llvm-6502/lib/Target/X86/X86RegisterInfo.td
Anton Korobeynikov f191c80cd7 Use TableGen to emit information for dwarf register numbers.
This makes DwarfRegNum to accept list of numbers instead.
Added three different "flavours", but only slightly tested on x86-32/linux.
Please check another subtargets if possible,


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43997 91177308-0d34-0410-b5e6-96231b3b80d8
2007-11-11 19:50:10 +00:00

534 lines
23 KiB
TableGen

//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 Register file, defining the registers themselves,
// aliases between the registers, and the register classes built out of the
// registers.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Register definitions...
//
let Namespace = "X86" in {
// In the register alias definitions below, we define which registers alias
// which others. We only specify which registers the small registers alias,
// because the register file generator is smart enough to figure out that
// AL aliases AX if we tell it that AX aliased AL (for example).
// Dwarf numbering is different for 32-bit and 64-bit, and there are
// variations by target as well. Currently the first entry is for X86-64,
// second - for X86-32/Darwin and third for X86-32/Linux
// FIXME: Comments in gcc indicate that Darwin uses different numbering
// for debug info and exception handling info:( The numbering here is
// for exception handling.
// 8-bit registers
// Low registers
def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
def DL : Register<"DL">, DwarfRegNum<[1, 2, 2]>;
def CL : Register<"CL">, DwarfRegNum<[2, 1, 1]>;
def BL : Register<"BL">, DwarfRegNum<[3, 3, 3]>;
// X86-64 only
def SIL : Register<"SIL">, DwarfRegNum<[4, 6, 6]>;
def DIL : Register<"DIL">, DwarfRegNum<[5, 7, 7]>;
def BPL : Register<"BPL">, DwarfRegNum<[6, 4, 5]>;
def SPL : Register<"SPL">, DwarfRegNum<[7, 5, 4]>;
def R8B : Register<"R8B">, DwarfRegNum<[8, -2, -2]>;
def R9B : Register<"R9B">, DwarfRegNum<[9, -2, -2]>;
def R10B : Register<"R10B">, DwarfRegNum<[10, -2, -2]>;
def R11B : Register<"R11B">, DwarfRegNum<[11, -2, -2]>;
def R12B : Register<"R12B">, DwarfRegNum<[12, -2, -2]>;
def R13B : Register<"R13B">, DwarfRegNum<[13, -2, -2]>;
def R14B : Register<"R14B">, DwarfRegNum<[14, -2, -2]>;
def R15B : Register<"R15B">, DwarfRegNum<[15, -2, -2]>;
// High registers X86-32 only
def AH : Register<"AH">, DwarfRegNum<[0, 0, 0]>;
def DH : Register<"DH">, DwarfRegNum<[1, 2, 2]>;
def CH : Register<"CH">, DwarfRegNum<[2, 1, 1]>;
def BH : Register<"BH">, DwarfRegNum<[3, 3, 3]>;
// 16-bit registers
def AX : RegisterWithSubRegs<"AX", [AH,AL]>, DwarfRegNum<[0, 0, 0]>;
def DX : RegisterWithSubRegs<"DX", [DH,DL]>, DwarfRegNum<[1, 2, 2]>;
def CX : RegisterWithSubRegs<"CX", [CH,CL]>, DwarfRegNum<[2, 1, 1]>;
def BX : RegisterWithSubRegs<"BX", [BH,BL]>, DwarfRegNum<[3, 3, 3]>;
def SI : RegisterWithSubRegs<"SI", [SIL]>, DwarfRegNum<[4, 6, 6]>;
def DI : RegisterWithSubRegs<"DI", [DIL]>, DwarfRegNum<[5, 7, 7]>;
def BP : RegisterWithSubRegs<"BP", [BPL]>, DwarfRegNum<[6, 4, 5]>;
def SP : RegisterWithSubRegs<"SP", [SPL]>, DwarfRegNum<[7, 5, 4]>;
def IP : Register<"IP">, DwarfRegNum<[16]>;
// X86-64 only
def R8W : RegisterWithSubRegs<"R8W", [R8B]>, DwarfRegNum<[8, -2, -2]>;
def R9W : RegisterWithSubRegs<"R9W", [R9B]>, DwarfRegNum<[9, -2, -2]>;
def R10W : RegisterWithSubRegs<"R10W", [R10B]>, DwarfRegNum<[10, -2, -2]>;
def R11W : RegisterWithSubRegs<"R11W", [R11B]>, DwarfRegNum<[11, -2, -2]>;
def R12W : RegisterWithSubRegs<"R12W", [R12B]>, DwarfRegNum<[12, -2, -2]>;
def R13W : RegisterWithSubRegs<"R13W", [R13B]>, DwarfRegNum<[13, -2, -2]>;
def R14W : RegisterWithSubRegs<"R14W", [R14B]>, DwarfRegNum<[14, -2, -2]>;
def R15W : RegisterWithSubRegs<"R15W", [R15B]>, DwarfRegNum<[15, -2, -2]>;
// 32-bit registers
def EAX : RegisterWithSubRegs<"EAX", [AX]>, DwarfRegNum<[0, 0, 0]>;
def EDX : RegisterWithSubRegs<"EDX", [DX]>, DwarfRegNum<[1, 2, 2]>;
def ECX : RegisterWithSubRegs<"ECX", [CX]>, DwarfRegNum<[2, 1, 1]>;
def EBX : RegisterWithSubRegs<"EBX", [BX]>, DwarfRegNum<[3, 3, 3]>;
def ESI : RegisterWithSubRegs<"ESI", [SI]>, DwarfRegNum<[4, 6, 6]>;
def EDI : RegisterWithSubRegs<"EDI", [DI]>, DwarfRegNum<[5, 7, 7]>;
def EBP : RegisterWithSubRegs<"EBP", [BP]>, DwarfRegNum<[6, 4, 5]>;
def ESP : RegisterWithSubRegs<"ESP", [SP]>, DwarfRegNum<[7, 5, 4]>;
def EIP : RegisterWithSubRegs<"EIP", [IP]>, DwarfRegNum<[16, 8, 8]>;
// X86-64 only
def R8D : RegisterWithSubRegs<"R8D", [R8W]>, DwarfRegNum<[8, -2, -2]>;
def R9D : RegisterWithSubRegs<"R9D", [R9W]>, DwarfRegNum<[9, -2, -2]>;
def R10D : RegisterWithSubRegs<"R10D", [R10W]>, DwarfRegNum<[10, -2, -2]>;
def R11D : RegisterWithSubRegs<"R11D", [R11W]>, DwarfRegNum<[11, -2, -2]>;
def R12D : RegisterWithSubRegs<"R12D", [R12W]>, DwarfRegNum<[12, -2, -2]>;
def R13D : RegisterWithSubRegs<"R13D", [R13W]>, DwarfRegNum<[13, -2, -2]>;
def R14D : RegisterWithSubRegs<"R14D", [R14W]>, DwarfRegNum<[14, -2, -2]>;
def R15D : RegisterWithSubRegs<"R15D", [R15W]>, DwarfRegNum<[15, -2, -2]>;
// 64-bit registers, X86-64 only
def RAX : RegisterWithSubRegs<"RAX", [EAX]>, DwarfRegNum<[0, -2, -2]>;
def RDX : RegisterWithSubRegs<"RDX", [EDX]>, DwarfRegNum<[1, -2, -2]>;
def RCX : RegisterWithSubRegs<"RCX", [ECX]>, DwarfRegNum<[2, -2, -2]>;
def RBX : RegisterWithSubRegs<"RBX", [EBX]>, DwarfRegNum<[3, -2, -2]>;
def RSI : RegisterWithSubRegs<"RSI", [ESI]>, DwarfRegNum<[4, -2, -2]>;
def RDI : RegisterWithSubRegs<"RDI", [EDI]>, DwarfRegNum<[5, -2, -2]>;
def RBP : RegisterWithSubRegs<"RBP", [EBP]>, DwarfRegNum<[6, -2, -2]>;
def RSP : RegisterWithSubRegs<"RSP", [ESP]>, DwarfRegNum<[7, -2, -2]>;
def R8 : RegisterWithSubRegs<"R8", [R8D]>, DwarfRegNum<[8, -2, -2]>;
def R9 : RegisterWithSubRegs<"R9", [R9D]>, DwarfRegNum<[9, -2, -2]>;
def R10 : RegisterWithSubRegs<"R10", [R10D]>, DwarfRegNum<[10, -2, -2]>;
def R11 : RegisterWithSubRegs<"R11", [R11D]>, DwarfRegNum<[11, -2, -2]>;
def R12 : RegisterWithSubRegs<"R12", [R12D]>, DwarfRegNum<[12, -2, -2]>;
def R13 : RegisterWithSubRegs<"R13", [R13D]>, DwarfRegNum<[13, -2, -2]>;
def R14 : RegisterWithSubRegs<"R14", [R14D]>, DwarfRegNum<[14, -2, -2]>;
def R15 : RegisterWithSubRegs<"R15", [R15D]>, DwarfRegNum<[15, -2, -2]>;
def RIP : RegisterWithSubRegs<"RIP", [EIP]>, DwarfRegNum<[16, -2, -2]>;
// MMX Registers. These are actually aliased to ST0 .. ST7
def MM0 : Register<"MM0">, DwarfRegNum<[41, 29, 29]>;
def MM1 : Register<"MM1">, DwarfRegNum<[42, 30, 30]>;
def MM2 : Register<"MM2">, DwarfRegNum<[43, 31, 31]>;
def MM3 : Register<"MM3">, DwarfRegNum<[44, 32, 32]>;
def MM4 : Register<"MM4">, DwarfRegNum<[45, 33, 33]>;
def MM5 : Register<"MM5">, DwarfRegNum<[46, 34, 34]>;
def MM6 : Register<"MM6">, DwarfRegNum<[47, 35, 35]>;
def MM7 : Register<"MM7">, DwarfRegNum<[48, 36, 36]>;
// Pseudo Floating Point registers
def FP0 : Register<"FP0">;
def FP1 : Register<"FP1">;
def FP2 : Register<"FP2">;
def FP3 : Register<"FP3">;
def FP4 : Register<"FP4">;
def FP5 : Register<"FP5">;
def FP6 : Register<"FP6">;
// XMM Registers, used by the various SSE instruction set extensions
def XMM0: Register<"XMM0">, DwarfRegNum<[17, 21, 21]>;
def XMM1: Register<"XMM1">, DwarfRegNum<[18, 22, 22]>;
def XMM2: Register<"XMM2">, DwarfRegNum<[19, 23, 23]>;
def XMM3: Register<"XMM3">, DwarfRegNum<[20, 24, 24]>;
def XMM4: Register<"XMM4">, DwarfRegNum<[21, 25, 25]>;
def XMM5: Register<"XMM5">, DwarfRegNum<[22, 26, 26]>;
def XMM6: Register<"XMM6">, DwarfRegNum<[23, 27, 27]>;
def XMM7: Register<"XMM7">, DwarfRegNum<[24, 28, 28]>;
// X86-64 only
def XMM8: Register<"XMM8">, DwarfRegNum<[25, -2, -2]>;
def XMM9: Register<"XMM9">, DwarfRegNum<[26, -2, -2]>;
def XMM10: Register<"XMM10">, DwarfRegNum<[27, -2, -2]>;
def XMM11: Register<"XMM11">, DwarfRegNum<[28, -2, -2]>;
def XMM12: Register<"XMM12">, DwarfRegNum<[29, -2, -2]>;
def XMM13: Register<"XMM13">, DwarfRegNum<[30, -2, -2]>;
def XMM14: Register<"XMM14">, DwarfRegNum<[31, -2, -2]>;
def XMM15: Register<"XMM15">, DwarfRegNum<[32, -2, -2]>;
// Floating point stack registers
def ST0 : Register<"ST(0)">, DwarfRegNum<[33, 12, 11]>;
def ST1 : Register<"ST(1)">, DwarfRegNum<[34, 13, 12]>;
def ST2 : Register<"ST(2)">, DwarfRegNum<[35, 14, 13]>;
def ST3 : Register<"ST(3)">, DwarfRegNum<[36, 15, 14]>;
def ST4 : Register<"ST(4)">, DwarfRegNum<[37, 16, 15]>;
def ST5 : Register<"ST(5)">, DwarfRegNum<[38, 17, 16]>;
def ST6 : Register<"ST(6)">, DwarfRegNum<[39, 18, 17]>;
def ST7 : Register<"ST(7)">, DwarfRegNum<[40, 19, 18]>;
// Status flags register
def EFLAGS : Register<"EFLAGS">;
}
//===----------------------------------------------------------------------===//
// Subregister Set Definitions... now that we have all of the pieces, define the
// sub registers for each register.
//
def : SubRegSet<1, [AX, CX, DX, BX, SP, BP, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W],
[AL, CL, DL, BL, SPL, BPL, SIL, DIL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>;
// It's unclear if this subreg set is safe, given that not all registers
// in the class have an 'H' subreg.
// def : SubRegSet<2, [AX, CX, DX, BX],
// [AH, CH, DH, BH]>;
def : SubRegSet<1, [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D],
[AL, CL, DL, BL, SPL, BPL, SIL, DIL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>;
def : SubRegSet<2, [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D],
[AX, CX, DX, BX, SP, BP, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>;
def : SubRegSet<1, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI,
R8, R9, R10, R11, R12, R13, R14, R15],
[AL, CL, DL, BL, SPL, BPL, SIL, DIL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>;
def : SubRegSet<2, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI,
R8, R9, R10, R11, R12, R13, R14, R15],
[AX, CX, DX, BX, SP, BP, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>;
def : SubRegSet<3, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI,
R8, R9, R10, R11, R12, R13, R14, R15],
[EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D]>;
//===----------------------------------------------------------------------===//
// Register Class Definitions... now that we have all of the pieces, define the
// top-level register classes. The order specified in the register list is
// implicitly defined to be the register allocation order.
//
// List call-clobbered registers before callee-save registers. RBX, RBP, (and
// R12, R13, R14, and R15 for X86-64) are callee-save registers.
// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
// R8B, ... R15B.
// FIXME: Allow AH, CH, DH, BH in 64-mode for non-REX instructions,
def GR8 : RegisterClass<"X86", [i8], 8,
[AL, CL, DL, BL, AH, CH, DH, BH, SIL, DIL, BPL, SPL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate SPL or BPL.
static const unsigned X86_GR8_AO_64_fp[] =
{X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B};
// If not, just don't allocate SPL.
static const unsigned X86_GR8_AO_64[] =
{X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL};
// In 32-mode, none of the 8-bit registers aliases EBP or ESP.
static const unsigned X86_GR8_AO_32[] =
{X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH};
GR8Class::iterator
GR8Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return X86_GR8_AO_32;
else if (RI->hasFP(MF))
return X86_GR8_AO_64_fp;
else
return X86_GR8_AO_64;
}
GR8Class::iterator
GR8Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return X86_GR8_AO_32 + (sizeof(X86_GR8_AO_32) / sizeof(unsigned));
else if (RI->hasFP(MF))
return X86_GR8_AO_64_fp + (sizeof(X86_GR8_AO_64_fp) / sizeof(unsigned));
else
return X86_GR8_AO_64 + (sizeof(X86_GR8_AO_64) / sizeof(unsigned));
}
}];
}
def GR16 : RegisterClass<"X86", [i16], 16,
[AX, CX, DX, SI, DI, BX, BP, SP,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]> {
let SubRegClassList = [GR8];
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate SP or BP.
static const unsigned X86_GR16_AO_64_fp[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W};
static const unsigned X86_GR16_AO_32_fp[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX};
// If not, just don't allocate SPL.
static const unsigned X86_GR16_AO_64[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W, X86::BP};
static const unsigned X86_GR16_AO_32[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP};
GR16Class::iterator
GR16Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR16_AO_64_fp;
else
return X86_GR16_AO_64;
} else {
if (RI->hasFP(MF))
return X86_GR16_AO_32_fp;
else
return X86_GR16_AO_32;
}
}
GR16Class::iterator
GR16Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR16_AO_64_fp+(sizeof(X86_GR16_AO_64_fp)/sizeof(unsigned));
else
return X86_GR16_AO_64 + (sizeof(X86_GR16_AO_64) / sizeof(unsigned));
} else {
if (RI->hasFP(MF))
return X86_GR16_AO_32_fp+(sizeof(X86_GR16_AO_32_fp)/sizeof(unsigned));
else
return X86_GR16_AO_32 + (sizeof(X86_GR16_AO_32) / sizeof(unsigned));
}
}
}];
}
def GR32 : RegisterClass<"X86", [i32], 32,
[EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D]> {
let SubRegClassList = [GR8, GR16];
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate ESP or EBP.
static const unsigned X86_GR32_AO_64_fp[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D};
static const unsigned X86_GR32_AO_32_fp[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX};
// If not, just don't allocate SPL.
static const unsigned X86_GR32_AO_64[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP};
static const unsigned X86_GR32_AO_32[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP};
GR32Class::iterator
GR32Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR32_AO_64_fp;
else
return X86_GR32_AO_64;
} else {
if (RI->hasFP(MF))
return X86_GR32_AO_32_fp;
else
return X86_GR32_AO_32;
}
}
GR32Class::iterator
GR32Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR32_AO_64_fp+(sizeof(X86_GR32_AO_64_fp)/sizeof(unsigned));
else
return X86_GR32_AO_64 + (sizeof(X86_GR32_AO_64) / sizeof(unsigned));
} else {
if (RI->hasFP(MF))
return X86_GR32_AO_32_fp+(sizeof(X86_GR32_AO_32_fp)/sizeof(unsigned));
else
return X86_GR32_AO_32 + (sizeof(X86_GR32_AO_32) / sizeof(unsigned));
}
}
}];
}
def GR64 : RegisterClass<"X86", [i64], 64,
[RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
RBX, R14, R15, R12, R13, RBP, RSP]> {
let SubRegClassList = [GR8, GR16, GR32];
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
GR64Class::iterator
GR64Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
if (RI->hasFP(MF)) // Does the function dedicate RBP to being a frame ptr?
return end()-2; // If so, don't allocate RSP or RBP
else
return end()-1; // If not, just don't allocate RSP
}
}];
}
// GR16, GR32 subclasses which contain registers that have GR8 sub-registers.
// These should only be used for 32-bit mode.
def GR16_ : RegisterClass<"X86", [i16], 16, [AX, CX, DX, BX]> {
let SubRegClassList = [GR8];
}
def GR32_ : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, EBX]> {
let SubRegClassList = [GR8, GR16];
}
// Scalar SSE2 floating point registers.
def FR32 : RegisterClass<"X86", [f32], 32,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
FR32Class::iterator
FR32Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
def FR64 : RegisterClass<"X86", [f64], 64,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
FR64Class::iterator
FR64Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
// FIXME: This sets up the floating point register files as though they are f64
// values, though they really are f80 values. This will cause us to spill
// values as 64-bit quantities instead of 80-bit quantities, which is much much
// faster on common hardware. In reality, this should be controlled by a
// command line option or something.
def RFP32 : RegisterClass<"X86", [f32], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
def RFP64 : RegisterClass<"X86", [f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
def RFP80 : RegisterClass<"X86", [f80], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
// Floating point stack registers (these are not allocatable by the
// register allocator - the floating point stackifier is responsible
// for transforming FPn allocations to STn registers)
def RST : RegisterClass<"X86", [f64], 32,
[ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
RSTClass::iterator
RSTClass::allocation_order_end(const MachineFunction &MF) const {
return begin();
}
}];
}
// Generic vector registers: VR64 and VR128.
def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64], 64,
[MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>;
def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
VR128Class::iterator
VR128Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
// Status flags registers.
def CCR : RegisterClass<"X86", [i32], 32, [EFLAGS]> {
let CopyCost = -1; // Don't allow copying of status registers.
}