mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
f5aeb1a8e4
with ConstantInt. This led to fixing a bug in TargetLowering.cpp using getValue instead of getAPIntValue. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56159 91177308-0d34-0410-b5e6-96231b3b80d8
651 lines
20 KiB
TableGen
651 lines
20 KiB
TableGen
//===- SPUOperands.td - Cell SPU Instruction Operands ------*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Cell SPU Instruction Operands:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def LO16 : SDNodeXForm<imm, [{
|
|
unsigned val = N->getZExtValue();
|
|
// Transformation function: get the low 16 bits.
|
|
return getI32Imm(val & 0xffff);
|
|
}]>;
|
|
|
|
def LO16_vec : SDNodeXForm<scalar_to_vector, [{
|
|
SDValue OpVal(0, 0);
|
|
|
|
// Transformation function: get the low 16 bit immediate from a build_vector
|
|
// node.
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR
|
|
&& "LO16_vec got something other than a BUILD_VECTOR");
|
|
|
|
// Get first constant operand...
|
|
for (unsigned i = 0, e = N->getNumOperands();
|
|
OpVal.getNode() == 0 && i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
if (OpVal.getNode() == 0)
|
|
OpVal = N->getOperand(i);
|
|
}
|
|
|
|
assert(OpVal.getNode() != 0 && "LO16_vec did not locate a <defined> node");
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(OpVal);
|
|
return getI32Imm((unsigned)CN->getZExtValue() & 0xffff);
|
|
}]>;
|
|
|
|
// Transform an immediate, returning the high 16 bits shifted down:
|
|
def HI16 : SDNodeXForm<imm, [{
|
|
return getI32Imm((unsigned)N->getZExtValue() >> 16);
|
|
}]>;
|
|
|
|
// Transformation function: shift the high 16 bit immediate from a build_vector
|
|
// node into the low 16 bits, and return a 16-bit constant.
|
|
def HI16_vec : SDNodeXForm<scalar_to_vector, [{
|
|
SDValue OpVal(0, 0);
|
|
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR
|
|
&& "HI16_vec got something other than a BUILD_VECTOR");
|
|
|
|
// Get first constant operand...
|
|
for (unsigned i = 0, e = N->getNumOperands();
|
|
OpVal.getNode() == 0 && i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
if (OpVal.getNode() == 0)
|
|
OpVal = N->getOperand(i);
|
|
}
|
|
|
|
assert(OpVal.getNode() != 0 && "HI16_vec did not locate a <defined> node");
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(OpVal);
|
|
return getI32Imm((unsigned)CN->getZExtValue() >> 16);
|
|
}]>;
|
|
|
|
// simm7 predicate - True if the immediate fits in an 7-bit signed
|
|
// field.
|
|
def simm7: PatLeaf<(imm), [{
|
|
int sextVal = int(N->getSignExtended());
|
|
return (sextVal >= -64 && sextVal <= 63);
|
|
}]>;
|
|
|
|
// uimm7 predicate - True if the immediate fits in an 7-bit unsigned
|
|
// field.
|
|
def uimm7: PatLeaf<(imm), [{
|
|
return (N->getZExtValue() <= 0x7f);
|
|
}]>;
|
|
|
|
// immSExt8 predicate - True if the immediate fits in an 8-bit sign extended
|
|
// field.
|
|
def immSExt8 : PatLeaf<(imm), [{
|
|
int Value = int(N->getSignExtended());
|
|
return (Value >= -(1 << 8) && Value <= (1 << 8) - 1);
|
|
}]>;
|
|
|
|
// immU8: immediate, unsigned 8-bit quantity
|
|
def immU8 : PatLeaf<(imm), [{
|
|
return (N->getZExtValue() <= 0xff);
|
|
}]>;
|
|
|
|
// i64ImmSExt10 predicate - True if the i64 immediate fits in a 10-bit sign
|
|
// extended field. Used by RI10Form instructions like 'ldq'.
|
|
def i64ImmSExt10 : PatLeaf<(imm), [{
|
|
return isI64IntS10Immediate(N);
|
|
}]>;
|
|
|
|
// i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign
|
|
// extended field. Used by RI10Form instructions like 'ldq'.
|
|
def i32ImmSExt10 : PatLeaf<(imm), [{
|
|
return isI32IntS10Immediate(N);
|
|
}]>;
|
|
|
|
// i32ImmUns10 predicate - True if the i32 immediate fits in a 10-bit unsigned
|
|
// field. Used by RI10Form instructions like 'ldq'.
|
|
def i32ImmUns10 : PatLeaf<(imm), [{
|
|
return isI32IntU10Immediate(N);
|
|
}]>;
|
|
|
|
// i16ImmSExt10 predicate - True if the i16 immediate fits in a 10-bit sign
|
|
// extended field. Used by RI10Form instructions like 'ldq'.
|
|
def i16ImmSExt10 : PatLeaf<(imm), [{
|
|
return isI16IntS10Immediate(N);
|
|
}]>;
|
|
|
|
// i16ImmUns10 predicate - True if the i16 immediate fits into a 10-bit unsigned
|
|
// value. Used by RI10Form instructions.
|
|
def i16ImmUns10 : PatLeaf<(imm), [{
|
|
return isI16IntU10Immediate(N);
|
|
}]>;
|
|
|
|
def immSExt16 : PatLeaf<(imm), [{
|
|
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
|
|
// field.
|
|
short Ignored;
|
|
return isIntS16Immediate(N, Ignored);
|
|
}]>;
|
|
|
|
def immZExt16 : PatLeaf<(imm), [{
|
|
// immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
|
|
// field.
|
|
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
|
|
}], LO16>;
|
|
|
|
def immU16 : PatLeaf<(imm), [{
|
|
// immU16 predicate- True if the immediate fits into a 16-bit unsigned field.
|
|
return (uint64_t)N->getZExtValue() == (N->getZExtValue() & 0xffff);
|
|
}]>;
|
|
|
|
def imm18 : PatLeaf<(imm), [{
|
|
// imm18 predicate: True if the immediate fits into an 18-bit unsigned field.
|
|
int Value = (int) N->getZExtValue();
|
|
return ((Value & ((1 << 19) - 1)) == Value);
|
|
}]>;
|
|
|
|
def lo16 : PatLeaf<(imm), [{
|
|
// lo16 predicate - returns true if the immediate has all zeros in the
|
|
// low order bits and is a 32-bit constant:
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
uint32_t val = N->getZExtValue();
|
|
return ((val & 0x0000ffff) == val);
|
|
}
|
|
|
|
return false;
|
|
}], LO16>;
|
|
|
|
def hi16 : PatLeaf<(imm), [{
|
|
// hi16 predicate - returns true if the immediate has all zeros in the
|
|
// low order bits and is a 32-bit constant:
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
uint32_t val = uint32_t(N->getZExtValue());
|
|
return ((val & 0xffff0000) == val);
|
|
} else if (N->getValueType(0) == MVT::i64) {
|
|
uint64_t val = N->getZExtValue();
|
|
return ((val & 0xffff0000ULL) == val);
|
|
}
|
|
|
|
return false;
|
|
}], HI16>;
|
|
|
|
def bitshift : PatLeaf<(imm), [{
|
|
// bitshift predicate - returns true if 0 < imm <= 7 for SHLQBII
|
|
// (shift left quadword by bits immediate)
|
|
int64_t Val = N->getZExtValue();
|
|
return (Val > 0 && Val <= 7);
|
|
}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating point operands:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Transform a float, returning the high 16 bits shifted down, as if
|
|
// the float was really an unsigned integer:
|
|
def HI16_f32 : SDNodeXForm<fpimm, [{
|
|
float fval = N->getValueAPF().convertToFloat();
|
|
return getI32Imm(FloatToBits(fval) >> 16);
|
|
}]>;
|
|
|
|
// Transformation function on floats: get the low 16 bits as if the float was
|
|
// an unsigned integer.
|
|
def LO16_f32 : SDNodeXForm<fpimm, [{
|
|
float fval = N->getValueAPF().convertToFloat();
|
|
return getI32Imm(FloatToBits(fval) & 0xffff);
|
|
}]>;
|
|
|
|
def FPimm_sext16 : SDNodeXForm<fpimm, [{
|
|
float fval = N->getValueAPF().convertToFloat();
|
|
return getI32Imm((int) ((FloatToBits(fval) << 16) >> 16));
|
|
}]>;
|
|
|
|
def FPimm_u18 : SDNodeXForm<fpimm, [{
|
|
float fval = N->getValueAPF().convertToFloat();
|
|
return getI32Imm(FloatToBits(fval) & ((1 << 19) - 1));
|
|
}]>;
|
|
|
|
def fpimmSExt16 : PatLeaf<(fpimm), [{
|
|
short Ignored;
|
|
return isFPS16Immediate(N, Ignored);
|
|
}], FPimm_sext16>;
|
|
|
|
// Does the SFP constant only have upp 16 bits set?
|
|
def hi16_f32 : PatLeaf<(fpimm), [{
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
uint32_t val = FloatToBits(N->getValueAPF().convertToFloat());
|
|
return ((val & 0xffff0000) == val);
|
|
}
|
|
|
|
return false;
|
|
}], HI16_f32>;
|
|
|
|
// Does the SFP constant fit into 18 bits?
|
|
def fpimm18 : PatLeaf<(fpimm), [{
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
uint32_t Value = FloatToBits(N->getValueAPF().convertToFloat());
|
|
return ((Value & ((1 << 19) - 1)) == Value);
|
|
}
|
|
|
|
return false;
|
|
}], FPimm_u18>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit operands (TODO):
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// build_vector operands:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended
|
|
// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
|
|
// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
|
|
def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
|
|
}]>;
|
|
|
|
// v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function. N.B.: This relies the
|
|
// incoming constant being a 16-bit quantity, where the upper and lower bytes
|
|
// are EXACTLY the same (e.g., 0x2a2a)
|
|
def v16i8SExt8Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0;
|
|
}], v16i8SExt8Imm_xform>;
|
|
|
|
// v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit
|
|
// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
|
|
// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
|
|
def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
|
|
}]>;
|
|
|
|
// v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant
|
|
// load, works in conjunction with its transform function. N.B.: This relies the
|
|
// incoming constant being a 16-bit quantity, where the upper and lower bytes
|
|
// are EXACTLY the same (e.g., 0x2a2a)
|
|
def v16i8U8Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).getNode() != 0;
|
|
}], v16i8U8Imm_xform>;
|
|
|
|
// v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended
|
|
// immediate constant load for v8i16 vectors.
|
|
def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16);
|
|
}]>;
|
|
|
|
// v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v8i16SExt8Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).getNode() != 0;
|
|
}], v8i16SExt8Imm_xform>;
|
|
|
|
// v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended
|
|
// immediate constant load for v8i16 vectors.
|
|
def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
|
|
}]>;
|
|
|
|
// v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v8i16SExt10Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0;
|
|
}], v8i16SExt10Imm_xform>;
|
|
|
|
// v8i16Uns10Imm_xform function: convert build_vector to 16-bit unsigned
|
|
// immediate constant load for v8i16 vectors.
|
|
def v8i16Uns10Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
|
|
}]>;
|
|
|
|
// v8i16Uns10Imm: Predicate test for 16-bit unsigned immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v8i16Uns10Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).getNode() != 0;
|
|
}], v8i16Uns10Imm_xform>;
|
|
|
|
// v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended
|
|
// immediate constant load for v8i16 vectors.
|
|
def v8i16Uns16Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16);
|
|
}]>;
|
|
|
|
// v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v8i16SExt16Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).getNode() != 0;
|
|
}], v8i16Uns16Imm_xform>;
|
|
|
|
// v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended
|
|
// immediate constant load for v4i32 vectors.
|
|
def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
|
|
}]>;
|
|
|
|
// v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v4i32SExt10Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0;
|
|
}], v4i32SExt10Imm_xform>;
|
|
|
|
// v4i32Uns10Imm_xform function: convert build_vector to 10-bit unsigned
|
|
// immediate constant load for v4i32 vectors.
|
|
def v4i32Uns10Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
|
|
}]>;
|
|
|
|
// v4i32Uns10Imm: Predicate test for 10-bit unsigned immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v4i32Uns10Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).getNode() != 0;
|
|
}], v4i32Uns10Imm_xform>;
|
|
|
|
// v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended
|
|
// immediate constant load for v4i32 vectors.
|
|
def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32);
|
|
}]>;
|
|
|
|
// v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v4i32SExt16Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).getNode() != 0;
|
|
}], v4i32SExt16Imm_xform>;
|
|
|
|
// v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned
|
|
// immediate constant load for v4i32 vectors.
|
|
def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32);
|
|
}]>;
|
|
|
|
// v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
|
|
// works in conjunction with its transform function.
|
|
def v4i32Uns18Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).getNode() != 0;
|
|
}], v4i32Uns18Imm_xform>;
|
|
|
|
// ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant
|
|
// load.
|
|
def ILHUvec_get_imm: SDNodeXForm<build_vector, [{
|
|
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32);
|
|
}]>;
|
|
|
|
/// immILHUvec: Predicate test for a ILHU constant vector.
|
|
def immILHUvec: PatLeaf<(build_vector), [{
|
|
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).getNode() != 0;
|
|
}], ILHUvec_get_imm>;
|
|
|
|
// Catch-all for any other i32 vector constants
|
|
def v4i32_get_imm: SDNodeXForm<build_vector, [{
|
|
return SPU::get_v4i32_imm(N, *CurDAG);
|
|
}]>;
|
|
|
|
def v4i32Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_v4i32_imm(N, *CurDAG).getNode() != 0;
|
|
}], v4i32_get_imm>;
|
|
|
|
// v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended
|
|
// immediate constant load for v2i64 vectors.
|
|
def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64);
|
|
}]>;
|
|
|
|
// v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v2i64SExt10Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).getNode() != 0;
|
|
}], v2i64SExt10Imm_xform>;
|
|
|
|
// v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended
|
|
// immediate constant load for v2i64 vectors.
|
|
def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64);
|
|
}]>;
|
|
|
|
// v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant
|
|
// load, works in conjunction with its transform function.
|
|
def v2i64SExt16Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).getNode() != 0;
|
|
}], v2i64SExt16Imm_xform>;
|
|
|
|
// v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned
|
|
// immediate constant load for v2i64 vectors.
|
|
def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{
|
|
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64);
|
|
}]>;
|
|
|
|
// v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
|
|
// works in conjunction with its transform function.
|
|
def v2i64Uns18Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).getNode() != 0;
|
|
}], v2i64Uns18Imm_xform>;
|
|
|
|
/// immILHUvec: Predicate test for a ILHU constant vector.
|
|
def immILHUvec_i64: PatLeaf<(build_vector), [{
|
|
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).getNode() != 0;
|
|
}], ILHUvec_get_imm>;
|
|
|
|
// Catch-all for any other i32 vector constants
|
|
def v2i64_get_imm: SDNodeXForm<build_vector, [{
|
|
return SPU::get_v2i64_imm(N, *CurDAG);
|
|
}]>;
|
|
|
|
def v2i64Imm: PatLeaf<(build_vector), [{
|
|
return SPU::get_v2i64_imm(N, *CurDAG).getNode() != 0;
|
|
}], v2i64_get_imm>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operand Definitions.
|
|
|
|
def s7imm: Operand<i8> {
|
|
let PrintMethod = "printS7ImmOperand";
|
|
}
|
|
|
|
def s7imm_i8: Operand<i8> {
|
|
let PrintMethod = "printS7ImmOperand";
|
|
}
|
|
|
|
def u7imm: Operand<i16> {
|
|
let PrintMethod = "printU7ImmOperand";
|
|
}
|
|
|
|
def u7imm_i8: Operand<i8> {
|
|
let PrintMethod = "printU7ImmOperand";
|
|
}
|
|
|
|
def u7imm_i32: Operand<i32> {
|
|
let PrintMethod = "printU7ImmOperand";
|
|
}
|
|
|
|
// Halfword, signed 10-bit constant
|
|
def s10imm : Operand<i16> {
|
|
let PrintMethod = "printS10ImmOperand";
|
|
}
|
|
|
|
def s10imm_i8: Operand<i8> {
|
|
let PrintMethod = "printS10ImmOperand";
|
|
}
|
|
|
|
def s10imm_i32: Operand<i32> {
|
|
let PrintMethod = "printS10ImmOperand";
|
|
}
|
|
|
|
def s10imm_i64: Operand<i64> {
|
|
let PrintMethod = "printS10ImmOperand";
|
|
}
|
|
|
|
// Unsigned 10-bit integers:
|
|
def u10imm: Operand<i16> {
|
|
let PrintMethod = "printU10ImmOperand";
|
|
}
|
|
|
|
def u10imm_i8: Operand<i8> {
|
|
let PrintMethod = "printU10ImmOperand";
|
|
}
|
|
|
|
def u10imm_i32: Operand<i32> {
|
|
let PrintMethod = "printU10ImmOperand";
|
|
}
|
|
|
|
def s16imm : Operand<i16> {
|
|
let PrintMethod = "printS16ImmOperand";
|
|
}
|
|
|
|
def s16imm_i8: Operand<i8> {
|
|
let PrintMethod = "printS16ImmOperand";
|
|
}
|
|
|
|
def s16imm_i32: Operand<i32> {
|
|
let PrintMethod = "printS16ImmOperand";
|
|
}
|
|
|
|
def s16imm_i64: Operand<i64> {
|
|
let PrintMethod = "printS16ImmOperand";
|
|
}
|
|
|
|
def s16imm_f32: Operand<f32> {
|
|
let PrintMethod = "printS16ImmOperand";
|
|
}
|
|
|
|
def s16imm_f64: Operand<f64> {
|
|
let PrintMethod = "printS16ImmOperand";
|
|
}
|
|
|
|
def u16imm_i64 : Operand<i64> {
|
|
let PrintMethod = "printU16ImmOperand";
|
|
}
|
|
|
|
def u16imm_i32 : Operand<i32> {
|
|
let PrintMethod = "printU16ImmOperand";
|
|
}
|
|
|
|
def u16imm : Operand<i16> {
|
|
let PrintMethod = "printU16ImmOperand";
|
|
}
|
|
|
|
def f16imm : Operand<f32> {
|
|
let PrintMethod = "printU16ImmOperand";
|
|
}
|
|
|
|
def s18imm : Operand<i32> {
|
|
let PrintMethod = "printS18ImmOperand";
|
|
}
|
|
|
|
def u18imm : Operand<i32> {
|
|
let PrintMethod = "printU18ImmOperand";
|
|
}
|
|
|
|
def u18imm_i64 : Operand<i64> {
|
|
let PrintMethod = "printU18ImmOperand";
|
|
}
|
|
|
|
def f18imm : Operand<f32> {
|
|
let PrintMethod = "printU18ImmOperand";
|
|
}
|
|
|
|
def f18imm_f64 : Operand<f64> {
|
|
let PrintMethod = "printU18ImmOperand";
|
|
}
|
|
|
|
// Negated 7-bit halfword rotate immediate operands
|
|
def rothNeg7imm : Operand<i32> {
|
|
let PrintMethod = "printROTHNeg7Imm";
|
|
}
|
|
|
|
def rothNeg7imm_i16 : Operand<i16> {
|
|
let PrintMethod = "printROTHNeg7Imm";
|
|
}
|
|
|
|
// Negated 7-bit word rotate immediate operands
|
|
def rotNeg7imm : Operand<i32> {
|
|
let PrintMethod = "printROTNeg7Imm";
|
|
}
|
|
|
|
def rotNeg7imm_i16 : Operand<i16> {
|
|
let PrintMethod = "printROTNeg7Imm";
|
|
}
|
|
|
|
def rotNeg7imm_i8 : Operand<i8> {
|
|
let PrintMethod = "printROTNeg7Imm";
|
|
}
|
|
|
|
def target : Operand<OtherVT> {
|
|
let PrintMethod = "printBranchOperand";
|
|
}
|
|
|
|
// Absolute address call target
|
|
def calltarget : Operand<iPTR> {
|
|
let PrintMethod = "printCallOperand";
|
|
let MIOperandInfo = (ops u18imm:$calldest);
|
|
}
|
|
|
|
// Relative call target
|
|
def relcalltarget : Operand<iPTR> {
|
|
let PrintMethod = "printPCRelativeOperand";
|
|
let MIOperandInfo = (ops s16imm:$calldest);
|
|
}
|
|
|
|
// Branch targets:
|
|
def brtarget : Operand<OtherVT> {
|
|
let PrintMethod = "printPCRelativeOperand";
|
|
}
|
|
|
|
// Indirect call target
|
|
def indcalltarget : Operand<iPTR> {
|
|
let PrintMethod = "printCallOperand";
|
|
let MIOperandInfo = (ops ptr_rc:$calldest);
|
|
}
|
|
|
|
def symbolHi: Operand<i32> {
|
|
let PrintMethod = "printSymbolHi";
|
|
}
|
|
|
|
def symbolLo: Operand<i32> {
|
|
let PrintMethod = "printSymbolLo";
|
|
}
|
|
|
|
def symbolLSA: Operand<i32> {
|
|
let PrintMethod = "printSymbolLSA";
|
|
}
|
|
|
|
// memory s7imm(reg) operaand
|
|
def memri7 : Operand<iPTR> {
|
|
let PrintMethod = "printMemRegImmS7";
|
|
let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg);
|
|
}
|
|
|
|
// memory s10imm(reg) operand
|
|
def memri10 : Operand<iPTR> {
|
|
let PrintMethod = "printMemRegImmS10";
|
|
let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg);
|
|
}
|
|
|
|
// 256K local store address
|
|
// N.B.: The tblgen code generator expects to have two operands, an offset
|
|
// and a pointer. Of these, only the immediate is actually used.
|
|
def addr256k : Operand<iPTR> {
|
|
let PrintMethod = "printAddr256K";
|
|
let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg);
|
|
}
|
|
|
|
// memory s18imm(reg) operand
|
|
def memri18 : Operand<iPTR> {
|
|
let PrintMethod = "printMemRegImmS18";
|
|
let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg);
|
|
}
|
|
|
|
// memory register + register operand
|
|
def memrr : Operand<iPTR> {
|
|
let PrintMethod = "printMemRegReg";
|
|
let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b);
|
|
}
|
|
|
|
// Define SPU-specific addressing modes: These come in three basic
|
|
// flavors:
|
|
//
|
|
// D-form : [r+I10] (10-bit signed offset + reg)
|
|
// X-form : [r+r] (reg+reg)
|
|
// A-form : abs (256K LSA offset)
|
|
// D-form(2): [r+I7] (7-bit signed offset + reg)
|
|
|
|
def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr", [], []>;
|
|
def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr", [], []>;
|
|
def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr", [], []>;
|
|
def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr", [], []>;
|