llvm-6502/lib/Target/X86/X86InstrInfo.h
Jakob Stoklund Olesen 92fb79b7a6 Expand the x86 V_SET0* pseudos right after register allocation.
This also makes it possible to reduce the number of pseudo instructions
and get rid of the encoding information.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140776 91177308-0d34-0410-b5e6-96231b3b80d8
2011-09-29 05:10:54 +00:00

376 lines
17 KiB
C++

//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef X86INSTRUCTIONINFO_H
#define X86INSTRUCTIONINFO_H
#include "llvm/Target/TargetInstrInfo.h"
#include "X86.h"
#include "X86RegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#define GET_INSTRINFO_HEADER
#include "X86GenInstrInfo.inc"
namespace llvm {
class X86RegisterInfo;
class X86TargetMachine;
namespace X86 {
// X86 specific condition code. These correspond to X86_*_COND in
// X86InstrInfo.td. They must be kept in synch.
enum CondCode {
COND_A = 0,
COND_AE = 1,
COND_B = 2,
COND_BE = 3,
COND_E = 4,
COND_G = 5,
COND_GE = 6,
COND_L = 7,
COND_LE = 8,
COND_NE = 9,
COND_NO = 10,
COND_NP = 11,
COND_NS = 12,
COND_O = 13,
COND_P = 14,
COND_S = 15,
// Artificial condition codes. These are used by AnalyzeBranch
// to indicate a block terminated with two conditional branches to
// the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
// which can't be represented on x86 with a single condition. These
// are never used in MachineInstrs.
COND_NE_OR_P,
COND_NP_OR_E,
COND_INVALID
};
// Turn condition code into conditional branch opcode.
unsigned GetCondBranchFromCond(CondCode CC);
/// GetOppositeBranchCondition - Return the inverse of the specified cond,
/// e.g. turning COND_E to COND_NE.
CondCode GetOppositeBranchCondition(X86::CondCode CC);
} // end namespace X86;
/// isGlobalStubReference - Return true if the specified TargetFlag operand is
/// a reference to a stub for a global, not the global itself.
inline static bool isGlobalStubReference(unsigned char TargetFlag) {
switch (TargetFlag) {
case X86II::MO_DLLIMPORT: // dllimport stub.
case X86II::MO_GOTPCREL: // rip-relative GOT reference.
case X86II::MO_GOT: // normal GOT reference.
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
return true;
default:
return false;
}
}
/// isGlobalRelativeToPICBase - Return true if the specified global value
/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
switch (TargetFlag) {
case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
case X86II::MO_GOT: // isPICStyleGOT: other global.
case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
case X86II::MO_TLVP: // ??? Pretty sure..
return true;
default:
return false;
}
}
inline static bool isScale(const MachineOperand &MO) {
return MO.isImm() &&
(MO.getImm() == 1 || MO.getImm() == 2 ||
MO.getImm() == 4 || MO.getImm() == 8);
}
inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
if (MI->getOperand(Op).isFI()) return true;
return Op+4 <= MI->getNumOperands() &&
MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
MI->getOperand(Op+2).isReg() &&
(MI->getOperand(Op+3).isImm() ||
MI->getOperand(Op+3).isGlobal() ||
MI->getOperand(Op+3).isCPI() ||
MI->getOperand(Op+3).isJTI());
}
inline static bool isMem(const MachineInstr *MI, unsigned Op) {
if (MI->getOperand(Op).isFI()) return true;
return Op+5 <= MI->getNumOperands() &&
MI->getOperand(Op+4).isReg() &&
isLeaMem(MI, Op);
}
class X86InstrInfo : public X86GenInstrInfo {
X86TargetMachine &TM;
const X86RegisterInfo RI;
/// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
/// RegOp2MemOpTable2 - Load / store folding opcode maps.
///
typedef DenseMap<unsigned,
std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
RegOp2MemOpTableType RegOp2MemOpTable2Addr;
RegOp2MemOpTableType RegOp2MemOpTable0;
RegOp2MemOpTableType RegOp2MemOpTable1;
RegOp2MemOpTableType RegOp2MemOpTable2;
/// MemOp2RegOpTable - Load / store unfolding opcode map.
///
typedef DenseMap<unsigned,
std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
MemOp2RegOpTableType MemOp2RegOpTable;
void AddTableEntry(RegOp2MemOpTableType &R2MTable,
MemOp2RegOpTableType &M2RTable,
unsigned RegOp, unsigned MemOp, unsigned Flags);
public:
explicit X86InstrInfo(X86TargetMachine &tm);
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
/// always be able to get register info as well (through this method).
///
virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
/// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
/// extension instruction. That is, it's like a copy where it's legal for the
/// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
/// true, then it's expected the pre-extension value is available as a subreg
/// of the result register. This also returns the sub-register index in
/// SubIdx.
virtual bool isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const;
unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
/// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
/// stack locations as well. This uses a heuristic so it isn't
/// reliable for correctness.
unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const;
unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
/// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
/// stack locations as well. This uses a heuristic so it isn't
/// reliable for correctness.
unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const;
bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const;
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig,
const TargetRegisterInfo &TRI) const;
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const;
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
// Branch analysis.
virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const;
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const;
virtual void copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const;
virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
virtual
MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
int FrameIx, uint64_t Offset,
const MDNode *MDPtr,
DebugLoc DL) const;
/// foldMemoryOperand - If this target supports it, fold a load or store of
/// the specified stack slot into the specified machine instruction for the
/// specified operand(s). If this is possible, the target should perform the
/// folding and return true, otherwise it should return false. If it folds
/// the instruction, it is likely that the MachineInstruction the iterator
/// references has been changed.
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const;
/// foldMemoryOperand - Same as the previous version except it allows folding
/// of any load and store from / to any address, not just from a specific
/// stack slot.
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr* LoadMI) const;
/// canFoldMemoryOperand - Returns true if the specified load / store is
/// folding is possible.
virtual bool canFoldMemoryOperand(const MachineInstr*,
const SmallVectorImpl<unsigned> &) const;
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
/// a store or a load and a store into two or more instruction. If this is
/// possible, returns true as well as the new instructions by reference.
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const;
/// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
/// instruction after load / store are unfolded from an instruction of the
/// specified opcode. It returns zero if the specified unfolding is not
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
/// index of the operand which will hold the register holding the loaded
/// value.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex = 0) const;
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
/// to determine if two loads are loading from the same base address. It
/// should only return true if the base pointers are the same and the
/// only differences between the two addresses are the offset. It also returns
/// the offsets by reference.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const;
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
/// be scheduled togther. On some targets if two loads are loading from
/// addresses in the same cache line, it's better if they are scheduled
/// together. This function takes two integers that represent the load offsets
/// from the common base address. It returns true if it decides it's desirable
/// to schedule the two loads together. "NumLoads" is the number of loads that
/// have already been scheduled after Load1.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const;
virtual void getNoopForMachoTarget(MCInst &NopInst) const;
virtual
bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
/// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
/// instruction that defines the specified register class.
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
static bool isX86_64ExtendedReg(const MachineOperand &MO) {
if (!MO.isReg()) return false;
return X86II::isX86_64ExtendedReg(MO.getReg());
}
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
unsigned getGlobalBaseReg(MachineFunction *MF) const;
std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr *MI) const;
void setExecutionDomain(MachineInstr *MI, unsigned Domain) const;
MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
unsigned OpNum,
const SmallVectorImpl<MachineOperand> &MOs,
unsigned Size, unsigned Alignment) const;
bool isHighLatencyDef(int opc) const;
bool hasHighOperandLatency(const InstrItineraryData *ItinData,
const MachineRegisterInfo *MRI,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const;
private:
MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const;
/// isFrameOperand - Return true and the FrameIndex if the specified
/// operand and follow operands form a reference to the stack frame.
bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
int &FrameIndex) const;
};
} // End llvm namespace
#endif