mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 05:32:25 +00:00
081c34b725
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize the pass's dependencies. Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h before parsing commandline arguments. I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass registration/creation, please send the testcase to me directly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
229 lines
8.7 KiB
C++
229 lines
8.7 KiB
C++
//===-- PartialSpecialization.cpp - Specialize for common constants--------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass finds function arguments that are often a common constant and
|
|
// specializes a version of the called function for that constant.
|
|
//
|
|
// This pass simply does the cloning for functions it specializes. It depends
|
|
// on IPSCCP and DAE to clean up the results.
|
|
//
|
|
// The initial heuristic favors constant arguments that are used in control
|
|
// flow.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "partialspecialization"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(numSpecialized, "Number of specialized functions created");
|
|
STATISTIC(numReplaced, "Number of callers replaced by specialization");
|
|
|
|
// Maximum number of arguments markable interested
|
|
static const int MaxInterests = 6;
|
|
|
|
namespace {
|
|
typedef SmallVector<int, MaxInterests> InterestingArgVector;
|
|
class PartSpec : public ModulePass {
|
|
void scanForInterest(Function&, InterestingArgVector&);
|
|
int scanDistribution(Function&, int, std::map<Constant*, int>&);
|
|
InlineCostAnalyzer CA;
|
|
public :
|
|
static char ID; // Pass identification, replacement for typeid
|
|
PartSpec() : ModulePass(ID) {
|
|
initializePartSpecPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
bool runOnModule(Module &M);
|
|
};
|
|
}
|
|
|
|
char PartSpec::ID = 0;
|
|
INITIALIZE_PASS(PartSpec, "partialspecialization",
|
|
"Partial Specialization", false, false)
|
|
|
|
// Specialize F by replacing the arguments (keys) in replacements with the
|
|
// constants (values). Replace all calls to F with those constants with
|
|
// a call to the specialized function. Returns the specialized function
|
|
static Function*
|
|
SpecializeFunction(Function* F,
|
|
ValueToValueMapTy& replacements) {
|
|
// arg numbers of deleted arguments
|
|
DenseMap<unsigned, const Argument*> deleted;
|
|
for (ValueToValueMapTy::iterator
|
|
repb = replacements.begin(), repe = replacements.end();
|
|
repb != repe; ++repb) {
|
|
Argument const *arg = cast<const Argument>(repb->first);
|
|
deleted[arg->getArgNo()] = arg;
|
|
}
|
|
|
|
Function* NF = CloneFunction(F, replacements,
|
|
/*ModuleLevelChanges=*/false);
|
|
NF->setLinkage(GlobalValue::InternalLinkage);
|
|
F->getParent()->getFunctionList().push_back(NF);
|
|
|
|
// FIXME: Specialized versions getting the same constants should also get
|
|
// the same name. That way, specializations for public functions can be
|
|
// marked linkonce_odr and reused across modules.
|
|
|
|
for (Value::use_iterator ii = F->use_begin(), ee = F->use_end();
|
|
ii != ee; ) {
|
|
Value::use_iterator i = ii;
|
|
++ii;
|
|
User *U = *i;
|
|
CallSite CS(U);
|
|
if (CS) {
|
|
if (CS.getCalledFunction() == F) {
|
|
SmallVector<Value*, 6> args;
|
|
// Assemble the non-specialized arguments for the updated callsite.
|
|
// In the process, make sure that the specialized arguments are
|
|
// constant and match the specialization. If that's not the case,
|
|
// this callsite needs to call the original or some other
|
|
// specialization; don't change it here.
|
|
CallSite::arg_iterator as = CS.arg_begin(), ae = CS.arg_end();
|
|
for (CallSite::arg_iterator ai = as; ai != ae; ++ai) {
|
|
DenseMap<unsigned, const Argument*>::iterator delit = deleted.find(
|
|
std::distance(as, ai));
|
|
if (delit == deleted.end())
|
|
args.push_back(cast<Value>(ai));
|
|
else {
|
|
Constant *ci = dyn_cast<Constant>(ai);
|
|
if (!(ci && ci == replacements[delit->second]))
|
|
goto next_use;
|
|
}
|
|
}
|
|
Value* NCall;
|
|
if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
|
NCall = CallInst::Create(NF, args.begin(), args.end(),
|
|
CI->getName(), CI);
|
|
cast<CallInst>(NCall)->setTailCall(CI->isTailCall());
|
|
cast<CallInst>(NCall)->setCallingConv(CI->getCallingConv());
|
|
} else {
|
|
InvokeInst *II = cast<InvokeInst>(U);
|
|
NCall = InvokeInst::Create(NF, II->getNormalDest(),
|
|
II->getUnwindDest(),
|
|
args.begin(), args.end(),
|
|
II->getName(), II);
|
|
cast<InvokeInst>(NCall)->setCallingConv(II->getCallingConv());
|
|
}
|
|
CS.getInstruction()->replaceAllUsesWith(NCall);
|
|
CS.getInstruction()->eraseFromParent();
|
|
++numReplaced;
|
|
}
|
|
}
|
|
next_use:;
|
|
}
|
|
return NF;
|
|
}
|
|
|
|
|
|
bool PartSpec::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
for (Module::iterator I = M.begin(); I != M.end(); ++I) {
|
|
Function &F = *I;
|
|
if (F.isDeclaration() || F.mayBeOverridden()) continue;
|
|
InterestingArgVector interestingArgs;
|
|
scanForInterest(F, interestingArgs);
|
|
|
|
// Find the first interesting Argument that we can specialize on
|
|
// If there are multiple interesting Arguments, then those will be found
|
|
// when processing the cloned function.
|
|
bool breakOuter = false;
|
|
for (unsigned int x = 0; !breakOuter && x < interestingArgs.size(); ++x) {
|
|
std::map<Constant*, int> distribution;
|
|
scanDistribution(F, interestingArgs[x], distribution);
|
|
for (std::map<Constant*, int>::iterator ii = distribution.begin(),
|
|
ee = distribution.end(); ii != ee; ++ii) {
|
|
// The distribution map might have an entry for NULL (i.e., one or more
|
|
// callsites were passing a non-constant there). We allow that to
|
|
// happen so that we can see whether any callsites pass a non-constant;
|
|
// if none do and the function is internal, we might have an opportunity
|
|
// to kill the original function.
|
|
if (!ii->first) continue;
|
|
int bonus = ii->second;
|
|
SmallVector<unsigned, 1> argnos;
|
|
argnos.push_back(interestingArgs[x]);
|
|
InlineCost cost = CA.getSpecializationCost(&F, argnos);
|
|
// FIXME: If this is the last constant entry, and no non-constant
|
|
// entries exist, and the target function is internal, the cost should
|
|
// be reduced by the original size of the target function, almost
|
|
// certainly making it negative and causing a specialization that will
|
|
// leave the original function dead and removable.
|
|
if (cost.isAlways() ||
|
|
(cost.isVariable() && cost.getValue() < bonus)) {
|
|
ValueToValueMapTy m;
|
|
Function::arg_iterator arg = F.arg_begin();
|
|
for (int y = 0; y < interestingArgs[x]; ++y)
|
|
++arg;
|
|
m[&*arg] = ii->first;
|
|
SpecializeFunction(&F, m);
|
|
++numSpecialized;
|
|
breakOuter = true;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// scanForInterest - This function decides which arguments would be worth
|
|
/// specializing on.
|
|
void PartSpec::scanForInterest(Function& F, InterestingArgVector& args) {
|
|
for(Function::arg_iterator ii = F.arg_begin(), ee = F.arg_end();
|
|
ii != ee; ++ii) {
|
|
int argno = std::distance(F.arg_begin(), ii);
|
|
SmallVector<unsigned, 1> argnos;
|
|
argnos.push_back(argno);
|
|
int bonus = CA.getSpecializationBonus(&F, argnos);
|
|
if (bonus > 0) {
|
|
args.push_back(argno);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// scanDistribution - Construct a histogram of constants for arg of F at arg.
|
|
/// For each distinct constant, we'll compute the total of the specialization
|
|
/// bonus across all callsites passing that constant; if that total exceeds
|
|
/// the specialization cost, we will create the specialization.
|
|
int PartSpec::scanDistribution(Function& F, int arg,
|
|
std::map<Constant*, int>& dist) {
|
|
bool hasIndirect = false;
|
|
int total = 0;
|
|
for (Value::use_iterator ii = F.use_begin(), ee = F.use_end();
|
|
ii != ee; ++ii) {
|
|
User *U = *ii;
|
|
CallSite CS(U);
|
|
if (CS && CS.getCalledFunction() == &F) {
|
|
SmallVector<unsigned, 1> argnos;
|
|
argnos.push_back(arg);
|
|
dist[dyn_cast<Constant>(CS.getArgument(arg))] +=
|
|
CA.getSpecializationBonus(&F, argnos);
|
|
++total;
|
|
} else
|
|
hasIndirect = true;
|
|
}
|
|
|
|
// Preserve the original address taken function even if all other uses
|
|
// will be specialized.
|
|
if (hasIndirect) ++total;
|
|
return total;
|
|
}
|
|
|
|
ModulePass* llvm::createPartialSpecializationPass() { return new PartSpec(); }
|