llvm-6502/include/llvm/DerivedTypes.h
Chandler Carruth 255f89faee Sort the #include lines for the include/... tree with the script.
AKA: Recompile *ALL* the source code!

This one went much better. No manual edits here. I spot-checked for
silliness and grep-checked for really broken edits and everything seemed
good. It all still compiles. Yell if you see something that looks goofy.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 17:02:12 +00:00

456 lines
17 KiB
C++

//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "function returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Type.h"
namespace llvm {
class Value;
class APInt;
class LLVMContext;
template<typename T> class ArrayRef;
class StringRef;
/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty.
/// @brief Integer representation type
class IntegerType : public Type {
friend class LLVMContextImpl;
protected:
explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
setSubclassData(NumBits);
}
public:
/// This enum is just used to hold constants we need for IntegerType.
enum {
MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
///< Note that bit width is stored in the Type classes SubclassData field
///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
};
/// This static method is the primary way of constructing an IntegerType.
/// If an IntegerType with the same NumBits value was previously instantiated,
/// that instance will be returned. Otherwise a new one will be created. Only
/// one instance with a given NumBits value is ever created.
/// @brief Get or create an IntegerType instance.
static IntegerType *get(LLVMContext &C, unsigned NumBits);
/// @brief Get the number of bits in this IntegerType
unsigned getBitWidth() const { return getSubclassData(); }
/// getBitMask - Return a bitmask with ones set for all of the bits
/// that can be set by an unsigned version of this type. This is 0xFF for
/// i8, 0xFFFF for i16, etc.
uint64_t getBitMask() const {
return ~uint64_t(0UL) >> (64-getBitWidth());
}
/// getSignBit - Return a uint64_t with just the most significant bit set (the
/// sign bit, if the value is treated as a signed number).
uint64_t getSignBit() const {
return 1ULL << (getBitWidth()-1);
}
/// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
/// @returns a bit mask with ones set for all the bits of this type.
/// @brief Get a bit mask for this type.
APInt getMask() const;
/// This method determines if the width of this IntegerType is a power-of-2
/// in terms of 8 bit bytes.
/// @returns true if this is a power-of-2 byte width.
/// @brief Is this a power-of-2 byte-width IntegerType ?
bool isPowerOf2ByteWidth() const;
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == IntegerTyID;
}
};
/// FunctionType - Class to represent function types
///
class FunctionType : public Type {
FunctionType(const FunctionType &) LLVM_DELETED_FUNCTION;
const FunctionType &operator=(const FunctionType &) LLVM_DELETED_FUNCTION;
FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
public:
/// FunctionType::get - This static method is the primary way of constructing
/// a FunctionType.
///
static FunctionType *get(Type *Result,
ArrayRef<Type*> Params, bool isVarArg);
/// FunctionType::get - Create a FunctionType taking no parameters.
///
static FunctionType *get(Type *Result, bool isVarArg);
/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
static bool isValidReturnType(Type *RetTy);
/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
static bool isValidArgumentType(Type *ArgTy);
bool isVarArg() const { return getSubclassData(); }
Type *getReturnType() const { return ContainedTys[0]; }
typedef Type::subtype_iterator param_iterator;
param_iterator param_begin() const { return ContainedTys + 1; }
param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
// Parameter type accessors.
Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
/// getNumParams - Return the number of fixed parameters this function type
/// requires. This does not consider varargs.
///
unsigned getNumParams() const { return NumContainedTys - 1; }
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == FunctionTyID;
}
};
/// CompositeType - Common super class of ArrayType, StructType, PointerType
/// and VectorType.
class CompositeType : public Type {
protected:
explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
public:
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element.
///
Type *getTypeAtIndex(const Value *V);
Type *getTypeAtIndex(unsigned Idx);
bool indexValid(const Value *V) const;
bool indexValid(unsigned Idx) const;
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == StructTyID ||
T->getTypeID() == PointerTyID ||
T->getTypeID() == VectorTyID;
}
};
/// StructType - Class to represent struct types. There are two different kinds
/// of struct types: Literal structs and Identified structs.
///
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
/// always have a body when created. You can get one of these by using one of
/// the StructType::get() forms.
///
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
/// uniqued. The names for identified structs are managed at the LLVMContext
/// level, so there can only be a single identified struct with a given name in
/// a particular LLVMContext. Identified structs may also optionally be opaque
/// (have no body specified). You get one of these by using one of the
/// StructType::create() forms.
///
/// Independent of what kind of struct you have, the body of a struct type are
/// laid out in memory consequtively with the elements directly one after the
/// other (if the struct is packed) or (if not packed) with padding between the
/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
StructType(const StructType &) LLVM_DELETED_FUNCTION;
const StructType &operator=(const StructType &) LLVM_DELETED_FUNCTION;
StructType(LLVMContext &C)
: CompositeType(C, StructTyID), SymbolTableEntry(0) {}
enum {
// This is the contents of the SubClassData field.
SCDB_HasBody = 1,
SCDB_Packed = 2,
SCDB_IsLiteral = 4,
SCDB_IsSized = 8
};
/// SymbolTableEntry - For a named struct that actually has a name, this is a
/// pointer to the symbol table entry (maintained by LLVMContext) for the
/// struct. This is null if the type is an literal struct or if it is
/// a identified type that has an empty name.
///
void *SymbolTableEntry;
public:
~StructType() {
delete [] ContainedTys; // Delete the body.
}
/// StructType::create - This creates an identified struct.
static StructType *create(LLVMContext &Context, StringRef Name);
static StructType *create(LLVMContext &Context);
static StructType *create(ArrayRef<Type*> Elements,
StringRef Name,
bool isPacked = false);
static StructType *create(ArrayRef<Type*> Elements);
static StructType *create(LLVMContext &Context,
ArrayRef<Type*> Elements,
StringRef Name,
bool isPacked = false);
static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL;
/// StructType::get - This static method is the primary way to create a
/// literal StructType.
static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
bool isPacked = false);
/// StructType::get - Create an empty structure type.
///
static StructType *get(LLVMContext &Context, bool isPacked = false);
/// StructType::get - This static method is a convenience method for creating
/// structure types by specifying the elements as arguments. Note that this
/// method always returns a non-packed struct, and requires at least one
/// element type.
static StructType *get(Type *elt1, ...) END_WITH_NULL;
bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
/// isLiteral - Return true if this type is uniqued by structural
/// equivalence, false if it is a struct definition.
bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
/// isOpaque - Return true if this is a type with an identity that has no body
/// specified yet. These prints as 'opaque' in .ll files.
bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
/// isSized - Return true if this is a sized type.
bool isSized() const;
/// hasName - Return true if this is a named struct that has a non-empty name.
bool hasName() const { return SymbolTableEntry != 0; }
/// getName - Return the name for this struct type if it has an identity.
/// This may return an empty string for an unnamed struct type. Do not call
/// this on an literal type.
StringRef getName() const;
/// setName - Change the name of this type to the specified name, or to a name
/// with a suffix if there is a collision. Do not call this on an literal
/// type.
void setName(StringRef Name);
/// setBody - Specify a body for an opaque identified type.
void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
void setBody(Type *elt1, ...) END_WITH_NULL;
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(Type *ElemTy);
// Iterator access to the elements.
typedef Type::subtype_iterator element_iterator;
element_iterator element_begin() const { return ContainedTys; }
element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
/// isLayoutIdentical - Return true if this is layout identical to the
/// specified struct.
bool isLayoutIdentical(StructType *Other) const;
// Random access to the elements
unsigned getNumElements() const { return NumContainedTys; }
Type *getElementType(unsigned N) const {
assert(N < NumContainedTys && "Element number out of range!");
return ContainedTys[N];
}
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == StructTyID;
}
};
/// SequentialType - This is the superclass of the array, pointer and vector
/// type classes. All of these represent "arrays" in memory. The array type
/// represents a specifically sized array, pointer types are unsized/unknown
/// size arrays, vector types represent specifically sized arrays that
/// allow for use of SIMD instructions. SequentialType holds the common
/// features of all, which stem from the fact that all three lay their
/// components out in memory identically.
///
class SequentialType : public CompositeType {
Type *ContainedType; ///< Storage for the single contained type.
SequentialType(const SequentialType &) LLVM_DELETED_FUNCTION;
const SequentialType &operator=(const SequentialType &) LLVM_DELETED_FUNCTION;
protected:
SequentialType(TypeID TID, Type *ElType)
: CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}
public:
Type *getElementType() const { return ContainedTys[0]; }
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == PointerTyID ||
T->getTypeID() == VectorTyID;
}
};
/// ArrayType - Class to represent array types.
///
class ArrayType : public SequentialType {
uint64_t NumElements;
ArrayType(const ArrayType &) LLVM_DELETED_FUNCTION;
const ArrayType &operator=(const ArrayType &) LLVM_DELETED_FUNCTION;
ArrayType(Type *ElType, uint64_t NumEl);
public:
/// ArrayType::get - This static method is the primary way to construct an
/// ArrayType
///
static ArrayType *get(Type *ElementType, uint64_t NumElements);
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(Type *ElemTy);
uint64_t getNumElements() const { return NumElements; }
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID;
}
};
/// VectorType - Class to represent vector types.
///
class VectorType : public SequentialType {
unsigned NumElements;
VectorType(const VectorType &) LLVM_DELETED_FUNCTION;
const VectorType &operator=(const VectorType &) LLVM_DELETED_FUNCTION;
VectorType(Type *ElType, unsigned NumEl);
public:
/// VectorType::get - This static method is the primary way to construct an
/// VectorType.
///
static VectorType *get(Type *ElementType, unsigned NumElements);
/// VectorType::getInteger - This static method gets a VectorType with the
/// same number of elements as the input type, and the element type is an
/// integer type of the same width as the input element type.
///
static VectorType *getInteger(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert(EltBits && "Element size must be of a non-zero size");
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
return VectorType::get(EltTy, VTy->getNumElements());
}
/// VectorType::getExtendedElementVectorType - This static method is like
/// getInteger except that the element types are twice as wide as the
/// elements in the input type.
///
static VectorType *getExtendedElementVectorType(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
return VectorType::get(EltTy, VTy->getNumElements());
}
/// VectorType::getTruncatedElementVectorType - This static method is like
/// getInteger except that the element types are half as wide as the
/// elements in the input type.
///
static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert((EltBits & 1) == 0 &&
"Cannot truncate vector element with odd bit-width");
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
return VectorType::get(EltTy, VTy->getNumElements());
}
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(Type *ElemTy);
/// @brief Return the number of elements in the Vector type.
unsigned getNumElements() const { return NumElements; }
/// @brief Return the number of bits in the Vector type.
/// Returns zero when the vector is a vector of pointers.
unsigned getBitWidth() const {
return NumElements * getElementType()->getPrimitiveSizeInBits();
}
// Methods for support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == VectorTyID;
}
};
/// PointerType - Class to represent pointers.
///
class PointerType : public SequentialType {
PointerType(const PointerType &) LLVM_DELETED_FUNCTION;
const PointerType &operator=(const PointerType &) LLVM_DELETED_FUNCTION;
explicit PointerType(Type *ElType, unsigned AddrSpace);
public:
/// PointerType::get - This constructs a pointer to an object of the specified
/// type in a numbered address space.
static PointerType *get(Type *ElementType, unsigned AddressSpace);
/// PointerType::getUnqual - This constructs a pointer to an object of the
/// specified type in the generic address space (address space zero).
static PointerType *getUnqual(Type *ElementType) {
return PointerType::get(ElementType, 0);
}
/// isValidElementType - Return true if the specified type is valid as a
/// element type.
static bool isValidElementType(Type *ElemTy);
/// @brief Return the address space of the Pointer type.
inline unsigned getAddressSpace() const { return getSubclassData(); }
// Implement support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const Type *T) {
return T->getTypeID() == PointerTyID;
}
};
} // End llvm namespace
#endif