llvm-6502/lib/Target/Hexagon/HexagonOperands.td
2015-02-04 22:36:28 +00:00

900 lines
27 KiB
TableGen

//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illnois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Immediate operands.
let PrintMethod = "printImmOperand" in {
// f32Ext type is used to identify constant extended floating point immediates.
def f32Ext : Operand<f32>;
def s32Imm : Operand<i32>;
def s26_6Imm : Operand<i32>;
def s16Imm : Operand<i32>;
def s12Imm : Operand<i32>;
def s11Imm : Operand<i32>;
def s11_0Imm : Operand<i32>;
def s11_1Imm : Operand<i32>;
def s11_2Imm : Operand<i32>;
def s11_3Imm : Operand<i32>;
def s10Imm : Operand<i32>;
def s9Imm : Operand<i32>;
def m9Imm : Operand<i32>;
def s8Imm : Operand<i32>;
def s8Imm64 : Operand<i64>;
def s6Imm : Operand<i32>;
def s4Imm : Operand<i32>;
def s4_0Imm : Operand<i32>;
def s4_1Imm : Operand<i32>;
def s4_2Imm : Operand<i32>;
def s4_3Imm : Operand<i32>;
def u64Imm : Operand<i64>;
def u32Imm : Operand<i32>;
def u26_6Imm : Operand<i32>;
def u16Imm : Operand<i32>;
def u16_0Imm : Operand<i32>;
def u16_1Imm : Operand<i32>;
def u16_2Imm : Operand<i32>;
def u16_3Imm : Operand<i32>;
def u11_3Imm : Operand<i32>;
def u10Imm : Operand<i32>;
def u9Imm : Operand<i32>;
def u8Imm : Operand<i32>;
def u7Imm : Operand<i32>;
def u6Imm : Operand<i32>;
def u6_0Imm : Operand<i32>;
def u6_1Imm : Operand<i32>;
def u6_2Imm : Operand<i32>;
def u6_3Imm : Operand<i32>;
def u5Imm : Operand<i32>;
def u4Imm : Operand<i32>;
def u3Imm : Operand<i32>;
def u2Imm : Operand<i32>;
def u1Imm : Operand<i32>;
def n8Imm : Operand<i32>;
def m6Imm : Operand<i32>;
}
let PrintMethod = "printNOneImmOperand" in
def nOneImm : Operand<i32>;
//
// Immediate predicates
//
def s32ImmPred : PatLeaf<(i32 imm), [{
// s32ImmPred predicate - True if the immediate fits in a 32-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<32>(v);
}]>;
def s32_24ImmPred : PatLeaf<(i32 imm), [{
// s32_24ImmPred predicate - True if the immediate fits in a 32-bit sign
// extended field that is a multiple of 0x1000000.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<32,24>(v);
}]>;
def s32_16s8ImmPred : PatLeaf<(i32 imm), [{
// s32_16s8ImmPred predicate - True if the immediate fits in a 32-bit sign
// extended field that is a multiple of 0x10000.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<24,16>(v);
}]>;
def s26_6ImmPred : PatLeaf<(i32 imm), [{
// s26_6ImmPred predicate - True if the immediate fits in a 32-bit
// sign extended field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<26,6>(v);
}]>;
def s16ImmPred : PatLeaf<(i32 imm), [{
// s16ImmPred predicate - True if the immediate fits in a 16-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<16>(v);
}]>;
def s13ImmPred : PatLeaf<(i32 imm), [{
// s13ImmPred predicate - True if the immediate fits in a 13-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<13>(v);
}]>;
def s12ImmPred : PatLeaf<(i32 imm), [{
// s12ImmPred predicate - True if the immediate fits in a 12-bit
// sign extended field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<12>(v);
}]>;
def s11_0ImmPred : PatLeaf<(i32 imm), [{
// s11_0ImmPred predicate - True if the immediate fits in a 11-bit
// sign extended field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<11>(v);
}]>;
def s11_1ImmPred : PatLeaf<(i32 imm), [{
// s11_1ImmPred predicate - True if the immediate fits in a 12-bit
// sign extended field and is a multiple of 2.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,1>(v);
}]>;
def s11_2ImmPred : PatLeaf<(i32 imm), [{
// s11_2ImmPred predicate - True if the immediate fits in a 13-bit
// sign extended field and is a multiple of 4.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,2>(v);
}]>;
def s11_3ImmPred : PatLeaf<(i32 imm), [{
// s11_3ImmPred predicate - True if the immediate fits in a 14-bit
// sign extended field and is a multiple of 8.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,3>(v);
}]>;
def s10ImmPred : PatLeaf<(i32 imm), [{
// s10ImmPred predicate - True if the immediate fits in a 10-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<10>(v);
}]>;
def s9ImmPred : PatLeaf<(i32 imm), [{
// s9ImmPred predicate - True if the immediate fits in a 9-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<9>(v);
}]>;
def m9ImmPred : PatLeaf<(i32 imm), [{
// m9ImmPred predicate - True if the immediate fits in a 9-bit magnitude
// field. The range of m9 is -255 to 255.
int64_t v = (int64_t)N->getSExtValue();
return isInt<9>(v) && (v != -256);
}]>;
def s8ImmPred : PatLeaf<(i32 imm), [{
// s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<8>(v);
}]>;
def s8Imm64Pred : PatLeaf<(i64 imm), [{
// s8ImmPred predicate - True if the immediate fits in a 8-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<8>(v);
}]>;
def s6ImmPred : PatLeaf<(i32 imm), [{
// s6ImmPred predicate - True if the immediate fits in a 6-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<6>(v);
}]>;
def s4_0ImmPred : PatLeaf<(i32 imm), [{
// s4_0ImmPred predicate - True if the immediate fits in a 4-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<4>(v);
}]>;
def s4_1ImmPred : PatLeaf<(i32 imm), [{
// s4_1ImmPred predicate - True if the immediate fits in a 4-bit sign extended
// field of 2.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<4,1>(v);
}]>;
def s4_2ImmPred : PatLeaf<(i32 imm), [{
// s4_2ImmPred predicate - True if the immediate fits in a 4-bit sign extended
// field that is a multiple of 4.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<4,2>(v);
}]>;
def s4_3ImmPred : PatLeaf<(i32 imm), [{
// s4_3ImmPred predicate - True if the immediate fits in a 4-bit sign extended
// field that is a multiple of 8.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<4,3>(v);
}]>;
def u64ImmPred : PatLeaf<(i64 imm), [{
// Adding "N ||" to suppress gcc unused warning.
return (N || true);
}]>;
def u32ImmPred : PatLeaf<(i32 imm), [{
// u32ImmPred predicate - True if the immediate fits in a 32-bit field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<32>(v);
}]>;
def u26_6ImmPred : PatLeaf<(i32 imm), [{
// u26_6ImmPred - True if the immediate fits in a 32-bit field and
// is a multiple of 64.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<26,6>(v);
}]>;
def u16ImmPred : PatLeaf<(i32 imm), [{
// u16ImmPred predicate - True if the immediate fits in a 16-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<16>(v);
}]>;
def u16_s8ImmPred : PatLeaf<(i32 imm), [{
// u16_s8ImmPred predicate - True if the immediate fits in a 16-bit sign
// extended s8 field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<16,8>(v);
}]>;
def u16_0ImmPred : PatLeaf<(i32 imm), [{
// True if the immediate fits in a 16-bit unsigned field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<16>(v);
}]>;
def u11_3ImmPred : PatLeaf<(i32 imm), [{
// True if the immediate fits in a 14-bit unsigned field, and the lowest
// three bits are 0.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<11,3>(v);
}]>;
def u9ImmPred : PatLeaf<(i32 imm), [{
// u9ImmPred predicate - True if the immediate fits in a 9-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<9>(v);
}]>;
def u8ImmPred : PatLeaf<(i32 imm), [{
// u8ImmPred predicate - True if the immediate fits in a 8-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<8>(v);
}]>;
def u7StrictPosImmPred : ImmLeaf<i32, [{
// u7StrictPosImmPred predicate - True if the immediate fits in an 7-bit
// unsigned field and is strictly greater than 0.
return isUInt<7>(Imm) && Imm > 0;
}]>;
def u7ImmPred : PatLeaf<(i32 imm), [{
// u7ImmPred predicate - True if the immediate fits in a 7-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<7>(v);
}]>;
def u6ImmPred : PatLeaf<(i32 imm), [{
// u6ImmPred predicate - True if the immediate fits in a 6-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<6>(v);
}]>;
def u6_0ImmPred : PatLeaf<(i32 imm), [{
// u6_0ImmPred predicate - True if the immediate fits in a 6-bit unsigned
// field. Same as u6ImmPred.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<6>(v);
}]>;
def u6_1ImmPred : PatLeaf<(i32 imm), [{
// u6_1ImmPred predicate - True if the immediate fits in a 7-bit unsigned
// field that is 1 bit alinged - multiple of 2.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,1>(v);
}]>;
def u6_2ImmPred : PatLeaf<(i32 imm), [{
// u6_2ImmPred predicate - True if the immediate fits in a 8-bit unsigned
// field that is 2 bits alinged - multiple of 4.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,2>(v);
}]>;
def u6_3ImmPred : PatLeaf<(i32 imm), [{
// u6_3ImmPred predicate - True if the immediate fits in a 9-bit unsigned
// field that is 3 bits alinged - multiple of 8.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,3>(v);
}]>;
def u5ImmPred : PatLeaf<(i32 imm), [{
// u5ImmPred predicate - True if the immediate fits in a 5-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<5>(v);
}]>;
def u4ImmPred : PatLeaf<(i32 imm), [{
// u4ImmPred predicate - True if the immediate fits in a 4-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<4>(v);
}]>;
def u3ImmPred : PatLeaf<(i32 imm), [{
// u3ImmPred predicate - True if the immediate fits in a 3-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<3>(v);
}]>;
def u2ImmPred : PatLeaf<(i32 imm), [{
// u2ImmPred predicate - True if the immediate fits in a 2-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<2>(v);
}]>;
def u1ImmPred : PatLeaf<(i1 imm), [{
// u1ImmPred predicate - True if the immediate fits in a 1-bit unsigned
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<1>(v);
}]>;
def m5BImmPred : PatLeaf<(i32 imm), [{
// m5BImmPred predicate - True if the (char) number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
// this is specific to the zero extending of a negative by CombineInstr
int8_t v = (int8_t)N->getSExtValue();
return (-31 <= v && v <= -1);
}]>;
def m5HImmPred : PatLeaf<(i32 imm), [{
// m5HImmPred predicate - True if the (short) number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
// this is specific to the zero extending of a negative by CombineInstr
int16_t v = (int16_t)N->getSExtValue();
return (-31 <= v && v <= -1);
}]>;
def m5ImmPred : PatLeaf<(i32 imm), [{
// m5ImmPred predicate - True if the number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
int64_t v = (int64_t)N->getSExtValue();
return (-31 <= v && v <= -1);
}]>;
//InN means negative integers in [-(2^N - 1), 0]
def n8ImmPred : PatLeaf<(i32 imm), [{
// n8ImmPred predicate - True if the immediate fits in a 8-bit signed
// field.
int64_t v = (int64_t)N->getSExtValue();
return (-255 <= v && v <= 0);
}]>;
def nOneImmPred : PatLeaf<(i32 imm), [{
// nOneImmPred predicate - True if the immediate is -1.
int64_t v = (int64_t)N->getSExtValue();
return (-1 == v);
}]>;
def Set5ImmPred : PatLeaf<(i32 imm), [{
// Set5ImmPred predicate - True if the number is in the series of values.
// [ 2^0, 2^1, ... 2^31 ]
// For use in setbit immediate.
uint32_t v = (int32_t)N->getSExtValue();
// Constrain to 32 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def Clr5ImmPred : PatLeaf<(i32 imm), [{
// Clr5ImmPred predicate - True if the number is in the series of
// bit negated values.
// [ 2^0, 2^1, ... 2^31 ]
// For use in clrbit immediate.
// Note: we are bit NOTing the value.
uint32_t v = ~ (int32_t)N->getSExtValue();
// Constrain to 32 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def SetClr5ImmPred : PatLeaf<(i32 imm), [{
// SetClr5ImmPred predicate - True if the immediate is in range 0..31.
int32_t v = (int32_t)N->getSExtValue();
return (v >= 0 && v <= 31);
}]>;
def Set4ImmPred : PatLeaf<(i32 imm), [{
// Set4ImmPred predicate - True if the number is in the series of values:
// [ 2^0, 2^1, ... 2^15 ].
// For use in setbit immediate.
uint16_t v = (int16_t)N->getSExtValue();
// Constrain to 16 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def Clr4ImmPred : PatLeaf<(i32 imm), [{
// Clr4ImmPred predicate - True if the number is in the series of
// bit negated values:
// [ 2^0, 2^1, ... 2^15 ].
// For use in setbit and clrbit immediate.
uint16_t v = ~ (int16_t)N->getSExtValue();
// Constrain to 16 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def SetClr4ImmPred : PatLeaf<(i32 imm), [{
// SetClr4ImmPred predicate - True if the immediate is in the range 0..15.
int16_t v = (int16_t)N->getSExtValue();
return (v >= 0 && v <= 15);
}]>;
def Set3ImmPred : PatLeaf<(i32 imm), [{
// Set3ImmPred predicate - True if the number is in the series of values:
// [ 2^0, 2^1, ... 2^7 ].
// For use in setbit immediate.
uint8_t v = (int8_t)N->getSExtValue();
// Constrain to 8 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def Clr3ImmPred : PatLeaf<(i32 imm), [{
// Clr3ImmPred predicate - True if the number is in the series of
// bit negated values:
// [ 2^0, 2^1, ... 2^7 ].
// For use in setbit and clrbit immediate.
uint8_t v = ~ (int8_t)N->getSExtValue();
// Constrain to 8 bits, and then check for single bit.
return ImmIsSingleBit(v);
}]>;
def SetClr3ImmPred : PatLeaf<(i32 imm), [{
// SetClr3ImmPred predicate - True if the immediate is in the range 0..7.
int8_t v = (int8_t)N->getSExtValue();
return (v >= 0 && v <= 7);
}]>;
// Extendable immediate operands.
let PrintMethod = "printExtOperand" in {
def s16Ext : Operand<i32>;
def s12Ext : Operand<i32>;
def s10Ext : Operand<i32>;
def s9Ext : Operand<i32>;
def s8Ext : Operand<i32>;
def s6Ext : Operand<i32>;
def s11_0Ext : Operand<i32>;
def s11_1Ext : Operand<i32>;
def s11_2Ext : Operand<i32>;
def s11_3Ext : Operand<i32>;
def u6Ext : Operand<i32>;
def u7Ext : Operand<i32>;
def u8Ext : Operand<i32>;
def u9Ext : Operand<i32>;
def u10Ext : Operand<i32>;
def u6_0Ext : Operand<i32>;
def u6_1Ext : Operand<i32>;
def u6_2Ext : Operand<i32>;
def u6_3Ext : Operand<i32>;
}
let PrintMethod = "printImmOperand" in
def u0AlwaysExt : Operand<i32>;
// Predicates for constant extendable operands
def s16ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 16-bit sign extended field.
return isInt<16>(v);
else {
if (isInt<16>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit signed field.
return isConstExtProfitable(Node) && isInt<32>(v);
}
}]>;
def s10ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 10-bit sign extended field.
return isInt<10>(v);
else {
if (isInt<10>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit signed field.
return isConstExtProfitable(Node) && isInt<32>(v);
}
}]>;
def s9ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 9-bit sign extended field.
return isInt<9>(v);
else {
if (isInt<9>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isInt<32>(v);
}
}]>;
def s8ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 8-bit sign extended field.
return isInt<8>(v);
else {
if (isInt<8>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit signed field.
return isConstExtProfitable(Node) && isInt<32>(v);
}
}]>;
def s8_16ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate fits in a 8-bit sign extended field.
return isInt<8>(v);
else {
if (isInt<8>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can't fit in a 16-bit signed field. This is required to avoid
// unnecessary constant extenders.
return isConstExtProfitable(Node) && !isInt<16>(v);
}
}]>;
def s6ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 6-bit sign extended field.
return isInt<6>(v);
else {
if (isInt<6>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isInt<32>(v);
}
}]>;
def s6_16ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate fits in a 6-bit sign extended field.
return isInt<6>(v);
else {
if (isInt<6>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can't fit in a 16-bit signed field. This is required to avoid
// unnecessary constant extenders.
return isConstExtProfitable(Node) && !isInt<16>(v);
}
}]>;
def s6_10ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 6-bit sign extended field.
return isInt<6>(v);
else {
if (isInt<6>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can't fit in a 10-bit signed field. This is required to avoid
// unnecessary constant extenders.
return isConstExtProfitable(Node) && !isInt<10>(v);
}
}]>;
def s11_0ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 11-bit sign extended field.
return isShiftedInt<11,0>(v);
else {
if (isInt<11>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit signed field.
return isConstExtProfitable(Node) && isInt<32>(v);
}
}]>;
def s11_1ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 12-bit sign extended field and
// is 2 byte aligned.
return isShiftedInt<11,1>(v);
else {
if (isInt<12>(v))
return isShiftedInt<11,1>(v);
// Return true if extending this immediate is profitable and the low 1 bit
// is zero (2-byte aligned).
return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 2) == 0);
}
}]>;
def s11_2ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 13-bit sign extended field and
// is 4-byte aligned.
return isShiftedInt<11,2>(v);
else {
if (isInt<13>(v))
return isShiftedInt<11,2>(v);
// Return true if extending this immediate is profitable and the low 2-bits
// are zero (4-byte aligned).
return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 4) == 0);
}
}]>;
def s11_3ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 14-bit sign extended field and
// is 8-byte aligned.
return isShiftedInt<11,3>(v);
else {
if (isInt<14>(v))
return isShiftedInt<11,3>(v);
// Return true if extending this immediate is profitable and the low 3-bits
// are zero (8-byte aligned).
return isConstExtProfitable(Node) && isInt<32>(v) && ((v % 8) == 0);
}
}]>;
def u0AlwaysExtPred : PatLeaf<(i32 imm), [{
// Predicate for an unsigned 32-bit value that always needs to be extended.
if (Subtarget->hasV4TOps()) {
if (isConstExtProfitable(Node)) {
int64_t v = (int64_t)N->getSExtValue();
return isUInt<32>(v);
}
}
return false;
}]>;
def u6ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 6-bit unsigned field.
return isUInt<6>(v);
else {
if (isUInt<6>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v);
}
}]>;
def u7ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 7-bit unsigned field.
return isUInt<7>(v);
else {
if (isUInt<7>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v);
}
}]>;
def u8ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 8-bit unsigned field.
return isUInt<8>(v);
else {
if (isUInt<8>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v);
}
}]>;
def u9ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 9-bit unsigned field.
return isUInt<9>(v);
else {
if (isUInt<9>(v))
return true;
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v);
}
}]>;
def u6_1ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 7-bit unsigned field and
// is 2-byte aligned.
return isShiftedUInt<6,1>(v);
else {
if (isUInt<7>(v))
return isShiftedUInt<6,1>(v);
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 2) == 0);
}
}]>;
def u6_2ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 8-bit unsigned field and
// is 4-byte aligned.
return isShiftedUInt<6,2>(v);
else {
if (isUInt<8>(v))
return isShiftedUInt<6,2>(v);
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 4) == 0);
}
}]>;
def u6_3ExtPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
if (!Subtarget->hasV4TOps())
// Return true if the immediate can fit in a 9-bit unsigned field and
// is 8-byte aligned.
return isShiftedUInt<6,3>(v);
else {
if (isUInt<9>(v))
return isShiftedUInt<6,3>(v);
// Return true if extending this immediate is profitable and the value
// can fit in a 32-bit unsigned field.
return isConstExtProfitable(Node) && isUInt<32>(v) && ((v % 8) == 0);
}
}]>;
// This complex pattern exists only to create a machine instruction operand
// of type "frame index". There doesn't seem to be a way to do that directly
// in the patterns.
def AddrFI : ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
// These complex patterns are not strictly necessary, since global address
// folding will happen during DAG combining. For distinguishing between GA
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
def AddrGA : ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
def AddrGP : ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>;
def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>;
def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>;
def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>;
def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>;
def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>;
def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>;
// Address operands.
def MEMrr : Operand<i32> {
let PrintMethod = "printMEMrrOperand";
let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri : Operand<i32> {
let PrintMethod = "printMEMriOperand";
let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri_s11_2 : Operand<i32>,
ComplexPattern<i32, 2, "SelectMEMriS11_2", []> {
let PrintMethod = "printMEMriOperand";
let MIOperandInfo = (ops IntRegs, s11Imm);
}
def FrameIndex : Operand<i32> {
let PrintMethod = "printFrameIndexOperand";
let MIOperandInfo = (ops IntRegs, s11Imm);
}
let PrintMethod = "printGlobalOperand" in {
def globaladdress : Operand<i32>;
def globaladdressExt : Operand<i32>;
}
let PrintMethod = "printJumpTable" in
def jumptablebase : Operand<i32>;
def brtarget : Operand<OtherVT>;
def brtargetExt : Operand<OtherVT>;
def calltarget : Operand<i32>;
def bblabel : Operand<i32>;
def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">;
def symbolHi32 : Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo32 : Operand<i32> {
let PrintMethod = "printSymbolLo";
}
// Return true if for a 32 to 64-bit sign-extended load.
def is_sext_i32 : PatLeaf<(i64 DoubleRegs:$src1), [{
LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
if (!LD)
return false;
return LD->getExtensionType() == ISD::SEXTLOAD &&
LD->getMemoryVT().getScalarType() == MVT::i32;
}]>;