llvm-6502/lib/Target/IA64/IA64AsmPrinter.cpp
2008-09-24 22:14:23 +00:00

369 lines
12 KiB
C++

//===-- IA64AsmPrinter.cpp - Print out IA64 LLVM as assembly --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to assembly accepted by the GNU binutils 'gas'
// assembler. The Intel 'ias' and HP-UX 'as' assemblers *may* choke on this
// output, but if so that's a bug I'd like to hear about: please file a bug
// report in bugzilla. FYI, the not too bad 'ias' assembler is bundled with
// the Intel C/C++ compiler for Itanium Linux.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "IA64.h"
#include "IA64TargetMachine.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
struct IA64AsmPrinter : public AsmPrinter {
std::set<std::string> ExternalFunctionNames, ExternalObjectNames;
IA64AsmPrinter(raw_ostream &O, TargetMachine &TM, const TargetAsmInfo *T)
: AsmPrinter(O, TM, T) {
}
virtual const char *getPassName() const {
return "IA64 Assembly Printer";
}
/// printInstruction - This method is automatically generated by tablegen
/// from the instruction set description. This method returns true if the
/// machine instruction was sufficiently described to print it, otherwise it
/// returns false.
bool printInstruction(const MachineInstr *MI);
// This method is used by the tablegen'erated instruction printer.
void printOperand(const MachineInstr *MI, unsigned OpNo){
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.getType() == MachineOperand::MO_Register) {
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
"Not physref??");
//XXX Bug Workaround: See note in Printer::doInitialization about %.
O << TM.getRegisterInfo()->get(MO.getReg()).AsmName;
} else {
printOp(MO);
}
}
void printS8ImmOperand(const MachineInstr *MI, unsigned OpNo) {
int val=(unsigned int)MI->getOperand(OpNo).getImm();
if(val>=128) val=val-256; // if negative, flip sign
O << val;
}
void printS14ImmOperand(const MachineInstr *MI, unsigned OpNo) {
int val=(unsigned int)MI->getOperand(OpNo).getImm();
if(val>=8192) val=val-16384; // if negative, flip sign
O << val;
}
void printS22ImmOperand(const MachineInstr *MI, unsigned OpNo) {
int val=(unsigned int)MI->getOperand(OpNo).getImm();
if(val>=2097152) val=val-4194304; // if negative, flip sign
O << val;
}
void printU64ImmOperand(const MachineInstr *MI, unsigned OpNo) {
O << (uint64_t)MI->getOperand(OpNo).getImm();
}
void printS64ImmOperand(const MachineInstr *MI, unsigned OpNo) {
// XXX : nasty hack to avoid GPREL22 "relocation truncated to fit" linker
// errors - instead of add rX = @gprel(CPI<whatever>), r1;; we now
// emit movl rX = @gprel(CPI<whatever);;
// add rX = rX, r1;
// this gives us 64 bits instead of 22 (for the add long imm) to play
// with, which shuts up the linker. The problem is that the constant
// pool entries aren't immediates at this stage, so we check here.
// If it's an immediate, print it the old fashioned way. If it's
// not, we print it as a constant pool index.
if(MI->getOperand(OpNo).isImmediate()) {
O << (int64_t)MI->getOperand(OpNo).getImm();
} else { // this is a constant pool reference: FIXME: assert this
printOp(MI->getOperand(OpNo));
}
}
void printGlobalOperand(const MachineInstr *MI, unsigned OpNo) {
printOp(MI->getOperand(OpNo), false); // this is NOT a br.call instruction
}
void printCallOperand(const MachineInstr *MI, unsigned OpNo) {
printOp(MI->getOperand(OpNo), true); // this is a br.call instruction
}
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO, bool isBRCALLinsn= false);
void printModuleLevelGV(const GlobalVariable* GVar);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
} // end of anonymous namespace
// Include the auto-generated portion of the assembly writer.
#include "IA64GenAsmWriter.inc"
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool IA64AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
const Function *F = MF.getFunction();
SwitchToSection(TAI->SectionForGlobal(F));
// Print out labels for the function.
EmitAlignment(5);
O << "\t.global\t" << CurrentFnName << '\n';
printVisibility(CurrentFnName, F->getVisibility());
O << "\t.type\t" << CurrentFnName << ", @function\n";
O << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block if there are any predecessors.
if (!I->pred_empty()) {
printBasicBlockLabel(I, true, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
// We didn't modify anything.
return false;
}
void IA64AsmPrinter::printOp(const MachineOperand &MO,
bool isBRCALLinsn /* = false */) {
const TargetRegisterInfo &RI = *TM.getRegisterInfo();
switch (MO.getType()) {
case MachineOperand::MO_Register:
O << RI.get(MO.getReg()).AsmName;
return;
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB());
return;
case MachineOperand::MO_ConstantPoolIndex: {
O << "@gprel(" << TAI->getPrivateGlobalPrefix()
<< "CPI" << getFunctionNumber() << "_" << MO.getIndex() << ")";
return;
}
case MachineOperand::MO_GlobalAddress: {
// functions need @ltoff(@fptr(fn_name)) form
GlobalValue *GV = MO.getGlobal();
Function *F = dyn_cast<Function>(GV);
bool Needfptr=false; // if we're computing an address @ltoff(X), do
// we need to decorate it so it becomes
// @ltoff(@fptr(X)) ?
if (F && !isBRCALLinsn /*&& F->isDeclaration()*/)
Needfptr=true;
// if this is the target of a call instruction, we should define
// the function somewhere (GNU gas has no problem without this, but
// Intel ias rightly complains of an 'undefined symbol')
if (F /*&& isBRCALLinsn*/ && F->isDeclaration())
ExternalFunctionNames.insert(Mang->getValueName(MO.getGlobal()));
else
if (GV->isDeclaration()) // e.g. stuff like 'stdin'
ExternalObjectNames.insert(Mang->getValueName(MO.getGlobal()));
if (!isBRCALLinsn)
O << "@ltoff(";
if (Needfptr)
O << "@fptr(";
O << Mang->getValueName(MO.getGlobal());
if (Needfptr && !isBRCALLinsn)
O << "#))"; // close both fptr( and ltoff(
else {
if (Needfptr)
O << "#)"; // close only fptr(
if (!isBRCALLinsn)
O << "#)"; // close only ltoff(
}
int Offset = MO.getOffset();
if (Offset > 0)
O << " + " << Offset;
else if (Offset < 0)
O << " - " << -Offset;
return;
}
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
ExternalFunctionNames.insert(MO.getSymbolName());
return;
default:
O << "<AsmPrinter: unknown operand type: " << MO.getType() << " >"; return;
}
}
/// printMachineInstruction -- Print out a single IA64 LLVM instruction
/// MI to the current output stream.
///
void IA64AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
bool IA64AsmPrinter::doInitialization(Module &M) {
bool Result = AsmPrinter::doInitialization(M);
O << "\n.ident \"LLVM-ia64\"\n\n"
<< "\t.psr lsb\n" // should be "msb" on HP-UX, for starters
<< "\t.radix C\n"
<< "\t.psr abi64\n"; // we only support 64 bits for now
return Result;
}
void IA64AsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar))
return;
O << "\n\n";
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
unsigned Size = TD->getABITypeSize(C->getType());
unsigned Align = TD->getPreferredAlignmentLog(GVar);
printVisibility(name, GVar->getVisibility());
SwitchToSection(TAI->SectionForGlobal(GVar));
if (C->isNullValue() && !GVar->hasSection()) {
if (!GVar->isThreadLocal() &&
(GVar->hasInternalLinkage() || GVar->isWeakForLinker())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (GVar->hasInternalLinkage()) {
O << "\t.lcomm " << name << "#," << Size
<< ',' << (1 << Align);
O << '\n';
} else {
O << "\t.common " << name << "#," << Size
<< ',' << (1 << Align);
O << '\n';
}
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::CommonLinkage:
case GlobalValue::WeakLinkage:
// Nonnull linkonce -> weak
O << "\t.weak " << name << '\n';
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << TAI->getGlobalDirective() << name << '\n';
// FALL THROUGH
case GlobalValue::InternalLinkage:
break;
case GlobalValue::GhostLinkage:
cerr << "GhostLinkage cannot appear in IA64AsmPrinter!\n";
abort();
case GlobalValue::DLLImportLinkage:
cerr << "DLLImport linkage is not supported by this target!\n";
abort();
case GlobalValue::DLLExportLinkage:
cerr << "DLLExport linkage is not supported by this target!\n";
abort();
default:
assert(0 && "Unknown linkage type!");
}
EmitAlignment(Align, GVar);
if (TAI->hasDotTypeDotSizeDirective()) {
O << "\t.type " << name << ",@object\n";
O << "\t.size " << name << ',' << Size << '\n';
}
O << name << ":\n";
EmitGlobalConstant(C);
}
bool IA64AsmPrinter::doFinalization(Module &M) {
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
printModuleLevelGV(I);
// we print out ".global X \n .type X, @function" for each external function
O << "\n\n// br.call targets referenced (and not defined) above: \n";
for (std::set<std::string>::iterator i = ExternalFunctionNames.begin(),
e = ExternalFunctionNames.end(); i!=e; ++i) {
O << "\t.global " << *i << "\n\t.type " << *i << ", @function\n";
}
O << "\n\n";
// we print out ".global X \n .type X, @object" for each external object
O << "\n\n// (external) symbols referenced (and not defined) above: \n";
for (std::set<std::string>::iterator i = ExternalObjectNames.begin(),
e = ExternalObjectNames.end(); i!=e; ++i) {
O << "\t.global " << *i << "\n\t.type " << *i << ", @object\n";
}
O << "\n\n";
return AsmPrinter::doFinalization(M);
}
/// createIA64CodePrinterPass - Returns a pass that prints the IA64
/// assembly code for a MachineFunction to the given output stream, using
/// the given target machine description.
///
FunctionPass *llvm::createIA64CodePrinterPass(raw_ostream &o,
IA64TargetMachine &tm) {
return new IA64AsmPrinter(o, tm, tm.getTargetAsmInfo());
}