llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp
Jeff Cohen 2aa750a874 Fix VC++ compilation error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25577 91177308-0d34-0410-b5e6-96231b3b80d8
2006-01-24 04:43:17 +00:00

609 lines
19 KiB
C++

//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by James M. Laskey and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a simple two pass scheduler. The first pass attempts to push
// backward any lengthy instructions and critical paths. The second pass packs
// instructions into semi-optimal time slots.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;
namespace {
//===----------------------------------------------------------------------===//
///
/// BitsIterator - Provides iteration through individual bits in a bit vector.
///
template<class T>
class BitsIterator {
private:
T Bits; // Bits left to iterate through
public:
/// Ctor.
BitsIterator(T Initial) : Bits(Initial) {}
/// Next - Returns the next bit set or zero if exhausted.
inline T Next() {
// Get the rightmost bit set
T Result = Bits & -Bits;
// Remove from rest
Bits &= ~Result;
// Return single bit or zero
return Result;
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// ResourceTally - Manages the use of resources over time intervals. Each
/// item (slot) in the tally vector represents the resources used at a given
/// moment. A bit set to 1 indicates that a resource is in use, otherwise
/// available. An assumption is made that the tally is large enough to schedule
/// all current instructions (asserts otherwise.)
///
template<class T>
class ResourceTally {
private:
std::vector<T> Tally; // Resources used per slot
typedef typename std::vector<T>::iterator Iter;
// Tally iterator
/// SlotsAvailable - Returns true if all units are available.
///
bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
unsigned &Resource) {
assert(N && "Must check availability with N != 0");
// Determine end of interval
Iter End = Begin + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
// Iterate thru each resource
BitsIterator<T> Resources(ResourceSet & ~*Begin);
while (unsigned Res = Resources.Next()) {
// Check if resource is available for next N slots
Iter Interval = End;
do {
Interval--;
if (*Interval & Res) break;
} while (Interval != Begin);
// If available for N
if (Interval == Begin) {
// Success
Resource = Res;
return true;
}
}
// No luck
Resource = 0;
return false;
}
/// RetrySlot - Finds a good candidate slot to retry search.
Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
assert(N && "Must check availability with N != 0");
// Determine end of interval
Iter End = Begin + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
while (Begin != End--) {
// Clear units in use
ResourceSet &= ~*End;
// If no units left then we should go no further
if (!ResourceSet) return End + 1;
}
// Made it all the way through
return Begin;
}
/// FindAndReserveStages - Return true if the stages can be completed. If
/// so mark as busy.
bool FindAndReserveStages(Iter Begin,
InstrStage *Stage, InstrStage *StageEnd) {
// If at last stage then we're done
if (Stage == StageEnd) return true;
// Get number of cycles for current stage
unsigned N = Stage->Cycles;
// Check to see if N slots are available, if not fail
unsigned Resource;
if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
// Check to see if remaining stages are available, if not fail
if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
// Reserve resource
Reserve(Begin, N, Resource);
// Success
return true;
}
/// Reserve - Mark busy (set) the specified N slots.
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
// Determine end of interval
Iter End = Begin + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
// Set resource bit in each slot
for (; Begin < End; Begin++)
*Begin |= Resource;
}
/// FindSlots - Starting from Begin, locate consecutive slots where all stages
/// can be completed. Returns the address of first slot.
Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
// Track position
Iter Cursor = Begin;
// Try all possible slots forward
while (true) {
// Try at cursor, if successful return position.
if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
// Locate a better position
Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
}
}
public:
/// Initialize - Resize and zero the tally to the specified number of time
/// slots.
inline void Initialize(unsigned N) {
Tally.assign(N, 0); // Initialize tally to all zeros.
}
// FindAndReserve - Locate an ideal slot for the specified stages and mark
// as busy.
unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
InstrStage *StageEnd) {
// Where to begin
Iter Begin = Tally.begin() + Slot;
// Find a free slot
Iter Where = FindSlots(Begin, StageBegin, StageEnd);
// Distance is slot number
unsigned Final = Where - Tally.begin();
return Final;
}
};
//===----------------------------------------------------------------------===//
///
/// ScheduleDAGSimple - Simple two pass scheduler.
///
class ScheduleDAGSimple : public ScheduleDAG {
private:
ResourceTally<unsigned> Tally; // Resource usage tally
unsigned NSlots; // Total latency
static const unsigned NotFound = ~0U; // Search marker
public:
// Ctor.
ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag,
MachineBasicBlock *bb, const TargetMachine &tm)
: ScheduleDAG(hstc, dag, bb, tm), Tally(), NSlots(0) {
assert(&TII && "Target doesn't provide instr info?");
assert(&MRI && "Target doesn't provide register info?");
}
virtual ~ScheduleDAGSimple() {};
void Schedule();
private:
static bool isDefiner(NodeInfo *A, NodeInfo *B);
void IncludeNode(NodeInfo *NI);
void VisitAll();
void GatherSchedulingInfo();
void FakeGroupDominators();
bool isStrongDependency(NodeInfo *A, NodeInfo *B);
bool isWeakDependency(NodeInfo *A, NodeInfo *B);
void ScheduleBackward();
void ScheduleForward();
};
//===----------------------------------------------------------------------===//
/// Special case itineraries.
///
enum {
CallLatency = 40, // To push calls back in time
RSInteger = 0xC0000000, // Two integer units
RSFloat = 0x30000000, // Two float units
RSLoadStore = 0x0C000000, // Two load store units
RSBranch = 0x02000000 // One branch unit
};
static InstrStage CallStage = { CallLatency, RSBranch };
static InstrStage LoadStage = { 5, RSLoadStore };
static InstrStage StoreStage = { 2, RSLoadStore };
static InstrStage IntStage = { 2, RSInteger };
static InstrStage FloatStage = { 3, RSFloat };
//===----------------------------------------------------------------------===//
} // namespace
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// isDefiner - Return true if node A is a definer for B.
///
bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
// While there are A nodes
NodeGroupIterator NII(A);
while (NodeInfo *NI = NII.next()) {
// Extract node
SDNode *Node = NI->Node;
// While there operands in nodes of B
NodeGroupOpIterator NGOI(B);
while (!NGOI.isEnd()) {
SDOperand Op = NGOI.next();
// If node from A defines a node in B
if (Node == Op.Val) return true;
}
}
return false;
}
/// IncludeNode - Add node to NodeInfo vector.
///
void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
// Get node
SDNode *Node = NI->Node;
// Ignore entry node
if (Node->getOpcode() == ISD::EntryToken) return;
// Check current count for node
int Count = NI->getPending();
// If the node is already in list
if (Count < 0) return;
// Decrement count to indicate a visit
Count--;
// If count has gone to zero then add node to list
if (!Count) {
// Add node
if (NI->isInGroup()) {
Ordering.push_back(NI->Group->getDominator());
} else {
Ordering.push_back(NI);
}
// indicate node has been added
Count--;
}
// Mark as visited with new count
NI->setPending(Count);
}
/// GatherSchedulingInfo - Get latency and resource information about each node.
///
void ScheduleDAGSimple::GatherSchedulingInfo() {
// Get instruction itineraries for the target
const InstrItineraryData InstrItins = TM.getInstrItineraryData();
// For each node
for (unsigned i = 0, N = NodeCount; i < N; i++) {
// Get node info
NodeInfo* NI = &Info[i];
SDNode *Node = NI->Node;
// If there are itineraries and it is a machine instruction
if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) {
// If machine opcode
if (Node->isTargetOpcode()) {
// Get return type to guess which processing unit
MVT::ValueType VT = Node->getValueType(0);
// Get machine opcode
MachineOpCode TOpc = Node->getTargetOpcode();
NI->IsCall = TII->isCall(TOpc);
NI->IsLoad = TII->isLoad(TOpc);
NI->IsStore = TII->isStore(TOpc);
if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
}
} else if (Node->isTargetOpcode()) {
// get machine opcode
MachineOpCode TOpc = Node->getTargetOpcode();
// Check to see if it is a call
NI->IsCall = TII->isCall(TOpc);
// Get itinerary stages for instruction
unsigned II = TII->getSchedClass(TOpc);
NI->StageBegin = InstrItins.begin(II);
NI->StageEnd = InstrItins.end(II);
}
// One slot for the instruction itself
NI->Latency = 1;
// Add long latency for a call to push it back in time
if (NI->IsCall) NI->Latency += CallLatency;
// Sum up all the latencies
for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
Stage != E; Stage++) {
NI->Latency += Stage->Cycles;
}
// Sum up all the latencies for max tally size
NSlots += NI->Latency;
}
// Unify metrics if in a group
if (HasGroups) {
for (unsigned i = 0, N = NodeCount; i < N; i++) {
NodeInfo* NI = &Info[i];
if (NI->isInGroup()) {
NodeGroup *Group = NI->Group;
if (!Group->getDominator()) {
NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
NodeInfo *Dominator = *NGI;
unsigned Latency = 0;
for (NGI++; NGI != NGE; NGI++) {
NodeInfo* NGNI = *NGI;
Latency += NGNI->Latency;
if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
}
Dominator->Latency = Latency;
Group->setDominator(Dominator);
}
}
}
}
}
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
/// Note that the ordering in the Nodes vector is reversed.
void ScheduleDAGSimple::VisitAll() {
// Add first element to list
NodeInfo *NI = getNI(DAG.getRoot().Val);
if (NI->isInGroup()) {
Ordering.push_back(NI->Group->getDominator());
} else {
Ordering.push_back(NI);
}
// Iterate through all nodes that have been added
for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
// Visit all operands
NodeGroupOpIterator NGI(Ordering[i]);
while (!NGI.isEnd()) {
// Get next operand
SDOperand Op = NGI.next();
// Get node
SDNode *Node = Op.Val;
// Ignore passive nodes
if (isPassiveNode(Node)) continue;
// Check out node
IncludeNode(getNI(Node));
}
}
// Add entry node last (IncludeNode filters entry nodes)
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
Ordering.push_back(getNI(DAG.getEntryNode().Val));
// Reverse the order
std::reverse(Ordering.begin(), Ordering.end());
}
/// FakeGroupDominators - Set dominators for non-scheduling.
///
void ScheduleDAGSimple::FakeGroupDominators() {
for (unsigned i = 0, N = NodeCount; i < N; i++) {
NodeInfo* NI = &Info[i];
if (NI->isInGroup()) {
NodeGroup *Group = NI->Group;
if (!Group->getDominator()) {
Group->setDominator(NI);
}
}
}
}
/// isStrongDependency - Return true if node A has results used by node B.
/// I.E., B must wait for latency of A.
bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
// If A defines for B then it's a strong dependency or
// if a load follows a store (may be dependent but why take a chance.)
return isDefiner(A, B) || (A->IsStore && B->IsLoad);
}
/// isWeakDependency Return true if node A produces a result that will
/// conflict with operands of B. It is assumed that we have called
/// isStrongDependency prior.
bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
// TODO check for conflicting real registers and aliases
#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
#else
return A->Node->getOpcode() == ISD::EntryToken;
#endif
}
/// ScheduleBackward - Schedule instructions so that any long latency
/// instructions and the critical path get pushed back in time. Time is run in
/// reverse to allow code reuse of the Tally and eliminate the overhead of
/// biasing every slot indices against NSlots.
void ScheduleDAGSimple::ScheduleBackward() {
// Size and clear the resource tally
Tally.Initialize(NSlots);
// Get number of nodes to schedule
unsigned N = Ordering.size();
// For each node being scheduled
for (unsigned i = N; 0 < i--;) {
NodeInfo *NI = Ordering[i];
// Track insertion
unsigned Slot = NotFound;
// Compare against those previously scheduled nodes
unsigned j = i + 1;
for (; j < N; j++) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Check dependency against previously inserted nodes
if (isStrongDependency(NI, Other)) {
Slot = Other->Slot + Other->Latency;
break;
} else if (isWeakDependency(NI, Other)) {
Slot = Other->Slot;
break;
}
}
// If independent of others (or first entry)
if (Slot == NotFound) Slot = 0;
#if 0 // FIXME - measure later
// Find a slot where the needed resources are available
if (NI->StageBegin != NI->StageEnd)
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
#endif
// Set node slot
NI->Slot = Slot;
// Insert sort based on slot
j = i + 1;
for (; j < N; j++) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Should we look further (remember slots are in reverse time)
if (Slot >= Other->Slot) break;
// Shuffle other into ordering
Ordering[j - 1] = Other;
}
// Insert node in proper slot
if (j != i + 1) Ordering[j - 1] = NI;
}
}
/// ScheduleForward - Schedule instructions to maximize packing.
///
void ScheduleDAGSimple::ScheduleForward() {
// Size and clear the resource tally
Tally.Initialize(NSlots);
// Get number of nodes to schedule
unsigned N = Ordering.size();
// For each node being scheduled
for (unsigned i = 0; i < N; i++) {
NodeInfo *NI = Ordering[i];
// Track insertion
unsigned Slot = NotFound;
// Compare against those previously scheduled nodes
unsigned j = i;
for (; 0 < j--;) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Check dependency against previously inserted nodes
if (isStrongDependency(Other, NI)) {
Slot = Other->Slot + Other->Latency;
break;
} else if (Other->IsCall || isWeakDependency(Other, NI)) {
Slot = Other->Slot;
break;
}
}
// If independent of others (or first entry)
if (Slot == NotFound) Slot = 0;
// Find a slot where the needed resources are available
if (NI->StageBegin != NI->StageEnd)
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
// Set node slot
NI->Slot = Slot;
// Insert sort based on slot
j = i;
for (; 0 < j--;) {
// Get prior instruction
NodeInfo *Other = Ordering[j];
// Should we look further
if (Slot >= Other->Slot) break;
// Shuffle other into ordering
Ordering[j + 1] = Other;
}
// Insert node in proper slot
if (j != i) Ordering[j + 1] = NI;
}
}
/// Schedule - Order nodes according to selected style.
///
void ScheduleDAGSimple::Schedule() {
// Test to see if scheduling should occur
bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling;
// Don't waste time if is only entry and return
if (ShouldSchedule) {
// Get latency and resource requirements
GatherSchedulingInfo();
} else if (HasGroups) {
// Make sure all the groups have dominators
FakeGroupDominators();
}
// Breadth first walk of DAG
VisitAll();
#ifndef NDEBUG
static unsigned Count = 0;
Count++;
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
NodeInfo *NI = Ordering[i];
NI->Preorder = i;
}
#endif
// Don't waste time if is only entry and return
if (ShouldSchedule) {
// Push back long instructions and critical path
ScheduleBackward();
// Pack instructions to maximize resource utilization
ScheduleForward();
}
DEBUG(printChanges(Count));
// Emit in scheduled order
EmitAll();
}
/// createSimpleDAGScheduler - This creates a simple two pass instruction
/// scheduler.
llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic,
SelectionDAG &DAG,
MachineBasicBlock *BB) {
return new ScheduleDAGSimple(Heuristic, DAG, BB, DAG.getTarget());
}