mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
c3f507f98a
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124526 91177308-0d34-0410-b5e6-96231b3b80d8
541 lines
20 KiB
C++
541 lines
20 KiB
C++
//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform manipulations on basic blocks, and
|
|
// instructions contained within basic blocks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
/// DeleteDeadBlock - Delete the specified block, which must have no
|
|
/// predecessors.
|
|
void llvm::DeleteDeadBlock(BasicBlock *BB) {
|
|
assert((pred_begin(BB) == pred_end(BB) ||
|
|
// Can delete self loop.
|
|
BB->getSinglePredecessor() == BB) && "Block is not dead!");
|
|
TerminatorInst *BBTerm = BB->getTerminator();
|
|
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
|
|
BBTerm->getSuccessor(i)->removePredecessor(BB);
|
|
|
|
// Zap all the instructions in the block.
|
|
while (!BB->empty()) {
|
|
Instruction &I = BB->back();
|
|
// If this instruction is used, replace uses with an arbitrary value.
|
|
// Because control flow can't get here, we don't care what we replace the
|
|
// value with. Note that since this block is unreachable, and all values
|
|
// contained within it must dominate their uses, that all uses will
|
|
// eventually be removed (they are themselves dead).
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
BB->getInstList().pop_back();
|
|
}
|
|
|
|
// Zap the block!
|
|
BB->eraseFromParent();
|
|
}
|
|
|
|
/// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
|
|
/// any single-entry PHI nodes in it, fold them away. This handles the case
|
|
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
|
|
/// when the block has exactly one predecessor.
|
|
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
|
|
if (!isa<PHINode>(BB->begin())) return;
|
|
|
|
AliasAnalysis *AA = 0;
|
|
MemoryDependenceAnalysis *MemDep = 0;
|
|
if (P) {
|
|
AA = P->getAnalysisIfAvailable<AliasAnalysis>();
|
|
MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
|
|
}
|
|
|
|
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
|
|
if (PN->getIncomingValue(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
else
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
|
|
if (MemDep)
|
|
MemDep->removeInstruction(PN); // Memdep updates AA itself.
|
|
else if (AA && isa<PointerType>(PN->getType()))
|
|
AA->deleteValue(PN);
|
|
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
|
|
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
|
|
/// is dead. Also recursively delete any operands that become dead as
|
|
/// a result. This includes tracing the def-use list from the PHI to see if
|
|
/// it is ultimately unused or if it reaches an unused cycle.
|
|
bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
|
|
// Recursively deleting a PHI may cause multiple PHIs to be deleted
|
|
// or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
|
|
SmallVector<WeakVH, 8> PHIs;
|
|
for (BasicBlock::iterator I = BB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
PHIs.push_back(PN);
|
|
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
|
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
|
|
Changed |= RecursivelyDeleteDeadPHINode(PN);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
|
|
/// if possible. The return value indicates success or failure.
|
|
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
|
|
// Don't merge away blocks who have their address taken.
|
|
if (BB->hasAddressTaken()) return false;
|
|
|
|
// Can't merge if there are multiple predecessors, or no predecessors.
|
|
BasicBlock *PredBB = BB->getUniquePredecessor();
|
|
if (!PredBB) return false;
|
|
|
|
// Don't break self-loops.
|
|
if (PredBB == BB) return false;
|
|
// Don't break invokes.
|
|
if (isa<InvokeInst>(PredBB->getTerminator())) return false;
|
|
|
|
succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
|
|
BasicBlock *OnlySucc = BB;
|
|
for (; SI != SE; ++SI)
|
|
if (*SI != OnlySucc) {
|
|
OnlySucc = 0; // There are multiple distinct successors!
|
|
break;
|
|
}
|
|
|
|
// Can't merge if there are multiple successors.
|
|
if (!OnlySucc) return false;
|
|
|
|
// Can't merge if there is PHI loop.
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == PN)
|
|
return false;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
// Begin by getting rid of unneeded PHIs.
|
|
if (isa<PHINode>(BB->front()))
|
|
FoldSingleEntryPHINodes(BB, P);
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
PredBB->getInstList().pop_back();
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(PredBB);
|
|
|
|
// Inherit predecessors name if it exists.
|
|
if (!PredBB->hasName())
|
|
PredBB->takeName(BB);
|
|
|
|
// Finally, erase the old block and update dominator info.
|
|
if (P) {
|
|
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
|
|
if (DomTreeNode *DTN = DT->getNode(BB)) {
|
|
DomTreeNode *PredDTN = DT->getNode(PredBB);
|
|
SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
|
|
for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
|
|
DE = Children.end(); DI != DE; ++DI)
|
|
DT->changeImmediateDominator(*DI, PredDTN);
|
|
|
|
DT->eraseNode(BB);
|
|
}
|
|
|
|
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
|
|
LI->removeBlock(BB);
|
|
|
|
if (MemoryDependenceAnalysis *MD =
|
|
P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
|
|
MD->invalidateCachedPredecessors();
|
|
}
|
|
}
|
|
|
|
BB->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
|
|
/// with a value, then remove and delete the original instruction.
|
|
///
|
|
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Value *V) {
|
|
Instruction &I = *BI;
|
|
// Replaces all of the uses of the instruction with uses of the value
|
|
I.replaceAllUsesWith(V);
|
|
|
|
// Make sure to propagate a name if there is one already.
|
|
if (I.hasName() && !V->hasName())
|
|
V->takeName(&I);
|
|
|
|
// Delete the unnecessary instruction now...
|
|
BI = BIL.erase(BI);
|
|
}
|
|
|
|
|
|
/// ReplaceInstWithInst - Replace the instruction specified by BI with the
|
|
/// instruction specified by I. The original instruction is deleted and BI is
|
|
/// updated to point to the new instruction.
|
|
///
|
|
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Instruction *I) {
|
|
assert(I->getParent() == 0 &&
|
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock::iterator New = BIL.insert(BI, I);
|
|
|
|
// Replace all uses of the old instruction, and delete it.
|
|
ReplaceInstWithValue(BIL, BI, I);
|
|
|
|
// Move BI back to point to the newly inserted instruction
|
|
BI = New;
|
|
}
|
|
|
|
/// ReplaceInstWithInst - Replace the instruction specified by From with the
|
|
/// instruction specified by To.
|
|
///
|
|
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
|
BasicBlock::iterator BI(From);
|
|
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
|
|
}
|
|
|
|
/// GetSuccessorNumber - Search for the specified successor of basic block BB
|
|
/// and return its position in the terminator instruction's list of
|
|
/// successors. It is an error to call this with a block that is not a
|
|
/// successor.
|
|
unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
|
|
TerminatorInst *Term = BB->getTerminator();
|
|
#ifndef NDEBUG
|
|
unsigned e = Term->getNumSuccessors();
|
|
#endif
|
|
for (unsigned i = 0; ; ++i) {
|
|
assert(i != e && "Didn't find edge?");
|
|
if (Term->getSuccessor(i) == Succ)
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// SplitEdge - Split the edge connecting specified block. Pass P must
|
|
/// not be NULL.
|
|
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
|
|
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
|
|
|
|
// If this is a critical edge, let SplitCriticalEdge do it.
|
|
TerminatorInst *LatchTerm = BB->getTerminator();
|
|
if (SplitCriticalEdge(LatchTerm, SuccNum, P))
|
|
return LatchTerm->getSuccessor(SuccNum);
|
|
|
|
// If the edge isn't critical, then BB has a single successor or Succ has a
|
|
// single pred. Split the block.
|
|
BasicBlock::iterator SplitPoint;
|
|
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
|
|
// If the successor only has a single pred, split the top of the successor
|
|
// block.
|
|
assert(SP == BB && "CFG broken");
|
|
SP = NULL;
|
|
return SplitBlock(Succ, Succ->begin(), P);
|
|
}
|
|
|
|
// Otherwise, if BB has a single successor, split it at the bottom of the
|
|
// block.
|
|
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
|
|
"Should have a single succ!");
|
|
return SplitBlock(BB, BB->getTerminator(), P);
|
|
}
|
|
|
|
/// SplitBlock - Split the specified block at the specified instruction - every
|
|
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
|
|
/// to a new block. The two blocks are joined by an unconditional branch and
|
|
/// the loop info is updated.
|
|
///
|
|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
|
|
BasicBlock::iterator SplitIt = SplitPt;
|
|
while (isa<PHINode>(SplitIt))
|
|
++SplitIt;
|
|
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
|
|
|
|
// The new block lives in whichever loop the old one did. This preserves
|
|
// LCSSA as well, because we force the split point to be after any PHI nodes.
|
|
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
|
|
if (Loop *L = LI->getLoopFor(Old))
|
|
L->addBasicBlockToLoop(New, LI->getBase());
|
|
|
|
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
|
|
// Old dominates New. New node dominates all other nodes dominated by Old.
|
|
DomTreeNode *OldNode = DT->getNode(Old);
|
|
std::vector<DomTreeNode *> Children;
|
|
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
|
|
I != E; ++I)
|
|
Children.push_back(*I);
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New,Old);
|
|
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
|
|
E = Children.end(); I != E; ++I)
|
|
DT->changeImmediateDominator(*I, NewNode);
|
|
}
|
|
|
|
return New;
|
|
}
|
|
|
|
|
|
/// SplitBlockPredecessors - This method transforms BB by introducing a new
|
|
/// basic block into the function, and moving some of the predecessors of BB to
|
|
/// be predecessors of the new block. The new predecessors are indicated by the
|
|
/// Preds array, which has NumPreds elements in it. The new block is given a
|
|
/// suffix of 'Suffix'.
|
|
///
|
|
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
|
|
/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
|
|
/// preserve LoopSimplify (because it's complicated to handle the case where one
|
|
/// of the edges being split is an exit of a loop with other exits).
|
|
///
|
|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
|
|
BasicBlock *const *Preds,
|
|
unsigned NumPreds, const char *Suffix,
|
|
Pass *P) {
|
|
// Create new basic block, insert right before the original block.
|
|
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
|
|
BB->getParent(), BB);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI = BranchInst::Create(BB, NewBB);
|
|
|
|
LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
|
|
Loop *L = LI ? LI->getLoopFor(BB) : 0;
|
|
bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
|
|
|
|
// Move the edges from Preds to point to NewBB instead of BB.
|
|
// While here, if we need to preserve loop analyses, collect
|
|
// some information about how this split will affect loops.
|
|
bool HasLoopExit = false;
|
|
bool IsLoopEntry = !!L;
|
|
bool SplitMakesNewLoopHeader = false;
|
|
for (unsigned i = 0; i != NumPreds; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
|
|
|
|
if (LI) {
|
|
// If we need to preserve LCSSA, determine if any of
|
|
// the preds is a loop exit.
|
|
if (PreserveLCSSA)
|
|
if (Loop *PL = LI->getLoopFor(Preds[i]))
|
|
if (!PL->contains(BB))
|
|
HasLoopExit = true;
|
|
// If we need to preserve LoopInfo, note whether any of the
|
|
// preds crosses an interesting loop boundary.
|
|
if (L) {
|
|
if (L->contains(Preds[i]))
|
|
IsLoopEntry = false;
|
|
else
|
|
SplitMakesNewLoopHeader = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update dominator tree if available.
|
|
DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
|
|
if (DT)
|
|
DT->splitBlock(NewBB);
|
|
|
|
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
|
|
// node becomes an incoming value for BB's phi node. However, if the Preds
|
|
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
|
|
// account for the newly created predecessor.
|
|
if (NumPreds == 0) {
|
|
// Insert dummy values as the incoming value.
|
|
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
|
|
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
|
|
return NewBB;
|
|
}
|
|
|
|
AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
|
|
|
|
if (L) {
|
|
if (IsLoopEntry) {
|
|
// Add the new block to the nearest enclosing loop (and not an
|
|
// adjacent loop). To find this, examine each of the predecessors and
|
|
// determine which loops enclose them, and select the most-nested loop
|
|
// which contains the loop containing the block being split.
|
|
Loop *InnermostPredLoop = 0;
|
|
for (unsigned i = 0; i != NumPreds; ++i)
|
|
if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
|
|
// Seek a loop which actually contains the block being split (to
|
|
// avoid adjacent loops).
|
|
while (PredLoop && !PredLoop->contains(BB))
|
|
PredLoop = PredLoop->getParentLoop();
|
|
// Select the most-nested of these loops which contains the block.
|
|
if (PredLoop &&
|
|
PredLoop->contains(BB) &&
|
|
(!InnermostPredLoop ||
|
|
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
|
|
InnermostPredLoop = PredLoop;
|
|
}
|
|
if (InnermostPredLoop)
|
|
InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
|
|
} else {
|
|
L->addBasicBlockToLoop(NewBB, LI->getBase());
|
|
if (SplitMakesNewLoopHeader)
|
|
L->moveToHeader(NewBB);
|
|
}
|
|
}
|
|
|
|
// Otherwise, create a new PHI node in NewBB for each PHI node in BB.
|
|
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
|
|
PHINode *PN = cast<PHINode>(I++);
|
|
|
|
// Check to see if all of the values coming in are the same. If so, we
|
|
// don't need to create a new PHI node, unless it's needed for LCSSA.
|
|
Value *InVal = 0;
|
|
if (!HasLoopExit) {
|
|
InVal = PN->getIncomingValueForBlock(Preds[0]);
|
|
for (unsigned i = 1; i != NumPreds; ++i)
|
|
if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
|
|
InVal = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (InVal) {
|
|
// If all incoming values for the new PHI would be the same, just don't
|
|
// make a new PHI. Instead, just remove the incoming values from the old
|
|
// PHI.
|
|
for (unsigned i = 0; i != NumPreds; ++i)
|
|
PN->removeIncomingValue(Preds[i], false);
|
|
} else {
|
|
// If the values coming into the block are not the same, we need a PHI.
|
|
// Create the new PHI node, insert it into NewBB at the end of the block
|
|
PHINode *NewPHI =
|
|
PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
|
|
if (AA) AA->copyValue(PN, NewPHI);
|
|
|
|
// Move all of the PHI values for 'Preds' to the new PHI.
|
|
for (unsigned i = 0; i != NumPreds; ++i) {
|
|
Value *V = PN->removeIncomingValue(Preds[i], false);
|
|
NewPHI->addIncoming(V, Preds[i]);
|
|
}
|
|
InVal = NewPHI;
|
|
}
|
|
|
|
// Add an incoming value to the PHI node in the loop for the preheader
|
|
// edge.
|
|
PN->addIncoming(InVal, NewBB);
|
|
}
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
/// FindFunctionBackedges - Analyze the specified function to find all of the
|
|
/// loop backedges in the function and return them. This is a relatively cheap
|
|
/// (compared to computing dominators and loop info) analysis.
|
|
///
|
|
/// The output is added to Result, as pairs of <from,to> edge info.
|
|
void llvm::FindFunctionBackedges(const Function &F,
|
|
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
|
|
const BasicBlock *BB = &F.getEntryBlock();
|
|
if (succ_begin(BB) == succ_end(BB))
|
|
return;
|
|
|
|
SmallPtrSet<const BasicBlock*, 8> Visited;
|
|
SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
|
|
SmallPtrSet<const BasicBlock*, 8> InStack;
|
|
|
|
Visited.insert(BB);
|
|
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
|
InStack.insert(BB);
|
|
do {
|
|
std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
|
|
const BasicBlock *ParentBB = Top.first;
|
|
succ_const_iterator &I = Top.second;
|
|
|
|
bool FoundNew = false;
|
|
while (I != succ_end(ParentBB)) {
|
|
BB = *I++;
|
|
if (Visited.insert(BB)) {
|
|
FoundNew = true;
|
|
break;
|
|
}
|
|
// Successor is in VisitStack, it's a back edge.
|
|
if (InStack.count(BB))
|
|
Result.push_back(std::make_pair(ParentBB, BB));
|
|
}
|
|
|
|
if (FoundNew) {
|
|
// Go down one level if there is a unvisited successor.
|
|
InStack.insert(BB);
|
|
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
|
} else {
|
|
// Go up one level.
|
|
InStack.erase(VisitStack.pop_back_val().first);
|
|
}
|
|
} while (!VisitStack.empty());
|
|
}
|
|
|
|
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
|
|
/// instruction into a predecessor which ends in an unconditional branch. If
|
|
/// the return instruction returns a value defined by a PHI, propagate the
|
|
/// right value into the return. It returns the new return instruction in the
|
|
/// predecessor.
|
|
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
|
|
BasicBlock *Pred) {
|
|
Instruction *UncondBranch = Pred->getTerminator();
|
|
// Clone the return and add it to the end of the predecessor.
|
|
Instruction *NewRet = RI->clone();
|
|
Pred->getInstList().push_back(NewRet);
|
|
|
|
// If the return instruction returns a value, and if the value was a
|
|
// PHI node in "BB", propagate the right value into the return.
|
|
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
|
|
i != e; ++i)
|
|
if (PHINode *PN = dyn_cast<PHINode>(*i))
|
|
if (PN->getParent() == BB)
|
|
*i = PN->getIncomingValueForBlock(Pred);
|
|
|
|
// Update any PHI nodes in the returning block to realize that we no
|
|
// longer branch to them.
|
|
BB->removePredecessor(Pred);
|
|
UncondBranch->eraseFromParent();
|
|
return cast<ReturnInst>(NewRet);
|
|
}
|