llvm-6502/lib/Target/X86/X86Subtarget.cpp
Jeffrey Yasskin f0356fe140 Kill ModuleProvider and ghost linkage by inverting the relationship between
Modules and ModuleProviders. Because the "ModuleProvider" simply materializes
GlobalValues now, and doesn't provide modules, it's renamed to
"GVMaterializer". Code that used to need a ModuleProvider to materialize
Functions can now materialize the Functions directly. Functions no longer use a
magic linkage to record that they're materializable; they simply ask the
GVMaterializer.

Because the C ABI must never change, we can't remove LLVMModuleProviderRef or
the functions that refer to it. Instead, because Module now exposes the same
functionality ModuleProvider used to, we store a Module* in any
LLVMModuleProviderRef and translate in the wrapper methods.  The bindings to
other languages still use the ModuleProvider concept.  It would probably be
worth some time to update them to follow the C++ more closely, but I don't
intend to do it.

Fixes http://llvm.org/PR5737 and http://llvm.org/PR5735.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94686 91177308-0d34-0410-b5e6-96231b3b80d8
2010-01-27 20:34:15 +00:00

373 lines
12 KiB
C++

//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "X86GenSubtarget.inc"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Host.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
#if defined(_MSC_VER)
#include <intrin.h>
#endif
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyBlockAddressReference() const {
if (isPICStyleGOT()) // 32-bit ELF targets.
return X86II::MO_GOTOFF;
if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
return X86II::MO_PIC_BASE_OFFSET;
// Direct static reference to label.
return X86II::MO_NO_FLAG;
}
/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
// DLLImport only exists on windows, it is implemented as a load from a
// DLLIMPORT stub.
if (GV->hasDLLImportLinkage())
return X86II::MO_DLLIMPORT;
// Materializable GVs (in JIT lazy compilation mode) do not require an
// extra load from stub.
bool isDecl = GV->isDeclaration() && !GV->isMaterializable();
// X86-64 in PIC mode.
if (isPICStyleRIPRel()) {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
if (isTargetDarwin()) {
// If symbol visibility is hidden, the extra load is not needed if
// target is x86-64 or the symbol is definitely defined in the current
// translation unit.
if (GV->hasDefaultVisibility() &&
(isDecl || GV->isWeakForLinker()))
return X86II::MO_GOTPCREL;
} else {
assert(isTargetELF() && "Unknown rip-relative target");
// Extra load is needed for all externally visible.
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
return X86II::MO_GOTPCREL;
}
return X86II::MO_NO_FLAG;
}
if (isPICStyleGOT()) { // 32-bit ELF targets.
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return X86II::MO_GOTOFF;
return X86II::MO_GOT;
}
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
// Determine whether we have a stub reference and/or whether the reference
// is relative to the PIC base or not.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_PIC_BASE_OFFSET;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage()) {
// Hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
}
// Otherwise, no stub.
return X86II::MO_PIC_BASE_OFFSET;
}
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
// Determine whether we have a stub reference.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_NO_FLAG;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY;
// Otherwise, no stub.
return X86II::MO_NO_FLAG;
}
// Direct static reference to global.
return X86II::MO_NO_FLAG;
}
/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getDarwinVers() >= 10)
return "__bzero";
return 0;
}
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
if (Is64Bit)
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
/// getSpecialAddressLatency - For targets where it is beneficial to
/// backschedule instructions that compute addresses, return a value
/// indicating the number of scheduling cycles of backscheduling that
/// should be attempted.
unsigned X86Subtarget::getSpecialAddressLatency() const {
// For x86 out-of-order targets, back-schedule address computations so
// that loads and stores aren't blocked.
// This value was chosen arbitrarily.
return 200;
}
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#endif
#endif
return true;
}
static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (Family == 6 || Family == 0xf) {
if (Family == 0xf)
// Examine extended family ID if family ID is F.
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
union {
unsigned u[3];
char c[12];
} text;
if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
return;
GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 15) & 1) HasCMov = true;
if ((EDX >> 23) & 1) X86SSELevel = MMX;
if ((EDX >> 25) & 1) X86SSELevel = SSE1;
if ((EDX >> 26) & 1) X86SSELevel = SSE2;
if (ECX & 0x1) X86SSELevel = SSE3;
if ((ECX >> 9) & 1) X86SSELevel = SSSE3;
if ((ECX >> 19) & 1) X86SSELevel = SSE41;
if ((ECX >> 20) & 1) X86SSELevel = SSE42;
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
HasFMA3 = IsIntel && ((ECX >> 12) & 0x1);
HasAVX = ((ECX >> 28) & 0x1);
if (IsIntel || IsAMD) {
// Determine if bit test memory instructions are slow.
unsigned Family = 0;
unsigned Model = 0;
DetectFamilyModel(EAX, Family, Model);
IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
HasX86_64 = (EDX >> 29) & 0x1;
HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
}
}
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
bool is64Bit)
: PICStyle(PICStyles::None)
, X86SSELevel(NoMMXSSE)
, X863DNowLevel(NoThreeDNow)
, HasCMov(false)
, HasX86_64(false)
, HasSSE4A(false)
, HasAVX(false)
, HasFMA3(false)
, HasFMA4(false)
, IsBTMemSlow(false)
, HasVectorUAMem(false)
, DarwinVers(0)
, stackAlignment(8)
// FIXME: this is a known good value for Yonah. How about others?
, MaxInlineSizeThreshold(128)
, Is64Bit(is64Bit)
, TargetType(isELF) { // Default to ELF unless otherwise specified.
// default to hard float ABI
if (FloatABIType == FloatABI::Default)
FloatABIType = FloatABI::Hard;
// Determine default and user specified characteristics
if (!FS.empty()) {
// If feature string is not empty, parse features string.
std::string CPU = sys::getHostCPUName();
ParseSubtargetFeatures(FS, CPU);
// All X86-64 CPUs also have SSE2, however user might request no SSE via
// -mattr, so don't force SSELevel here.
} else {
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
// Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
if (Is64Bit && X86SSELevel < SSE2)
X86SSELevel = SSE2;
}
// If requesting codegen for X86-64, make sure that 64-bit features
// are enabled.
if (Is64Bit)
HasX86_64 = true;
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!Is64Bit || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
if (TT.length() > 5) {
size_t Pos;
if ((Pos = TT.find("-darwin")) != std::string::npos) {
TargetType = isDarwin;
// Compute the darwin version number.
if (isdigit(TT[Pos+7]))
DarwinVers = atoi(&TT[Pos+7]);
else
DarwinVers = 8; // Minimum supported darwin is Tiger.
} else if (TT.find("linux") != std::string::npos) {
// Linux doesn't imply ELF, but we don't currently support anything else.
TargetType = isELF;
} else if (TT.find("cygwin") != std::string::npos) {
TargetType = isCygwin;
} else if (TT.find("mingw") != std::string::npos) {
TargetType = isMingw;
} else if (TT.find("win32") != std::string::npos) {
TargetType = isWindows;
} else if (TT.find("windows") != std::string::npos) {
TargetType = isWindows;
} else if (TT.find("-cl") != std::string::npos) {
TargetType = isDarwin;
DarwinVers = 9;
}
}
// Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
// bit targets.
if (TargetType == isDarwin || Is64Bit)
stackAlignment = 16;
if (StackAlignment)
stackAlignment = StackAlignment;
}
bool X86Subtarget::enablePostRAScheduler(
CodeGenOpt::Level OptLevel,
TargetSubtarget::AntiDepBreakMode& Mode,
RegClassVector& CriticalPathRCs) const {
Mode = TargetSubtarget::ANTIDEP_CRITICAL;
CriticalPathRCs.clear();
return OptLevel >= CodeGenOpt::Aggressive;
}