llvm-6502/utils/TableGen/DAGISelMatcherGen.cpp
Chris Lattner 084df627c8 add plumbing for handling multiple result nodes
in some more places.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99366 91177308-0d34-0410-b5e6-96231b3b80d8
2010-03-24 00:41:19 +00:00

895 lines
37 KiB
C++

//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DAGISelMatcher.h"
#include "CodeGenDAGPatterns.h"
#include "Record.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include <utility>
using namespace llvm;
/// getRegisterValueType - Look up and return the ValueType of the specified
/// register. If the register is a member of multiple register classes which
/// have different associated types, return MVT::Other.
static MVT::SimpleValueType getRegisterValueType(Record *R,
const CodeGenTarget &T) {
bool FoundRC = false;
MVT::SimpleValueType VT = MVT::Other;
const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
std::vector<Record*>::const_iterator Element;
for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RCs[rc];
if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
continue;
if (!FoundRC) {
FoundRC = true;
VT = RC.getValueTypeNum(0);
continue;
}
// If this occurs in multiple register classes, they all have to agree.
assert(VT == RC.getValueTypeNum(0));
}
return VT;
}
namespace {
class MatcherGen {
const PatternToMatch &Pattern;
const CodeGenDAGPatterns &CGP;
/// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
/// out with all of the types removed. This allows us to insert type checks
/// as we scan the tree.
TreePatternNode *PatWithNoTypes;
/// VariableMap - A map from variable names ('$dst') to the recorded operand
/// number that they were captured as. These are biased by 1 to make
/// insertion easier.
StringMap<unsigned> VariableMap;
/// NextRecordedOperandNo - As we emit opcodes to record matched values in
/// the RecordedNodes array, this keeps track of which slot will be next to
/// record into.
unsigned NextRecordedOperandNo;
/// MatchedChainNodes - This maintains the position in the recorded nodes
/// array of all of the recorded input nodes that have chains.
SmallVector<unsigned, 2> MatchedChainNodes;
/// MatchedFlagResultNodes - This maintains the position in the recorded
/// nodes array of all of the recorded input nodes that have flag results.
SmallVector<unsigned, 2> MatchedFlagResultNodes;
/// MatchedComplexPatterns - This maintains a list of all of the
/// ComplexPatterns that we need to check. The patterns are known to have
/// names which were recorded. The second element of each pair is the first
/// slot number that the OPC_CheckComplexPat opcode drops the matched
/// results into.
SmallVector<std::pair<const TreePatternNode*,
unsigned>, 2> MatchedComplexPatterns;
/// PhysRegInputs - List list has an entry for each explicitly specified
/// physreg input to the pattern. The first elt is the Register node, the
/// second is the recorded slot number the input pattern match saved it in.
SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
/// Matcher - This is the top level of the generated matcher, the result.
Matcher *TheMatcher;
/// CurPredicate - As we emit matcher nodes, this points to the latest check
/// which should have future checks stuck into its Next position.
Matcher *CurPredicate;
public:
MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
~MatcherGen() {
delete PatWithNoTypes;
}
bool EmitMatcherCode(unsigned Variant);
void EmitResultCode();
Matcher *GetMatcher() const { return TheMatcher; }
Matcher *GetCurPredicate() const { return CurPredicate; }
private:
void AddMatcher(Matcher *NewNode);
void InferPossibleTypes();
// Matcher Generation.
void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
void EmitLeafMatchCode(const TreePatternNode *N);
void EmitOperatorMatchCode(const TreePatternNode *N,
TreePatternNode *NodeNoTypes);
// Result Code Generation.
unsigned getNamedArgumentSlot(StringRef Name) {
unsigned VarMapEntry = VariableMap[Name];
assert(VarMapEntry != 0 &&
"Variable referenced but not defined and not caught earlier!");
return VarMapEntry-1;
}
/// GetInstPatternNode - Get the pattern for an instruction.
const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
const TreePatternNode *N);
void EmitResultOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultOfNamedOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultLeafAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultInstructionAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
};
} // end anon namespace.
MatcherGen::MatcherGen(const PatternToMatch &pattern,
const CodeGenDAGPatterns &cgp)
: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
TheMatcher(0), CurPredicate(0) {
// We need to produce the matcher tree for the patterns source pattern. To do
// this we need to match the structure as well as the types. To do the type
// matching, we want to figure out the fewest number of type checks we need to
// emit. For example, if there is only one integer type supported by a
// target, there should be no type comparisons at all for integer patterns!
//
// To figure out the fewest number of type checks needed, clone the pattern,
// remove the types, then perform type inference on the pattern as a whole.
// If there are unresolved types, emit an explicit check for those types,
// apply the type to the tree, then rerun type inference. Iterate until all
// types are resolved.
//
PatWithNoTypes = Pattern.getSrcPattern()->clone();
PatWithNoTypes->RemoveAllTypes();
// If there are types that are manifestly known, infer them.
InferPossibleTypes();
}
/// InferPossibleTypes - As we emit the pattern, we end up generating type
/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
/// want to propagate implied types as far throughout the tree as possible so
/// that we avoid doing redundant type checks. This does the type propagation.
void MatcherGen::InferPossibleTypes() {
// TP - Get *SOME* tree pattern, we don't care which. It is only used for
// diagnostics, which we know are impossible at this point.
TreePattern &TP = *CGP.pf_begin()->second;
try {
bool MadeChange = true;
while (MadeChange)
MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
true/*Ignore reg constraints*/);
} catch (...) {
errs() << "Type constraint application shouldn't fail!";
abort();
}
}
/// AddMatcher - Add a matcher node to the current graph we're building.
void MatcherGen::AddMatcher(Matcher *NewNode) {
if (CurPredicate != 0)
CurPredicate->setNext(NewNode);
else
TheMatcher = NewNode;
CurPredicate = NewNode;
}
//===----------------------------------------------------------------------===//
// Pattern Match Generation
//===----------------------------------------------------------------------===//
/// EmitLeafMatchCode - Generate matching code for leaf nodes.
void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
assert(N->isLeaf() && "Not a leaf?");
// Direct match against an integer constant.
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
// If this is the root of the dag we're matching, we emit a redundant opcode
// check to ensure that this gets folded into the normal top-level
// OpcodeSwitch.
if (N == Pattern.getSrcPattern()) {
const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
AddMatcher(new CheckOpcodeMatcher(NI));
}
return AddMatcher(new CheckIntegerMatcher(II->getValue()));
}
DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
if (DI == 0) {
errs() << "Unknown leaf kind: " << *DI << "\n";
abort();
}
Record *LeafRec = DI->getDef();
if (// Handle register references. Nothing to do here, they always match.
LeafRec->isSubClassOf("RegisterClass") ||
LeafRec->isSubClassOf("PointerLikeRegClass") ||
// Place holder for SRCVALUE nodes. Nothing to do here.
LeafRec->getName() == "srcvalue")
return;
// If we have a physreg reference like (mul gpr:$src, EAX) then we need to
// record the register
if (LeafRec->isSubClassOf("Register")) {
AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
NextRecordedOperandNo));
PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
return;
}
if (LeafRec->isSubClassOf("ValueType"))
return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
if (LeafRec->isSubClassOf("CondCode"))
return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
if (LeafRec->isSubClassOf("ComplexPattern")) {
// We can't model ComplexPattern uses that don't have their name taken yet.
// The OPC_CheckComplexPattern operation implicitly records the results.
if (N->getName().empty()) {
errs() << "We expect complex pattern uses to have names: " << *N << "\n";
exit(1);
}
// Remember this ComplexPattern so that we can emit it after all the other
// structural matches are done.
MatchedComplexPatterns.push_back(std::make_pair(N, 0));
return;
}
errs() << "Unknown leaf kind: " << *N << "\n";
abort();
}
void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
TreePatternNode *NodeNoTypes) {
assert(!N->isLeaf() && "Not an operator?");
const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
// a constant without a predicate fn that has more that one bit set, handle
// this as a special case. This is usually for targets that have special
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
// handling stuff). Using these instructions is often far more efficient
// than materializing the constant. Unfortunately, both the instcombiner
// and the dag combiner can often infer that bits are dead, and thus drop
// them from the mask in the dag. For example, it might turn 'AND X, 255'
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
// to handle this.
if ((N->getOperator()->getName() == "and" ||
N->getOperator()->getName() == "or") &&
N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
N->getPredicateFns().empty()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
// If this is at the root of the pattern, we emit a redundant
// CheckOpcode so that the following checks get factored properly under
// a single opcode check.
if (N == Pattern.getSrcPattern())
AddMatcher(new CheckOpcodeMatcher(CInfo));
// Emit the CheckAndImm/CheckOrImm node.
if (N->getOperator()->getName() == "and")
AddMatcher(new CheckAndImmMatcher(II->getValue()));
else
AddMatcher(new CheckOrImmMatcher(II->getValue()));
// Match the LHS of the AND as appropriate.
AddMatcher(new MoveChildMatcher(0));
EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
AddMatcher(new MoveParentMatcher());
return;
}
}
}
// Check that the current opcode lines up.
AddMatcher(new CheckOpcodeMatcher(CInfo));
// If this node has memory references (i.e. is a load or store), tell the
// interpreter to capture them in the memref array.
if (N->NodeHasProperty(SDNPMemOperand, CGP))
AddMatcher(new RecordMemRefMatcher());
// If this node has a chain, then the chain is operand #0 is the SDNode, and
// the child numbers of the node are all offset by one.
unsigned OpNo = 0;
if (N->NodeHasProperty(SDNPHasChain, CGP)) {
// Record the node and remember it in our chained nodes list.
AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
"' chained node",
NextRecordedOperandNo));
// Remember all of the input chains our pattern will match.
MatchedChainNodes.push_back(NextRecordedOperandNo++);
// Don't look at the input chain when matching the tree pattern to the
// SDNode.
OpNo = 1;
// If this node is not the root and the subtree underneath it produces a
// chain, then the result of matching the node is also produce a chain.
// Beyond that, this means that we're also folding (at least) the root node
// into the node that produce the chain (for example, matching
// "(add reg, (load ptr))" as a add_with_memory on X86). This is
// problematic, if the 'reg' node also uses the load (say, its chain).
// Graphically:
//
// [LD]
// ^ ^
// | \ DAG's like cheese.
// / |
// / [YY]
// | ^
// [XX]--/
//
// It would be invalid to fold XX and LD. In this case, folding the two
// nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
// To prevent this, we emit a dynamic check for legality before allowing
// this to be folded.
//
const TreePatternNode *Root = Pattern.getSrcPattern();
if (N != Root) { // Not the root of the pattern.
// If there is a node between the root and this node, then we definitely
// need to emit the check.
bool NeedCheck = !Root->hasChild(N);
// If it *is* an immediate child of the root, we can still need a check if
// the root SDNode has multiple inputs. For us, this means that it is an
// intrinsic, has multiple operands, or has other inputs like chain or
// flag).
if (!NeedCheck) {
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
NeedCheck =
Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
PInfo.getNumOperands() > 1 ||
PInfo.hasProperty(SDNPHasChain) ||
PInfo.hasProperty(SDNPInFlag) ||
PInfo.hasProperty(SDNPOptInFlag);
}
if (NeedCheck)
AddMatcher(new CheckFoldableChainNodeMatcher());
}
}
// If this node has an output flag and isn't the root, remember it.
if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
N != Pattern.getSrcPattern()) {
// TODO: This redundantly records nodes with both flags and chains.
// Record the node and remember it in our chained nodes list.
AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
"' flag output node",
NextRecordedOperandNo));
// Remember all of the nodes with output flags our pattern will match.
MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
}
// If this node is known to have an input flag or if it *might* have an input
// flag, capture it as the flag input of the pattern.
if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
N->NodeHasProperty(SDNPInFlag, CGP))
AddMatcher(new CaptureFlagInputMatcher());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
// Get the code suitable for matching this child. Move to the child, check
// it then move back to the parent.
AddMatcher(new MoveChildMatcher(OpNo));
EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
AddMatcher(new MoveParentMatcher());
}
}
void MatcherGen::EmitMatchCode(const TreePatternNode *N,
TreePatternNode *NodeNoTypes) {
// If N and NodeNoTypes don't agree on a type, then this is a case where we
// need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
// reinfer any correlated types.
SmallVector<unsigned, 2> ResultsToTypeCheck;
for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
NodeNoTypes->setType(i, N->getExtType(i));
InferPossibleTypes();
ResultsToTypeCheck.push_back(i);
}
// If this node has a name associated with it, capture it in VariableMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!N->getName().empty()) {
unsigned &VarMapEntry = VariableMap[N->getName()];
if (VarMapEntry == 0) {
// If it is a named node, we must emit a 'Record' opcode.
AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
VarMapEntry = ++NextRecordedOperandNo;
} else {
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
AddMatcher(new CheckSameMatcher(VarMapEntry-1));
return;
}
}
if (N->isLeaf())
EmitLeafMatchCode(N);
else
EmitOperatorMatchCode(N, NodeNoTypes);
// If there are node predicates for this node, generate their checks.
for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
ResultsToTypeCheck[i]));
}
/// EmitMatcherCode - Generate the code that matches the predicate of this
/// pattern for the specified Variant. If the variant is invalid this returns
/// true and does not generate code, if it is valid, it returns false.
bool MatcherGen::EmitMatcherCode(unsigned Variant) {
// If the root of the pattern is a ComplexPattern and if it is specified to
// match some number of root opcodes, these are considered to be our variants.
// Depending on which variant we're generating code for, emit the root opcode
// check.
if (const ComplexPattern *CP =
Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
const std::vector<Record*> &OpNodes = CP->getRootNodes();
assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
if (Variant >= OpNodes.size()) return true;
AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
} else {
if (Variant != 0) return true;
}
// Emit the matcher for the pattern structure and types.
EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
// If the pattern has a predicate on it (e.g. only enabled when a subtarget
// feature is around, do the check).
if (!Pattern.getPredicateCheck().empty())
AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
// Now that we've completed the structural type match, emit any ComplexPattern
// checks (e.g. addrmode matches). We emit this after the structural match
// because they are generally more expensive to evaluate and more difficult to
// factor.
for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
const TreePatternNode *N = MatchedComplexPatterns[i].first;
// Remember where the results of this match get stuck.
MatchedComplexPatterns[i].second = NextRecordedOperandNo;
// Get the slot we recorded the value in from the name on the node.
unsigned RecNodeEntry = VariableMap[N->getName()];
assert(!N->getName().empty() && RecNodeEntry &&
"Complex pattern should have a name and slot");
--RecNodeEntry; // Entries in VariableMap are biased.
const ComplexPattern &CP =
CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
// Emit a CheckComplexPat operation, which does the match (aborting if it
// fails) and pushes the matched operands onto the recorded nodes list.
AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
N->getName(), NextRecordedOperandNo));
// Record the right number of operands.
NextRecordedOperandNo += CP.getNumOperands();
if (CP.hasProperty(SDNPHasChain)) {
// If the complex pattern has a chain, then we need to keep track of the
// fact that we just recorded a chain input. The chain input will be
// matched as the last operand of the predicate if it was successful.
++NextRecordedOperandNo; // Chained node operand.
// It is the last operand recorded.
assert(NextRecordedOperandNo > 1 &&
"Should have recorded input/result chains at least!");
MatchedChainNodes.push_back(NextRecordedOperandNo-1);
}
// TODO: Complex patterns can't have output flags, if they did, we'd want
// to record them.
}
return false;
}
//===----------------------------------------------------------------------===//
// Node Result Generation
//===----------------------------------------------------------------------===//
void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps){
assert(!N->getName().empty() && "Operand not named!");
// A reference to a complex pattern gets all of the results of the complex
// pattern's match.
if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
unsigned SlotNo = 0;
for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
SlotNo = MatchedComplexPatterns[i].second;
break;
}
assert(SlotNo != 0 && "Didn't get a slot number assigned?");
// The first slot entry is the node itself, the subsequent entries are the
// matched values.
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
ResultOps.push_back(SlotNo+i);
return;
}
unsigned SlotNo = getNamedArgumentSlot(N->getName());
// If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
// version of the immediate so that it doesn't get selected due to some other
// node use.
if (!N->isLeaf()) {
StringRef OperatorName = N->getOperator()->getName();
if (OperatorName == "imm" || OperatorName == "fpimm") {
AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
}
ResultOps.push_back(SlotNo);
}
void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps) {
assert(N->isLeaf() && "Must be a leaf");
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
// If this is an explicit register reference, handle it.
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
if (DI->getDef()->isSubClassOf("Register")) {
AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
if (DI->getDef()->getName() == "zero_reg") {
AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
// Handle a reference to a register class. This is used
// in COPY_TO_SUBREG instructions.
if (DI->getDef()->isSubClassOf("RegisterClass")) {
std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
}
errs() << "unhandled leaf node: \n";
N->dump();
}
/// GetInstPatternNode - Get the pattern for an instruction.
///
const TreePatternNode *MatcherGen::
GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
const TreePattern *InstPat = Inst.getPattern();
// FIXME2?: Assume actual pattern comes before "implicit".
TreePatternNode *InstPatNode;
if (InstPat)
InstPatNode = InstPat->getTree(0);
else if (/*isRoot*/ N == Pattern.getDstPattern())
InstPatNode = Pattern.getSrcPattern();
else
return 0;
if (InstPatNode && !InstPatNode->isLeaf() &&
InstPatNode->getOperator()->getName() == "set")
InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
return InstPatNode;
}
void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &OutputOps) {
Record *Op = N->getOperator();
const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op);
const DAGInstruction &Inst = CGP.getInstruction(Op);
// If we can, get the pattern for the instruction we're generating. We derive
// a variety of information from this pattern, such as whether it has a chain.
//
// FIXME2: This is extremely dubious for several reasons, not the least of
// which it gives special status to instructions with patterns that Pat<>
// nodes can't duplicate.
const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
// NodeHasChain - Whether the instruction node we're creating takes chains.
bool NodeHasChain = InstPatNode &&
InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
bool isRoot = N == Pattern.getDstPattern();
// TreeHasOutFlag - True if this tree has a flag.
bool TreeHasInFlag = false, TreeHasOutFlag = false;
if (isRoot) {
const TreePatternNode *SrcPat = Pattern.getSrcPattern();
TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
SrcPat->TreeHasProperty(SDNPInFlag, CGP);
// FIXME2: this is checking the entire pattern, not just the node in
// question, doing this just for the root seems like a total hack.
TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
}
// NumResults - This is the number of results produced by the instruction in
// the "outs" list.
unsigned NumResults = Inst.getNumResults();
// Loop over all of the operands of the instruction pattern, emitting code
// to fill them all in. The node 'N' usually has number children equal to
// the number of input operands of the instruction. However, in cases
// where there are predicate operands for an instruction, we need to fill
// in the 'execute always' values. Match up the node operands to the
// instruction operands to do this.
SmallVector<unsigned, 8> InstOps;
for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size();
InstOpNo != e; ++InstOpNo) {
// Determine what to emit for this operand.
Record *OperandNode = II.OperandList[InstOpNo].Rec;
if ((OperandNode->isSubClassOf("PredicateOperand") ||
OperandNode->isSubClassOf("OptionalDefOperand")) &&
!CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
// This is a predicate or optional def operand; emit the
// 'default ops' operands.
const DAGDefaultOperand &DefaultOp =
CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
continue;
}
// Otherwise this is a normal operand or a predicate operand without
// 'execute always'; emit it.
EmitResultOperand(N->getChild(ChildNo), InstOps);
++ChildNo;
}
// If this node has an input flag or explicitly specified input physregs, we
// need to add chained and flagged copyfromreg nodes and materialize the flag
// input.
if (isRoot && !PhysRegInputs.empty()) {
// Emit all of the CopyToReg nodes for the input physical registers. These
// occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
PhysRegInputs[i].first));
// Even if the node has no other flag inputs, the resultant node must be
// flagged to the CopyFromReg nodes we just generated.
TreeHasInFlag = true;
}
// Result order: node results, chain, flags
// Determine the result types.
SmallVector<MVT::SimpleValueType, 4> ResultVTs;
if (N->getNumTypes()) {
// FIXME2: If the node has multiple results, we should add them. For now,
// preserve existing behavior?!
assert(N->getNumTypes() == 1);
ResultVTs.push_back(N->getType(0));
}
// If this is the root instruction of a pattern that has physical registers in
// its result pattern, add output VTs for them. For example, X86 has:
// (set AL, (mul ...))
// This also handles implicit results like:
// (implicit EFLAGS)
if (isRoot && Pattern.getDstRegs().size() != 0) {
// If the root came from an implicit def in the instruction handling stuff,
// don't re-add it.
Record *HandledReg = 0;
if (NumResults == 0 && N->getNumTypes() != 0 &&
!II.ImplicitDefs.empty())
HandledReg = II.ImplicitDefs[0];
for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
Record *Reg = Pattern.getDstRegs()[i];
if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
ResultVTs.push_back(getRegisterValueType(Reg, CGT));
}
}
// If this is the root of the pattern and the pattern we're matching includes
// a node that is variadic, mark the generated node as variadic so that it
// gets the excess operands from the input DAG.
int NumFixedArityOperands = -1;
if (isRoot &&
(Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
// If this is the root node and any of the nodes matched nodes in the input
// pattern have MemRefs in them, have the interpreter collect them and plop
// them onto this node.
//
// FIXME3: This is actively incorrect for result patterns where the root of
// the pattern is not the memory reference and is also incorrect when the
// result pattern has multiple memory-referencing instructions. For example,
// in the X86 backend, this pattern causes the memrefs to get attached to the
// CVTSS2SDrr instead of the MOVSSrm:
//
// def : Pat<(extloadf32 addr:$src),
// (CVTSS2SDrr (MOVSSrm addr:$src))>;
//
bool NodeHasMemRefs =
isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
ResultVTs.data(), ResultVTs.size(),
InstOps.data(), InstOps.size(),
NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
NodeHasMemRefs, NumFixedArityOperands,
NextRecordedOperandNo));
// The non-chain and non-flag results of the newly emitted node get recorded.
for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
OutputOps.push_back(NextRecordedOperandNo++);
}
}
void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps) {
assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
// Emit the operand.
SmallVector<unsigned, 8> InputOps;
// FIXME2: Could easily generalize this to support multiple inputs and outputs
// to the SDNodeXForm. For now we just support one input and one output like
// the old instruction selector.
assert(N->getNumChildren() == 1);
EmitResultOperand(N->getChild(0), InputOps);
// The input currently must have produced exactly one result.
assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
ResultOps.push_back(NextRecordedOperandNo++);
}
void MatcherGen::EmitResultOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps) {
// This is something selected from the pattern we matched.
if (!N->getName().empty())
return EmitResultOfNamedOperand(N, ResultOps);
if (N->isLeaf())
return EmitResultLeafAsOperand(N, ResultOps);
Record *OpRec = N->getOperator();
if (OpRec->isSubClassOf("Instruction"))
return EmitResultInstructionAsOperand(N, ResultOps);
if (OpRec->isSubClassOf("SDNodeXForm"))
return EmitResultSDNodeXFormAsOperand(N, ResultOps);
errs() << "Unknown result node to emit code for: " << *N << '\n';
throw std::string("Unknown node in result pattern!");
}
void MatcherGen::EmitResultCode() {
// Patterns that match nodes with (potentially multiple) chain inputs have to
// merge them together into a token factor. This informs the generated code
// what all the chained nodes are.
if (!MatchedChainNodes.empty())
AddMatcher(new EmitMergeInputChainsMatcher
(MatchedChainNodes.data(), MatchedChainNodes.size()));
// Codegen the root of the result pattern, capturing the resulting values.
SmallVector<unsigned, 8> Ops;
EmitResultOperand(Pattern.getDstPattern(), Ops);
// At this point, we have however many values the result pattern produces.
// However, the input pattern might not need all of these. If there are
// excess values at the end (such as condition codes etc) just lop them off.
// This doesn't need to worry about flags or chains, just explicit results.
//
// FIXME2: This doesn't work because there is currently no way to get an
// accurate count of the # results the source pattern sets. This is because
// of the "parallel" construct in X86 land, which looks like this:
//
//def : Pat<(parallel (X86and_flag GR8:$src1, GR8:$src2),
// (implicit EFLAGS)),
// (AND8rr GR8:$src1, GR8:$src2)>;
//
// This idiom means to match the two-result node X86and_flag (which is
// declared as returning a single result, because we can't match multi-result
// nodes yet). In this case, we would have to know that the input has two
// results. However, mul8r is modelled exactly the same way, but without
// implicit defs included. The fix is to support multiple results directly
// and eliminate 'parallel'.
//
// FIXME2: When this is fixed, we should revert the terrible hack in the
// OPC_EmitNode code in the interpreter.
#if 0
const TreePatternNode *Src = Pattern.getSrcPattern();
unsigned NumSrcResults = Src->getTypeNum(0) != MVT::isVoid ? 1 : 0;
NumSrcResults += Pattern.getDstRegs().size();
assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
Ops.resize(NumSrcResults);
#endif
// If the matched pattern covers nodes which define a flag result, emit a node
// that tells the matcher about them so that it can update their results.
if (!MatchedFlagResultNodes.empty())
AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
MatchedFlagResultNodes.size()));
AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
}
/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
/// the specified variant. If the variant number is invalid, this returns null.
Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
unsigned Variant,
const CodeGenDAGPatterns &CGP) {
MatcherGen Gen(Pattern, CGP);
// Generate the code for the matcher.
if (Gen.EmitMatcherCode(Variant))
return 0;
// FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
// FIXME2: Split result code out to another table, and make the matcher end
// with an "Emit <index>" command. This allows result generation stuff to be
// shared and factored?
// If the match succeeds, then we generate Pattern.
Gen.EmitResultCode();
// Unconditional match.
return Gen.GetMatcher();
}