mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
a6425604c2
insertions. The old behavior could cause arbitrarily bad memory usage in the DAG combiner if there was heavy traffic of adding nodes already on the worklist to it. This commit switches the DAG combine worklist to work the same way as the instcombine worklist where we null-out removed entries and only add new entries to the worklist. My measurements of codegen time shows slight improvement. The memory utilization is unsurprisingly dominated by other factors (the IR and DAG itself I suspect). This change results in subtle, frustrating churn in the particular order in which DAG combines are applied which causes a number of minor regressions where we fail to match a pattern previously matched by accident. AFAICT, all of these should be using AddToWorklist to directly or should be written in a less brittle way. None of the changes seem drastically bad, and a few of the changes seem distinctly better. A major change required to make this work is to significantly harden the way in which the DAG combiner handle nodes which become dead (zero-uses). Previously, we relied on the ability to "priority-bump" them on the combine worklist to achieve recursive deletion of these nodes and ensure that the frontier of remaining live nodes all were added to the worklist. Instead, I've introduced a routine to just implement that precise logic with no indirection. It is a significantly simpler operation than that of the combiner worklist proper. I suspect this will also fix some other problems with the combiner. I think the x86 changes are really minor and uninteresting, but the avx512 change at least is hiding a "regression" (despite the test case being just noise, not testing some performance invariant) that might be looked into. Not sure if any of the others impact specific "important" code paths, but they didn't look terribly interesting to me, or the changes were really minor. The consensus in review is to fix any regressions that show up after the fact here. Thanks to the other reviewers for checking the output on other architectures. There is a specific regression on ARM that Tim already has a fix prepped to commit. Differential Revision: http://reviews.llvm.org/D4616 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213727 91177308-0d34-0410-b5e6-96231b3b80d8
1086 lines
29 KiB
LLVM
1086 lines
29 KiB
LLVM
; RUN: llc -mtriple=i686-linux -pre-RA-sched=source < %s | FileCheck %s
|
|
|
|
declare void @error(i32 %i, i32 %a, i32 %b)
|
|
|
|
define i32 @test_ifchains(i32 %i, i32* %a, i32 %b) {
|
|
; Test a chain of ifs, where the block guarded by the if is error handling code
|
|
; that is not expected to run.
|
|
; CHECK-LABEL: test_ifchains:
|
|
; CHECK: %entry
|
|
; CHECK-NOT: .align
|
|
; CHECK: %else1
|
|
; CHECK-NOT: .align
|
|
; CHECK: %else2
|
|
; CHECK-NOT: .align
|
|
; CHECK: %else3
|
|
; CHECK-NOT: .align
|
|
; CHECK: %else4
|
|
; CHECK-NOT: .align
|
|
; CHECK: %exit
|
|
; CHECK: %then1
|
|
; CHECK: %then2
|
|
; CHECK: %then3
|
|
; CHECK: %then4
|
|
; CHECK: %then5
|
|
|
|
entry:
|
|
%gep1 = getelementptr i32* %a, i32 1
|
|
%val1 = load i32* %gep1
|
|
%cond1 = icmp ugt i32 %val1, 1
|
|
br i1 %cond1, label %then1, label %else1, !prof !0
|
|
|
|
then1:
|
|
call void @error(i32 %i, i32 1, i32 %b)
|
|
br label %else1
|
|
|
|
else1:
|
|
%gep2 = getelementptr i32* %a, i32 2
|
|
%val2 = load i32* %gep2
|
|
%cond2 = icmp ugt i32 %val2, 2
|
|
br i1 %cond2, label %then2, label %else2, !prof !0
|
|
|
|
then2:
|
|
call void @error(i32 %i, i32 1, i32 %b)
|
|
br label %else2
|
|
|
|
else2:
|
|
%gep3 = getelementptr i32* %a, i32 3
|
|
%val3 = load i32* %gep3
|
|
%cond3 = icmp ugt i32 %val3, 3
|
|
br i1 %cond3, label %then3, label %else3, !prof !0
|
|
|
|
then3:
|
|
call void @error(i32 %i, i32 1, i32 %b)
|
|
br label %else3
|
|
|
|
else3:
|
|
%gep4 = getelementptr i32* %a, i32 4
|
|
%val4 = load i32* %gep4
|
|
%cond4 = icmp ugt i32 %val4, 4
|
|
br i1 %cond4, label %then4, label %else4, !prof !0
|
|
|
|
then4:
|
|
call void @error(i32 %i, i32 1, i32 %b)
|
|
br label %else4
|
|
|
|
else4:
|
|
%gep5 = getelementptr i32* %a, i32 3
|
|
%val5 = load i32* %gep5
|
|
%cond5 = icmp ugt i32 %val5, 3
|
|
br i1 %cond5, label %then5, label %exit, !prof !0
|
|
|
|
then5:
|
|
call void @error(i32 %i, i32 1, i32 %b)
|
|
br label %exit
|
|
|
|
exit:
|
|
ret i32 %b
|
|
}
|
|
|
|
define i32 @test_loop_cold_blocks(i32 %i, i32* %a) {
|
|
; Check that we sink cold loop blocks after the hot loop body.
|
|
; CHECK-LABEL: test_loop_cold_blocks:
|
|
; CHECK: %entry
|
|
; CHECK-NOT: .align
|
|
; CHECK: %unlikely1
|
|
; CHECK-NOT: .align
|
|
; CHECK: %unlikely2
|
|
; CHECK: .align
|
|
; CHECK: %body1
|
|
; CHECK: %body2
|
|
; CHECK: %body3
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br label %body1
|
|
|
|
body1:
|
|
%iv = phi i32 [ 0, %entry ], [ %next, %body3 ]
|
|
%base = phi i32 [ 0, %entry ], [ %sum, %body3 ]
|
|
%unlikelycond1 = icmp slt i32 %base, 42
|
|
br i1 %unlikelycond1, label %unlikely1, label %body2, !prof !0
|
|
|
|
unlikely1:
|
|
call void @error(i32 %i, i32 1, i32 %base)
|
|
br label %body2
|
|
|
|
body2:
|
|
%unlikelycond2 = icmp sgt i32 %base, 21
|
|
br i1 %unlikelycond2, label %unlikely2, label %body3, !prof !0
|
|
|
|
unlikely2:
|
|
call void @error(i32 %i, i32 2, i32 %base)
|
|
br label %body3
|
|
|
|
body3:
|
|
%arrayidx = getelementptr inbounds i32* %a, i32 %iv
|
|
%0 = load i32* %arrayidx
|
|
%sum = add nsw i32 %0, %base
|
|
%next = add i32 %iv, 1
|
|
%exitcond = icmp eq i32 %next, %i
|
|
br i1 %exitcond, label %exit, label %body1
|
|
|
|
exit:
|
|
ret i32 %sum
|
|
}
|
|
|
|
!0 = metadata !{metadata !"branch_weights", i32 4, i32 64}
|
|
|
|
define i32 @test_loop_early_exits(i32 %i, i32* %a) {
|
|
; Check that we sink early exit blocks out of loop bodies.
|
|
; CHECK-LABEL: test_loop_early_exits:
|
|
; CHECK: %entry
|
|
; CHECK: %body1
|
|
; CHECK: %body2
|
|
; CHECK: %body3
|
|
; CHECK: %body4
|
|
; CHECK: %exit
|
|
; CHECK: %bail1
|
|
; CHECK: %bail2
|
|
; CHECK: %bail3
|
|
|
|
entry:
|
|
br label %body1
|
|
|
|
body1:
|
|
%iv = phi i32 [ 0, %entry ], [ %next, %body4 ]
|
|
%base = phi i32 [ 0, %entry ], [ %sum, %body4 ]
|
|
%bailcond1 = icmp eq i32 %base, 42
|
|
br i1 %bailcond1, label %bail1, label %body2
|
|
|
|
bail1:
|
|
ret i32 -1
|
|
|
|
body2:
|
|
%bailcond2 = icmp eq i32 %base, 43
|
|
br i1 %bailcond2, label %bail2, label %body3
|
|
|
|
bail2:
|
|
ret i32 -2
|
|
|
|
body3:
|
|
%bailcond3 = icmp eq i32 %base, 44
|
|
br i1 %bailcond3, label %bail3, label %body4
|
|
|
|
bail3:
|
|
ret i32 -3
|
|
|
|
body4:
|
|
%arrayidx = getelementptr inbounds i32* %a, i32 %iv
|
|
%0 = load i32* %arrayidx
|
|
%sum = add nsw i32 %0, %base
|
|
%next = add i32 %iv, 1
|
|
%exitcond = icmp eq i32 %next, %i
|
|
br i1 %exitcond, label %exit, label %body1
|
|
|
|
exit:
|
|
ret i32 %sum
|
|
}
|
|
|
|
define i32 @test_loop_rotate(i32 %i, i32* %a) {
|
|
; Check that we rotate conditional exits from the loop to the bottom of the
|
|
; loop, eliminating unconditional branches to the top.
|
|
; CHECK-LABEL: test_loop_rotate:
|
|
; CHECK: %entry
|
|
; CHECK: %body1
|
|
; CHECK: %body0
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br label %body0
|
|
|
|
body0:
|
|
%iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
|
|
%base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
|
|
%next = add i32 %iv, 1
|
|
%exitcond = icmp eq i32 %next, %i
|
|
br i1 %exitcond, label %exit, label %body1
|
|
|
|
body1:
|
|
%arrayidx = getelementptr inbounds i32* %a, i32 %iv
|
|
%0 = load i32* %arrayidx
|
|
%sum = add nsw i32 %0, %base
|
|
%bailcond1 = icmp eq i32 %sum, 42
|
|
br label %body0
|
|
|
|
exit:
|
|
ret i32 %base
|
|
}
|
|
|
|
define i32 @test_no_loop_rotate(i32 %i, i32* %a) {
|
|
; Check that we don't try to rotate a loop which is already laid out with
|
|
; fallthrough opportunities into the top and out of the bottom.
|
|
; CHECK-LABEL: test_no_loop_rotate:
|
|
; CHECK: %entry
|
|
; CHECK: %body0
|
|
; CHECK: %body1
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br label %body0
|
|
|
|
body0:
|
|
%iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
|
|
%base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
|
|
%arrayidx = getelementptr inbounds i32* %a, i32 %iv
|
|
%0 = load i32* %arrayidx
|
|
%sum = add nsw i32 %0, %base
|
|
%bailcond1 = icmp eq i32 %sum, 42
|
|
br i1 %bailcond1, label %exit, label %body1
|
|
|
|
body1:
|
|
%next = add i32 %iv, 1
|
|
%exitcond = icmp eq i32 %next, %i
|
|
br i1 %exitcond, label %exit, label %body0
|
|
|
|
exit:
|
|
ret i32 %base
|
|
}
|
|
|
|
define i32 @test_loop_align(i32 %i, i32* %a) {
|
|
; Check that we provide basic loop body alignment with the block placement
|
|
; pass.
|
|
; CHECK-LABEL: test_loop_align:
|
|
; CHECK: %entry
|
|
; CHECK: .align [[ALIGN:[0-9]+]],
|
|
; CHECK-NEXT: %body
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br label %body
|
|
|
|
body:
|
|
%iv = phi i32 [ 0, %entry ], [ %next, %body ]
|
|
%base = phi i32 [ 0, %entry ], [ %sum, %body ]
|
|
%arrayidx = getelementptr inbounds i32* %a, i32 %iv
|
|
%0 = load i32* %arrayidx
|
|
%sum = add nsw i32 %0, %base
|
|
%next = add i32 %iv, 1
|
|
%exitcond = icmp eq i32 %next, %i
|
|
br i1 %exitcond, label %exit, label %body
|
|
|
|
exit:
|
|
ret i32 %sum
|
|
}
|
|
|
|
define i32 @test_nested_loop_align(i32 %i, i32* %a, i32* %b) {
|
|
; Check that we provide nested loop body alignment.
|
|
; CHECK-LABEL: test_nested_loop_align:
|
|
; CHECK: %entry
|
|
; CHECK: .align [[ALIGN]],
|
|
; CHECK-NEXT: %loop.body.1
|
|
; CHECK: .align [[ALIGN]],
|
|
; CHECK-NEXT: %inner.loop.body
|
|
; CHECK-NOT: .align
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br label %loop.body.1
|
|
|
|
loop.body.1:
|
|
%iv = phi i32 [ 0, %entry ], [ %next, %loop.body.2 ]
|
|
%arrayidx = getelementptr inbounds i32* %a, i32 %iv
|
|
%bidx = load i32* %arrayidx
|
|
br label %inner.loop.body
|
|
|
|
inner.loop.body:
|
|
%inner.iv = phi i32 [ 0, %loop.body.1 ], [ %inner.next, %inner.loop.body ]
|
|
%base = phi i32 [ 0, %loop.body.1 ], [ %sum, %inner.loop.body ]
|
|
%scaled_idx = mul i32 %bidx, %iv
|
|
%inner.arrayidx = getelementptr inbounds i32* %b, i32 %scaled_idx
|
|
%0 = load i32* %inner.arrayidx
|
|
%sum = add nsw i32 %0, %base
|
|
%inner.next = add i32 %iv, 1
|
|
%inner.exitcond = icmp eq i32 %inner.next, %i
|
|
br i1 %inner.exitcond, label %loop.body.2, label %inner.loop.body
|
|
|
|
loop.body.2:
|
|
%next = add i32 %iv, 1
|
|
%exitcond = icmp eq i32 %next, %i
|
|
br i1 %exitcond, label %exit, label %loop.body.1
|
|
|
|
exit:
|
|
ret i32 %sum
|
|
}
|
|
|
|
define void @unnatural_cfg1() {
|
|
; Test that we can handle a loop with an inner unnatural loop at the end of
|
|
; a function. This is a gross CFG reduced out of the single source GCC.
|
|
; CHECK: unnatural_cfg1
|
|
; CHECK: %entry
|
|
; CHECK: %loop.body1
|
|
; CHECK: %loop.body2
|
|
; CHECK: %loop.body3
|
|
|
|
entry:
|
|
br label %loop.header
|
|
|
|
loop.header:
|
|
br label %loop.body1
|
|
|
|
loop.body1:
|
|
br i1 undef, label %loop.body3, label %loop.body2
|
|
|
|
loop.body2:
|
|
%ptr = load i32** undef, align 4
|
|
br label %loop.body3
|
|
|
|
loop.body3:
|
|
%myptr = phi i32* [ %ptr2, %loop.body5 ], [ %ptr, %loop.body2 ], [ undef, %loop.body1 ]
|
|
%bcmyptr = bitcast i32* %myptr to i32*
|
|
%val = load i32* %bcmyptr, align 4
|
|
%comp = icmp eq i32 %val, 48
|
|
br i1 %comp, label %loop.body4, label %loop.body5
|
|
|
|
loop.body4:
|
|
br i1 undef, label %loop.header, label %loop.body5
|
|
|
|
loop.body5:
|
|
%ptr2 = load i32** undef, align 4
|
|
br label %loop.body3
|
|
}
|
|
|
|
define void @unnatural_cfg2() {
|
|
; Test that we can handle a loop with a nested natural loop *and* an unnatural
|
|
; loop. This was reduced from a crash on block placement when run over
|
|
; single-source GCC.
|
|
; CHECK: unnatural_cfg2
|
|
; CHECK: %entry
|
|
; CHECK: %loop.body1
|
|
; CHECK: %loop.body2
|
|
; CHECK: %loop.body3
|
|
; CHECK: %loop.inner1.begin
|
|
; The end block is folded with %loop.body3...
|
|
; CHECK-NOT: %loop.inner1.end
|
|
; CHECK: %loop.body4
|
|
; CHECK: %loop.inner2.begin
|
|
; The loop.inner2.end block is folded
|
|
; CHECK: %loop.header
|
|
; CHECK: %bail
|
|
|
|
entry:
|
|
br label %loop.header
|
|
|
|
loop.header:
|
|
%comp0 = icmp eq i32* undef, null
|
|
br i1 %comp0, label %bail, label %loop.body1
|
|
|
|
loop.body1:
|
|
%val0 = load i32** undef, align 4
|
|
br i1 undef, label %loop.body2, label %loop.inner1.begin
|
|
|
|
loop.body2:
|
|
br i1 undef, label %loop.body4, label %loop.body3
|
|
|
|
loop.body3:
|
|
%ptr1 = getelementptr inbounds i32* %val0, i32 0
|
|
%castptr1 = bitcast i32* %ptr1 to i32**
|
|
%val1 = load i32** %castptr1, align 4
|
|
br label %loop.inner1.begin
|
|
|
|
loop.inner1.begin:
|
|
%valphi = phi i32* [ %val2, %loop.inner1.end ], [ %val1, %loop.body3 ], [ %val0, %loop.body1 ]
|
|
%castval = bitcast i32* %valphi to i32*
|
|
%comp1 = icmp eq i32 undef, 48
|
|
br i1 %comp1, label %loop.inner1.end, label %loop.body4
|
|
|
|
loop.inner1.end:
|
|
%ptr2 = getelementptr inbounds i32* %valphi, i32 0
|
|
%castptr2 = bitcast i32* %ptr2 to i32**
|
|
%val2 = load i32** %castptr2, align 4
|
|
br label %loop.inner1.begin
|
|
|
|
loop.body4.dead:
|
|
br label %loop.body4
|
|
|
|
loop.body4:
|
|
%comp2 = icmp ult i32 undef, 3
|
|
br i1 %comp2, label %loop.inner2.begin, label %loop.end
|
|
|
|
loop.inner2.begin:
|
|
br i1 false, label %loop.end, label %loop.inner2.end
|
|
|
|
loop.inner2.end:
|
|
%comp3 = icmp eq i32 undef, 1769472
|
|
br i1 %comp3, label %loop.end, label %loop.inner2.begin
|
|
|
|
loop.end:
|
|
br label %loop.header
|
|
|
|
bail:
|
|
unreachable
|
|
}
|
|
|
|
define i32 @problematic_switch() {
|
|
; This function's CFG caused overlow in the machine branch probability
|
|
; calculation, triggering asserts. Make sure we don't crash on it.
|
|
; CHECK: problematic_switch
|
|
|
|
entry:
|
|
switch i32 undef, label %exit [
|
|
i32 879, label %bogus
|
|
i32 877, label %step
|
|
i32 876, label %step
|
|
i32 875, label %step
|
|
i32 874, label %step
|
|
i32 873, label %step
|
|
i32 872, label %step
|
|
i32 868, label %step
|
|
i32 867, label %step
|
|
i32 866, label %step
|
|
i32 861, label %step
|
|
i32 860, label %step
|
|
i32 856, label %step
|
|
i32 855, label %step
|
|
i32 854, label %step
|
|
i32 831, label %step
|
|
i32 830, label %step
|
|
i32 829, label %step
|
|
i32 828, label %step
|
|
i32 815, label %step
|
|
i32 814, label %step
|
|
i32 811, label %step
|
|
i32 806, label %step
|
|
i32 805, label %step
|
|
i32 804, label %step
|
|
i32 803, label %step
|
|
i32 802, label %step
|
|
i32 801, label %step
|
|
i32 800, label %step
|
|
i32 799, label %step
|
|
i32 798, label %step
|
|
i32 797, label %step
|
|
i32 796, label %step
|
|
i32 795, label %step
|
|
]
|
|
bogus:
|
|
unreachable
|
|
step:
|
|
br label %exit
|
|
exit:
|
|
%merge = phi i32 [ 3, %step ], [ 6, %entry ]
|
|
ret i32 %merge
|
|
}
|
|
|
|
define void @fpcmp_unanalyzable_branch(i1 %cond) {
|
|
; This function's CFG contains an unanalyzable branch that is likely to be
|
|
; split due to having a different high-probability predecessor.
|
|
; CHECK: fpcmp_unanalyzable_branch
|
|
; CHECK: %entry
|
|
; CHECK: %exit
|
|
; CHECK-NOT: %if.then
|
|
; CHECK-NOT: %if.end
|
|
; CHECK-NOT: jne
|
|
; CHECK-NOT: jnp
|
|
; CHECK: jne
|
|
; CHECK-NEXT: jnp
|
|
; CHECK-NEXT: %if.then
|
|
|
|
entry:
|
|
; Note that this branch must be strongly biased toward
|
|
; 'entry.if.then_crit_edge' to ensure that we would try to form a chain for
|
|
; 'entry' -> 'entry.if.then_crit_edge' -> 'if.then'. It is the last edge in that
|
|
; chain which would violate the unanalyzable branch in 'exit', but we won't even
|
|
; try this trick unless 'if.then' is believed to almost always be reached from
|
|
; 'entry.if.then_crit_edge'.
|
|
br i1 %cond, label %entry.if.then_crit_edge, label %lor.lhs.false, !prof !1
|
|
|
|
entry.if.then_crit_edge:
|
|
%.pre14 = load i8* undef, align 1
|
|
br label %if.then
|
|
|
|
lor.lhs.false:
|
|
br i1 undef, label %if.end, label %exit
|
|
|
|
exit:
|
|
%cmp.i = fcmp une double 0.000000e+00, undef
|
|
br i1 %cmp.i, label %if.then, label %if.end
|
|
|
|
if.then:
|
|
%0 = phi i8 [ %.pre14, %entry.if.then_crit_edge ], [ undef, %exit ]
|
|
%1 = and i8 %0, 1
|
|
store i8 %1, i8* undef, align 4
|
|
br label %if.end
|
|
|
|
if.end:
|
|
ret void
|
|
}
|
|
|
|
!1 = metadata !{metadata !"branch_weights", i32 1000, i32 1}
|
|
|
|
declare i32 @f()
|
|
declare i32 @g()
|
|
declare i32 @h(i32 %x)
|
|
|
|
define i32 @test_global_cfg_break_profitability() {
|
|
; Check that our metrics for the profitability of a CFG break are global rather
|
|
; than local. A successor may be very hot, but if the current block isn't, it
|
|
; doesn't matter. Within this test the 'then' block is slightly warmer than the
|
|
; 'else' block, but not nearly enough to merit merging it with the exit block
|
|
; even though the probability of 'then' branching to the 'exit' block is very
|
|
; high.
|
|
; CHECK: test_global_cfg_break_profitability
|
|
; CHECK: calll {{_?}}f
|
|
; CHECK: calll {{_?}}g
|
|
; CHECK: calll {{_?}}h
|
|
; CHECK: ret
|
|
|
|
entry:
|
|
br i1 undef, label %then, label %else, !prof !2
|
|
|
|
then:
|
|
%then.result = call i32 @f()
|
|
br label %exit
|
|
|
|
else:
|
|
%else.result = call i32 @g()
|
|
br label %exit
|
|
|
|
exit:
|
|
%result = phi i32 [ %then.result, %then ], [ %else.result, %else ]
|
|
%result2 = call i32 @h(i32 %result)
|
|
ret i32 %result
|
|
}
|
|
|
|
!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
|
|
|
declare i32 @__gxx_personality_v0(...)
|
|
|
|
define void @test_eh_lpad_successor() {
|
|
; Some times the landing pad ends up as the first successor of an invoke block.
|
|
; When this happens, a strange result used to fall out of updateTerminators: we
|
|
; didn't correctly locate the fallthrough successor, assuming blindly that the
|
|
; first one was the fallthrough successor. As a result, we would add an
|
|
; erroneous jump to the landing pad thinking *that* was the default successor.
|
|
; CHECK: test_eh_lpad_successor
|
|
; CHECK: %entry
|
|
; CHECK-NOT: jmp
|
|
; CHECK: %loop
|
|
|
|
entry:
|
|
invoke i32 @f() to label %preheader unwind label %lpad
|
|
|
|
preheader:
|
|
br label %loop
|
|
|
|
lpad:
|
|
%lpad.val = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*)
|
|
cleanup
|
|
resume { i8*, i32 } %lpad.val
|
|
|
|
loop:
|
|
br label %loop
|
|
}
|
|
|
|
declare void @fake_throw() noreturn
|
|
|
|
define void @test_eh_throw() {
|
|
; For blocks containing a 'throw' (or similar functionality), we have
|
|
; a no-return invoke. In this case, only EH successors will exist, and
|
|
; fallthrough simply won't occur. Make sure we don't crash trying to update
|
|
; terminators for such constructs.
|
|
;
|
|
; CHECK: test_eh_throw
|
|
; CHECK: %entry
|
|
; CHECK: %cleanup
|
|
|
|
entry:
|
|
invoke void @fake_throw() to label %continue unwind label %cleanup
|
|
|
|
continue:
|
|
unreachable
|
|
|
|
cleanup:
|
|
%0 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*)
|
|
cleanup
|
|
unreachable
|
|
}
|
|
|
|
define void @test_unnatural_cfg_backwards_inner_loop() {
|
|
; Test that when we encounter an unnatural CFG structure after having formed
|
|
; a chain for an inner loop which happened to be laid out backwards we don't
|
|
; attempt to merge onto the wrong end of the inner loop just because we find it
|
|
; first. This was reduced from a crasher in GCC's single source.
|
|
;
|
|
; CHECK: test_unnatural_cfg_backwards_inner_loop
|
|
; CHECK: %entry
|
|
; CHECK: [[BODY:# BB#[0-9]+]]:
|
|
; CHECK: %loop2b
|
|
; CHECK: %loop1
|
|
; CHECK: %loop2a
|
|
|
|
entry:
|
|
br i1 undef, label %loop2a, label %body
|
|
|
|
body:
|
|
br label %loop2a
|
|
|
|
loop1:
|
|
%next.load = load i32** undef
|
|
br i1 %comp.a, label %loop2a, label %loop2b
|
|
|
|
loop2a:
|
|
%var = phi i32* [ null, %entry ], [ null, %body ], [ %next.phi, %loop1 ]
|
|
%next.var = phi i32* [ null, %entry ], [ undef, %body ], [ %next.load, %loop1 ]
|
|
%comp.a = icmp eq i32* %var, null
|
|
br label %loop3
|
|
|
|
loop2b:
|
|
%gep = getelementptr inbounds i32* %var.phi, i32 0
|
|
%next.ptr = bitcast i32* %gep to i32**
|
|
store i32* %next.phi, i32** %next.ptr
|
|
br label %loop3
|
|
|
|
loop3:
|
|
%var.phi = phi i32* [ %next.phi, %loop2b ], [ %var, %loop2a ]
|
|
%next.phi = phi i32* [ %next.load, %loop2b ], [ %next.var, %loop2a ]
|
|
br label %loop1
|
|
}
|
|
|
|
define void @unanalyzable_branch_to_loop_header() {
|
|
; Ensure that we can handle unanalyzable branches into loop headers. We
|
|
; pre-form chains for unanalyzable branches, and will find the tail end of that
|
|
; at the start of the loop. This function uses floating point comparison
|
|
; fallthrough because that happens to always produce unanalyzable branches on
|
|
; x86.
|
|
;
|
|
; CHECK: unanalyzable_branch_to_loop_header
|
|
; CHECK: %entry
|
|
; CHECK: %loop
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
%cmp = fcmp une double 0.000000e+00, undef
|
|
br i1 %cmp, label %loop, label %exit
|
|
|
|
loop:
|
|
%cond = icmp eq i8 undef, 42
|
|
br i1 %cond, label %exit, label %loop
|
|
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
define void @unanalyzable_branch_to_best_succ(i1 %cond) {
|
|
; Ensure that we can handle unanalyzable branches where the destination block
|
|
; gets selected as the optimal successor to merge.
|
|
;
|
|
; CHECK: unanalyzable_branch_to_best_succ
|
|
; CHECK: %entry
|
|
; CHECK: %foo
|
|
; CHECK: %bar
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
; Bias this branch toward bar to ensure we form that chain.
|
|
br i1 %cond, label %bar, label %foo, !prof !1
|
|
|
|
foo:
|
|
%cmp = fcmp une double 0.000000e+00, undef
|
|
br i1 %cmp, label %bar, label %exit
|
|
|
|
bar:
|
|
call i32 @f()
|
|
br label %exit
|
|
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
define void @unanalyzable_branch_to_free_block(float %x) {
|
|
; Ensure that we can handle unanalyzable branches where the destination block
|
|
; gets selected as the best free block in the CFG.
|
|
;
|
|
; CHECK: unanalyzable_branch_to_free_block
|
|
; CHECK: %entry
|
|
; CHECK: %a
|
|
; CHECK: %b
|
|
; CHECK: %c
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br i1 undef, label %a, label %b
|
|
|
|
a:
|
|
call i32 @f()
|
|
br label %c
|
|
|
|
b:
|
|
%cmp = fcmp une float %x, undef
|
|
br i1 %cmp, label %c, label %exit
|
|
|
|
c:
|
|
call i32 @g()
|
|
br label %exit
|
|
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
define void @many_unanalyzable_branches() {
|
|
; Ensure that we don't crash as we're building up many unanalyzable branches,
|
|
; blocks, and loops.
|
|
;
|
|
; CHECK: many_unanalyzable_branches
|
|
; CHECK: %entry
|
|
; CHECK: %exit
|
|
|
|
entry:
|
|
br label %0
|
|
|
|
%val0 = load volatile float* undef
|
|
%cmp0 = fcmp une float %val0, undef
|
|
br i1 %cmp0, label %1, label %0
|
|
%val1 = load volatile float* undef
|
|
%cmp1 = fcmp une float %val1, undef
|
|
br i1 %cmp1, label %2, label %1
|
|
%val2 = load volatile float* undef
|
|
%cmp2 = fcmp une float %val2, undef
|
|
br i1 %cmp2, label %3, label %2
|
|
%val3 = load volatile float* undef
|
|
%cmp3 = fcmp une float %val3, undef
|
|
br i1 %cmp3, label %4, label %3
|
|
%val4 = load volatile float* undef
|
|
%cmp4 = fcmp une float %val4, undef
|
|
br i1 %cmp4, label %5, label %4
|
|
%val5 = load volatile float* undef
|
|
%cmp5 = fcmp une float %val5, undef
|
|
br i1 %cmp5, label %6, label %5
|
|
%val6 = load volatile float* undef
|
|
%cmp6 = fcmp une float %val6, undef
|
|
br i1 %cmp6, label %7, label %6
|
|
%val7 = load volatile float* undef
|
|
%cmp7 = fcmp une float %val7, undef
|
|
br i1 %cmp7, label %8, label %7
|
|
%val8 = load volatile float* undef
|
|
%cmp8 = fcmp une float %val8, undef
|
|
br i1 %cmp8, label %9, label %8
|
|
%val9 = load volatile float* undef
|
|
%cmp9 = fcmp une float %val9, undef
|
|
br i1 %cmp9, label %10, label %9
|
|
%val10 = load volatile float* undef
|
|
%cmp10 = fcmp une float %val10, undef
|
|
br i1 %cmp10, label %11, label %10
|
|
%val11 = load volatile float* undef
|
|
%cmp11 = fcmp une float %val11, undef
|
|
br i1 %cmp11, label %12, label %11
|
|
%val12 = load volatile float* undef
|
|
%cmp12 = fcmp une float %val12, undef
|
|
br i1 %cmp12, label %13, label %12
|
|
%val13 = load volatile float* undef
|
|
%cmp13 = fcmp une float %val13, undef
|
|
br i1 %cmp13, label %14, label %13
|
|
%val14 = load volatile float* undef
|
|
%cmp14 = fcmp une float %val14, undef
|
|
br i1 %cmp14, label %15, label %14
|
|
%val15 = load volatile float* undef
|
|
%cmp15 = fcmp une float %val15, undef
|
|
br i1 %cmp15, label %16, label %15
|
|
%val16 = load volatile float* undef
|
|
%cmp16 = fcmp une float %val16, undef
|
|
br i1 %cmp16, label %17, label %16
|
|
%val17 = load volatile float* undef
|
|
%cmp17 = fcmp une float %val17, undef
|
|
br i1 %cmp17, label %18, label %17
|
|
%val18 = load volatile float* undef
|
|
%cmp18 = fcmp une float %val18, undef
|
|
br i1 %cmp18, label %19, label %18
|
|
%val19 = load volatile float* undef
|
|
%cmp19 = fcmp une float %val19, undef
|
|
br i1 %cmp19, label %20, label %19
|
|
%val20 = load volatile float* undef
|
|
%cmp20 = fcmp une float %val20, undef
|
|
br i1 %cmp20, label %21, label %20
|
|
%val21 = load volatile float* undef
|
|
%cmp21 = fcmp une float %val21, undef
|
|
br i1 %cmp21, label %22, label %21
|
|
%val22 = load volatile float* undef
|
|
%cmp22 = fcmp une float %val22, undef
|
|
br i1 %cmp22, label %23, label %22
|
|
%val23 = load volatile float* undef
|
|
%cmp23 = fcmp une float %val23, undef
|
|
br i1 %cmp23, label %24, label %23
|
|
%val24 = load volatile float* undef
|
|
%cmp24 = fcmp une float %val24, undef
|
|
br i1 %cmp24, label %25, label %24
|
|
%val25 = load volatile float* undef
|
|
%cmp25 = fcmp une float %val25, undef
|
|
br i1 %cmp25, label %26, label %25
|
|
%val26 = load volatile float* undef
|
|
%cmp26 = fcmp une float %val26, undef
|
|
br i1 %cmp26, label %27, label %26
|
|
%val27 = load volatile float* undef
|
|
%cmp27 = fcmp une float %val27, undef
|
|
br i1 %cmp27, label %28, label %27
|
|
%val28 = load volatile float* undef
|
|
%cmp28 = fcmp une float %val28, undef
|
|
br i1 %cmp28, label %29, label %28
|
|
%val29 = load volatile float* undef
|
|
%cmp29 = fcmp une float %val29, undef
|
|
br i1 %cmp29, label %30, label %29
|
|
%val30 = load volatile float* undef
|
|
%cmp30 = fcmp une float %val30, undef
|
|
br i1 %cmp30, label %31, label %30
|
|
%val31 = load volatile float* undef
|
|
%cmp31 = fcmp une float %val31, undef
|
|
br i1 %cmp31, label %32, label %31
|
|
%val32 = load volatile float* undef
|
|
%cmp32 = fcmp une float %val32, undef
|
|
br i1 %cmp32, label %33, label %32
|
|
%val33 = load volatile float* undef
|
|
%cmp33 = fcmp une float %val33, undef
|
|
br i1 %cmp33, label %34, label %33
|
|
%val34 = load volatile float* undef
|
|
%cmp34 = fcmp une float %val34, undef
|
|
br i1 %cmp34, label %35, label %34
|
|
%val35 = load volatile float* undef
|
|
%cmp35 = fcmp une float %val35, undef
|
|
br i1 %cmp35, label %36, label %35
|
|
%val36 = load volatile float* undef
|
|
%cmp36 = fcmp une float %val36, undef
|
|
br i1 %cmp36, label %37, label %36
|
|
%val37 = load volatile float* undef
|
|
%cmp37 = fcmp une float %val37, undef
|
|
br i1 %cmp37, label %38, label %37
|
|
%val38 = load volatile float* undef
|
|
%cmp38 = fcmp une float %val38, undef
|
|
br i1 %cmp38, label %39, label %38
|
|
%val39 = load volatile float* undef
|
|
%cmp39 = fcmp une float %val39, undef
|
|
br i1 %cmp39, label %40, label %39
|
|
%val40 = load volatile float* undef
|
|
%cmp40 = fcmp une float %val40, undef
|
|
br i1 %cmp40, label %41, label %40
|
|
%val41 = load volatile float* undef
|
|
%cmp41 = fcmp une float %val41, undef
|
|
br i1 %cmp41, label %42, label %41
|
|
%val42 = load volatile float* undef
|
|
%cmp42 = fcmp une float %val42, undef
|
|
br i1 %cmp42, label %43, label %42
|
|
%val43 = load volatile float* undef
|
|
%cmp43 = fcmp une float %val43, undef
|
|
br i1 %cmp43, label %44, label %43
|
|
%val44 = load volatile float* undef
|
|
%cmp44 = fcmp une float %val44, undef
|
|
br i1 %cmp44, label %45, label %44
|
|
%val45 = load volatile float* undef
|
|
%cmp45 = fcmp une float %val45, undef
|
|
br i1 %cmp45, label %46, label %45
|
|
%val46 = load volatile float* undef
|
|
%cmp46 = fcmp une float %val46, undef
|
|
br i1 %cmp46, label %47, label %46
|
|
%val47 = load volatile float* undef
|
|
%cmp47 = fcmp une float %val47, undef
|
|
br i1 %cmp47, label %48, label %47
|
|
%val48 = load volatile float* undef
|
|
%cmp48 = fcmp une float %val48, undef
|
|
br i1 %cmp48, label %49, label %48
|
|
%val49 = load volatile float* undef
|
|
%cmp49 = fcmp une float %val49, undef
|
|
br i1 %cmp49, label %50, label %49
|
|
%val50 = load volatile float* undef
|
|
%cmp50 = fcmp une float %val50, undef
|
|
br i1 %cmp50, label %51, label %50
|
|
%val51 = load volatile float* undef
|
|
%cmp51 = fcmp une float %val51, undef
|
|
br i1 %cmp51, label %52, label %51
|
|
%val52 = load volatile float* undef
|
|
%cmp52 = fcmp une float %val52, undef
|
|
br i1 %cmp52, label %53, label %52
|
|
%val53 = load volatile float* undef
|
|
%cmp53 = fcmp une float %val53, undef
|
|
br i1 %cmp53, label %54, label %53
|
|
%val54 = load volatile float* undef
|
|
%cmp54 = fcmp une float %val54, undef
|
|
br i1 %cmp54, label %55, label %54
|
|
%val55 = load volatile float* undef
|
|
%cmp55 = fcmp une float %val55, undef
|
|
br i1 %cmp55, label %56, label %55
|
|
%val56 = load volatile float* undef
|
|
%cmp56 = fcmp une float %val56, undef
|
|
br i1 %cmp56, label %57, label %56
|
|
%val57 = load volatile float* undef
|
|
%cmp57 = fcmp une float %val57, undef
|
|
br i1 %cmp57, label %58, label %57
|
|
%val58 = load volatile float* undef
|
|
%cmp58 = fcmp une float %val58, undef
|
|
br i1 %cmp58, label %59, label %58
|
|
%val59 = load volatile float* undef
|
|
%cmp59 = fcmp une float %val59, undef
|
|
br i1 %cmp59, label %60, label %59
|
|
%val60 = load volatile float* undef
|
|
%cmp60 = fcmp une float %val60, undef
|
|
br i1 %cmp60, label %61, label %60
|
|
%val61 = load volatile float* undef
|
|
%cmp61 = fcmp une float %val61, undef
|
|
br i1 %cmp61, label %62, label %61
|
|
%val62 = load volatile float* undef
|
|
%cmp62 = fcmp une float %val62, undef
|
|
br i1 %cmp62, label %63, label %62
|
|
%val63 = load volatile float* undef
|
|
%cmp63 = fcmp une float %val63, undef
|
|
br i1 %cmp63, label %64, label %63
|
|
%val64 = load volatile float* undef
|
|
%cmp64 = fcmp une float %val64, undef
|
|
br i1 %cmp64, label %65, label %64
|
|
|
|
br label %exit
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
define void @benchmark_heapsort(i32 %n, double* nocapture %ra) {
|
|
; This test case comes from the heapsort benchmark, and exemplifies several
|
|
; important aspects to block placement in the presence of loops:
|
|
; 1) Loop rotation needs to *ensure* that the desired exiting edge can be
|
|
; a fallthrough.
|
|
; 2) The exiting edge from the loop which is rotated to be laid out at the
|
|
; bottom of the loop needs to be exiting into the nearest enclosing loop (to
|
|
; which there is an exit). Otherwise, we force that enclosing loop into
|
|
; strange layouts that are siginificantly less efficient, often times maing
|
|
; it discontiguous.
|
|
;
|
|
; CHECK: @benchmark_heapsort
|
|
; CHECK: %entry
|
|
; First rotated loop top.
|
|
; CHECK: .align
|
|
; CHECK: %while.end
|
|
; CHECK: %for.cond
|
|
; CHECK: %if.then
|
|
; CHECK: %if.else
|
|
; CHECK: %if.end10
|
|
; Second rotated loop top
|
|
; CHECK: .align
|
|
; CHECK: %if.then24
|
|
; CHECK: %while.cond.outer
|
|
; Third rotated loop top
|
|
; CHECK: .align
|
|
; CHECK: %while.cond
|
|
; CHECK: %while.body
|
|
; CHECK: %land.lhs.true
|
|
; CHECK: %if.then19
|
|
; CHECK: %if.end20
|
|
; CHECK: %if.then8
|
|
; CHECK: ret
|
|
|
|
entry:
|
|
%shr = ashr i32 %n, 1
|
|
%add = add nsw i32 %shr, 1
|
|
%arrayidx3 = getelementptr inbounds double* %ra, i64 1
|
|
br label %for.cond
|
|
|
|
for.cond:
|
|
%ir.0 = phi i32 [ %n, %entry ], [ %ir.1, %while.end ]
|
|
%l.0 = phi i32 [ %add, %entry ], [ %l.1, %while.end ]
|
|
%cmp = icmp sgt i32 %l.0, 1
|
|
br i1 %cmp, label %if.then, label %if.else
|
|
|
|
if.then:
|
|
%dec = add nsw i32 %l.0, -1
|
|
%idxprom = sext i32 %dec to i64
|
|
%arrayidx = getelementptr inbounds double* %ra, i64 %idxprom
|
|
%0 = load double* %arrayidx, align 8
|
|
br label %if.end10
|
|
|
|
if.else:
|
|
%idxprom1 = sext i32 %ir.0 to i64
|
|
%arrayidx2 = getelementptr inbounds double* %ra, i64 %idxprom1
|
|
%1 = load double* %arrayidx2, align 8
|
|
%2 = load double* %arrayidx3, align 8
|
|
store double %2, double* %arrayidx2, align 8
|
|
%dec6 = add nsw i32 %ir.0, -1
|
|
%cmp7 = icmp eq i32 %dec6, 1
|
|
br i1 %cmp7, label %if.then8, label %if.end10
|
|
|
|
if.then8:
|
|
store double %1, double* %arrayidx3, align 8
|
|
ret void
|
|
|
|
if.end10:
|
|
%ir.1 = phi i32 [ %ir.0, %if.then ], [ %dec6, %if.else ]
|
|
%l.1 = phi i32 [ %dec, %if.then ], [ %l.0, %if.else ]
|
|
%rra.0 = phi double [ %0, %if.then ], [ %1, %if.else ]
|
|
%add31 = add nsw i32 %ir.1, 1
|
|
br label %while.cond.outer
|
|
|
|
while.cond.outer:
|
|
%j.0.ph.in = phi i32 [ %l.1, %if.end10 ], [ %j.1, %if.then24 ]
|
|
%j.0.ph = shl i32 %j.0.ph.in, 1
|
|
br label %while.cond
|
|
|
|
while.cond:
|
|
%j.0 = phi i32 [ %add31, %if.end20 ], [ %j.0.ph, %while.cond.outer ]
|
|
%cmp11 = icmp sgt i32 %j.0, %ir.1
|
|
br i1 %cmp11, label %while.end, label %while.body
|
|
|
|
while.body:
|
|
%cmp12 = icmp slt i32 %j.0, %ir.1
|
|
br i1 %cmp12, label %land.lhs.true, label %if.end20
|
|
|
|
land.lhs.true:
|
|
%idxprom13 = sext i32 %j.0 to i64
|
|
%arrayidx14 = getelementptr inbounds double* %ra, i64 %idxprom13
|
|
%3 = load double* %arrayidx14, align 8
|
|
%add15 = add nsw i32 %j.0, 1
|
|
%idxprom16 = sext i32 %add15 to i64
|
|
%arrayidx17 = getelementptr inbounds double* %ra, i64 %idxprom16
|
|
%4 = load double* %arrayidx17, align 8
|
|
%cmp18 = fcmp olt double %3, %4
|
|
br i1 %cmp18, label %if.then19, label %if.end20
|
|
|
|
if.then19:
|
|
br label %if.end20
|
|
|
|
if.end20:
|
|
%j.1 = phi i32 [ %add15, %if.then19 ], [ %j.0, %land.lhs.true ], [ %j.0, %while.body ]
|
|
%idxprom21 = sext i32 %j.1 to i64
|
|
%arrayidx22 = getelementptr inbounds double* %ra, i64 %idxprom21
|
|
%5 = load double* %arrayidx22, align 8
|
|
%cmp23 = fcmp olt double %rra.0, %5
|
|
br i1 %cmp23, label %if.then24, label %while.cond
|
|
|
|
if.then24:
|
|
%idxprom27 = sext i32 %j.0.ph.in to i64
|
|
%arrayidx28 = getelementptr inbounds double* %ra, i64 %idxprom27
|
|
store double %5, double* %arrayidx28, align 8
|
|
br label %while.cond.outer
|
|
|
|
while.end:
|
|
%idxprom33 = sext i32 %j.0.ph.in to i64
|
|
%arrayidx34 = getelementptr inbounds double* %ra, i64 %idxprom33
|
|
store double %rra.0, double* %arrayidx34, align 8
|
|
br label %for.cond
|
|
}
|
|
|
|
declare void @cold_function() cold
|
|
|
|
define i32 @test_cold_calls(i32* %a) {
|
|
; Test that edges to blocks post-dominated by cold calls are
|
|
; marked as not expected to be taken. They should be laid out
|
|
; at the bottom.
|
|
; CHECK-LABEL: test_cold_calls:
|
|
; CHECK: %entry
|
|
; CHECK: %else
|
|
; CHECK: %exit
|
|
; CHECK: %then
|
|
|
|
entry:
|
|
%gep1 = getelementptr i32* %a, i32 1
|
|
%val1 = load i32* %gep1
|
|
%cond1 = icmp ugt i32 %val1, 1
|
|
br i1 %cond1, label %then, label %else
|
|
|
|
then:
|
|
call void @cold_function()
|
|
br label %exit
|
|
|
|
else:
|
|
%gep2 = getelementptr i32* %a, i32 2
|
|
%val2 = load i32* %gep2
|
|
br label %exit
|
|
|
|
exit:
|
|
%ret = phi i32 [ %val1, %then ], [ %val2, %else ]
|
|
ret i32 %ret
|
|
}
|