llvm-6502/lib/Analysis/EscapeAnalysis.cpp

131 lines
4.9 KiB
C++

//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides the implementation of the pointer escape analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "escape-analysis"
#include "llvm/Analysis/EscapeAnalysis.h"
#include "llvm/Module.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
char EscapeAnalysis::ID = 0;
static RegisterPass<EscapeAnalysis> X("escape-analysis",
"Pointer Escape Analysis", true, true);
/// runOnFunction - Precomputation for escape analysis. This collects all know
/// "escape points" in the def-use graph of the function. These are
/// instructions which allow their inputs to escape from the current function.
bool EscapeAnalysis::runOnFunction(Function& F) {
EscapePoints.clear();
TargetData& TD = getAnalysis<TargetData>();
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
Module* M = F.getParent();
// Walk through all instructions in the function, identifying those that
// may allow their inputs to escape.
for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
Instruction* I = &*II;
// The most obvious case is stores. Any store that may write to global
// memory or to a function argument potentially allows its input to escape.
if (StoreInst* S = dyn_cast<StoreInst>(I)) {
const Type* StoreType = S->getOperand(0)->getType();
unsigned StoreSize = TD.getTypeStoreSize(StoreType);
Value* Pointer = S->getPointerOperand();
bool inserted = false;
for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
AI != AE; ++AI) {
AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0UL);
if (R != AliasAnalysis::NoAlias) {
EscapePoints.insert(S);
inserted = true;
break;
}
}
if (inserted)
continue;
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
GI != GE; ++GI) {
AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0UL);
if (R != AliasAnalysis::NoAlias) {
EscapePoints.insert(S);
break;
}
}
// Calls and invokes potentially allow their parameters to escape.
// FIXME: This can and should be refined. Intrinsics have known escape
// behavior, and alias analysis may be able to tell us more about callees.
} else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
EscapePoints.insert(I);
// Returns allow the return value to escape. This is mostly important
// for malloc to alloca promotion.
} else if (isa<ReturnInst>(I)) {
EscapePoints.insert(I);
}
// FIXME: Are there any other possible escape points?
}
return false;
}
/// escapes - Determines whether the passed allocation can escape from the
/// current function. It does this by using a simple worklist algorithm to
/// search for a path in the def-use graph from the allocation to an
/// escape point.
/// FIXME: Once we've discovered a path, it would be a good idea to memoize it,
/// and all of its subpaths, to amortize the cost of future queries.
bool EscapeAnalysis::escapes(AllocationInst* A) {
std::vector<Value*> worklist;
worklist.push_back(A);
SmallPtrSet<Value*, 8> visited;
while (!worklist.empty()) {
Value* curr = worklist.back();
worklist.pop_back();
visited.insert(curr);
if (Instruction* CurrInst = dyn_cast<Instruction>(curr))
if (EscapePoints.count(CurrInst))
return true;
for (Instruction::use_iterator UI = curr->use_begin(), UE = curr->use_end();
UI != UE; ++UI)
if (Instruction* U = dyn_cast<Instruction>(UI))
if (!visited.count(U))
if (StoreInst* S = dyn_cast<StoreInst>(U)) {
// We know this must be an instruction, because constant gep's would
// have been found to alias a global, so stores to them would have
// been in EscapePoints.
worklist.push_back(cast<Instruction>(S->getPointerOperand()));
} else if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
// Because branches on the pointer value can hide data dependencies,
// we need to track values that were generated by branching on the
// pointer (or some derived value). To do that, we push the block,
// whose uses will be the PHINodes that generate information based
// one it.
worklist.push_back(U->getParent());
} else
worklist.push_back(U);
}
return false;
}