
: Canonicalize(canonicalize) {}
Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
: F(Alloc), Canonicalize(canonicalize) {}
/// GetEmptySet - Returns an immutable set that contains no elements.
ImmutableSet GetEmptySet() {
return ImmutableSet(F.GetEmptyTree());
}
/// Add - Creates a new immutable set that contains all of the values
/// of the original set with the addition of the specified value. If
/// the original set already included the value, then the original set is
/// returned and no memory is allocated. The time and space complexity
/// of this operation is logarithmic in the size of the original set.
/// The memory allocated to represent the set is released when the
/// factory object that created the set is destroyed.
ImmutableSet Add(ImmutableSet Old, value_type_ref V) {
TreeTy *NewT = F.Add(Old.Root, V);
return ImmutableSet(Canonicalize ? F.GetCanonicalTree(NewT) : NewT);
}
/// Remove - Creates a new immutable set that contains all of the values
/// of the original set with the exception of the specified value. If
/// the original set did not contain the value, the original set is
/// returned and no memory is allocated. The time and space complexity
/// of this operation is logarithmic in the size of the original set.
/// The memory allocated to represent the set is released when the
/// factory object that created the set is destroyed.
ImmutableSet Remove(ImmutableSet Old, value_type_ref V) {
TreeTy *NewT = F.Remove(Old.Root, V);
return ImmutableSet(Canonicalize ? F.GetCanonicalTree(NewT) : NewT);
}
BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
private:
Factory(const Factory& RHS); // DO NOT IMPLEMENT
void operator=(const Factory& RHS); // DO NOT IMPLEMENT
};
friend class Factory;
/// contains - Returns true if the set contains the specified value.
bool contains(value_type_ref V) const {
return Root ? Root->contains(V) : false;
}
bool operator==(ImmutableSet RHS) const {
return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
}
bool operator!=(ImmutableSet RHS) const {
return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
}
TreeTy *getRoot() {
return Root;
}
/// isEmpty - Return true if the set contains no elements.
bool isEmpty() const { return !Root; }
/// isSingleton - Return true if the set contains exactly one element.
/// This method runs in constant time.
bool isSingleton() const { return getHeight() == 1; }
template <typename Callback>
void foreach(Callback& C) { if (Root) Root->foreach(C); }
template <typename Callback>
void foreach() { if (Root) { Callback C; Root->foreach(C); } }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator {
typename TreeTy::iterator itr;
iterator(TreeTy* t) : itr(t) {}
friend class ImmutableSet<ValT,ValInfo>;
public:
iterator() {}
inline value_type_ref operator*() const { return itr->getValue(); }
inline iterator& operator++() { ++itr; return *this; }
inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; }
inline iterator& operator--() { --itr; return *this; }
inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; }
inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; }
inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; }
inline value_type *operator->() const { return &(operator*()); }
};
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) {
ID.AddPointer(S.Root);
}
inline void Profile(FoldingSetNodeID& ID) const {
return Profile(ID,*this);
}
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
};
} // end namespace llvm
#endif