llvm-6502/lib/Bytecode/Reader/InstructionReader.cpp
Chris Lattner 3483f54367 Significantly clean up parsing of instructions. This exceptionizes and
simplifies the control flow a bit.  This provides a small (~3%) speedup,
but it's primarily a cleanup exercise.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8983 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-09 18:25:19 +00:00

407 lines
14 KiB
C++

//===- ReadInst.cpp - Code to read an instruction from bytecode -----------===//
//
// This file defines the mechanism to read an instruction from a bytecode
// stream.
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
// TODO: Change from getValue(Raw.Arg1) etc, to getArg(Raw, 1)
// Make it check type, so that casts are checked.
//
//===----------------------------------------------------------------------===//
#include "ReaderInternals.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
std::auto_ptr<RawInst>
BytecodeParser::ParseRawInst(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned Op, Typ;
std::auto_ptr<RawInst> Result = std::auto_ptr<RawInst>(new RawInst());
if (read(Buf, EndBuf, Op))
throw std::string("Error reading from buffer.");
// bits Instruction format: Common to all formats
// --------------------------
// 01-00: Opcode type, fixed to 1.
// 07-02: Opcode
Result->NumOperands = (Op >> 0) & 03;
Result->Opcode = (Op >> 2) & 63;
switch (Result->NumOperands) {
case 1:
// bits Instruction format:
// --------------------------
// 19-08: Resulting type plane
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
//
Result->Ty = getType((Op >> 8) & 4095);
Result->Arg1 = (Op >> 20) & 4095;
if (Result->Arg1 == 4095) // Handle special encoding for 0 operands...
Result->NumOperands = 0;
break;
case 2:
// bits Instruction format:
// --------------------------
// 15-08: Resulting type plane
// 23-16: Operand #1
// 31-24: Operand #2
//
Result->Ty = getType((Op >> 8) & 255);
Result->Arg1 = (Op >> 16) & 255;
Result->Arg2 = (Op >> 24) & 255;
break;
case 3:
// bits Instruction format:
// --------------------------
// 13-08: Resulting type plane
// 19-14: Operand #1
// 25-20: Operand #2
// 31-26: Operand #3
//
Result->Ty = getType((Op >> 8) & 63);
Result->Arg1 = (Op >> 14) & 63;
Result->Arg2 = (Op >> 20) & 63;
Result->Arg3 = (Op >> 26) & 63;
break;
case 0:
Buf -= 4; // Hrm, try this again...
if (read_vbr(Buf, EndBuf, Result->Opcode))
throw std::string("Error reading from buffer.");
Result->Opcode >>= 2;
if (read_vbr(Buf, EndBuf, Typ))
throw std::string("Error reading from buffer.");
Result->Ty = getType(Typ);
if (Result->Ty == 0)
throw std::string("Invalid type read in instruction.");
if (read_vbr(Buf, EndBuf, Result->NumOperands))
throw std::string("Error reading from buffer.");
switch (Result->NumOperands) {
case 0:
throw std::string("Zero-argument instruction found; this is invalid.");
case 1:
if (read_vbr(Buf, EndBuf, Result->Arg1))
throw std::string("Error reading from buffer");
break;
case 2:
if (read_vbr(Buf, EndBuf, Result->Arg1) ||
read_vbr(Buf, EndBuf, Result->Arg2))
throw std::string("Error reading from buffer");
break;
case 3:
if (read_vbr(Buf, EndBuf, Result->Arg1) ||
read_vbr(Buf, EndBuf, Result->Arg2) ||
read_vbr(Buf, EndBuf, Result->Arg3))
throw std::string("Error reading from buffer");
break;
default:
if (read_vbr(Buf, EndBuf, Result->Arg1) ||
read_vbr(Buf, EndBuf, Result->Arg2))
throw std::string("Error reading from buffer");
// Allocate a vector to hold arguments 3, 4, 5, 6 ...
Result->VarArgs = new std::vector<unsigned>(Result->NumOperands-2);
for (unsigned a = 0; a < Result->NumOperands-2; a++)
if (read_vbr(Buf, EndBuf, (*Result->VarArgs)[a]))
throw std::string("Error reading from buffer");
break;
}
if (align32(Buf, EndBuf))
throw std::string("Unaligned bytecode buffer.");
break;
}
#if 0
std::cerr << "NO: " << Result->NumOperands << " opcode: " << Result->Opcode
<< " Ty: "<< Result->Ty->getDescription()<< " arg1: "<< Result->Arg1
<< " arg2: " << Result->Arg2 << " arg3: " << Result->Arg3 << "\n";
#endif
return Result;
}
Instruction *BytecodeParser::ParseInstruction(const unsigned char *&Buf,
const unsigned char *EndBuf) {
std::auto_ptr<RawInst> Raw = ParseRawInst(Buf, EndBuf);
if (Raw->Opcode >= Instruction::BinaryOpsBegin &&
Raw->Opcode < Instruction::BinaryOpsEnd && Raw->NumOperands == 2)
return BinaryOperator::create((Instruction::BinaryOps)Raw->Opcode,
getValue(Raw->Ty, Raw->Arg1),
getValue(Raw->Ty, Raw->Arg2));
switch (Raw->Opcode) {
case Instruction::VarArg:
case Instruction::Cast: {
Value *V = getValue(Raw->Ty, Raw->Arg1);
const Type *Ty = getType(Raw->Arg2);
if (Ty == 0) throw std::string("Invalid cast!\n");
if (Raw->Opcode == Instruction::Cast)
return new CastInst(V, Ty);
else
return new VarArgInst(V, Ty);
}
case Instruction::PHINode: {
PHINode *PN = new PHINode(Raw->Ty);
switch (Raw->NumOperands) {
case 0:
case 1:
case 3:
delete PN;
throw std::string("Invalid phi node encountered!\n");
case 2:
PN->addIncoming(getValue(Raw->Ty, Raw->Arg1), getBasicBlock(Raw->Arg2));
break;
default:
PN->addIncoming(getValue(Raw->Ty, Raw->Arg1), getBasicBlock(Raw->Arg2));
if (Raw->VarArgs->size() & 1) {
delete PN;
throw std::string("PHI Node with ODD number of arguments!\n");
} else {
std::vector<unsigned> &args = *Raw->VarArgs;
for (unsigned i = 0; i < args.size(); i+=2)
PN->addIncoming(getValue(Raw->Ty, args[i]), getBasicBlock(args[i+1]));
}
delete Raw->VarArgs;
break;
}
return PN;
}
case Instruction::Shl:
case Instruction::Shr:
return new ShiftInst((Instruction::OtherOps)Raw->Opcode,
getValue(Raw->Ty, Raw->Arg1),
getValue(Type::UByteTyID, Raw->Arg2));
case Instruction::Ret:
if (Raw->NumOperands == 0)
return new ReturnInst();
else if (Raw->NumOperands == 1)
return new ReturnInst(getValue(Raw->Ty, Raw->Arg1));
break;
case Instruction::Br:
if (Raw->NumOperands == 1)
return new BranchInst(getBasicBlock(Raw->Arg1));
else if (Raw->NumOperands == 3)
return new BranchInst(getBasicBlock(Raw->Arg1), getBasicBlock(Raw->Arg2),
getValue(Type::BoolTyID , Raw->Arg3));
throw std::string("Invalid number of operands for a 'br' instruction!");
case Instruction::Switch: {
SwitchInst *I = new SwitchInst(getValue(Raw->Ty, Raw->Arg1),
getBasicBlock(Raw->Arg2));
if (Raw->NumOperands < 3)
return I;
if (Raw->NumOperands == 3 || Raw->VarArgs->size() & 1) {
delete I;
throw std::string("Switch statement with odd number of arguments!");
}
std::vector<unsigned> &args = *Raw->VarArgs;
for (unsigned i = 0; i < args.size(); i += 2)
I->addCase(cast<Constant>(getValue(Raw->Ty, args[i])),
getBasicBlock(args[i+1]));
delete Raw->VarArgs;
return I;
}
case Instruction::Call: {
Value *F = getValue(Raw->Ty, Raw->Arg1);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0) throw std::string("Call to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0) throw std::string("Call to non function pointer value!");
std::vector<Value *> Params;
const FunctionType::ParamTypes &PL = FTy->getParamTypes();
if (!FTy->isVarArg()) {
FunctionType::ParamTypes::const_iterator It = PL.begin();
switch (Raw->NumOperands) {
case 0: throw std::string("Invalid call instruction encountered!");
case 1: break;
case 2: Params.push_back(getValue(*It++, Raw->Arg2)); break;
case 3: Params.push_back(getValue(*It++, Raw->Arg2));
if (It == PL.end()) throw std::string("Invalid call instruction!");
Params.push_back(getValue(*It++, Raw->Arg3)); break;
default:
Params.push_back(getValue(*It++, Raw->Arg2));
{
std::vector<unsigned> &args = *Raw->VarArgs;
for (unsigned i = 0; i < args.size(); i++) {
if (It == PL.end()) throw std::string("Invalid call instruction!");
Params.push_back(getValue(*It++, args[i]));
}
}
delete Raw->VarArgs;
}
if (It != PL.end()) throw std::string("Invalid call instruction!");
} else {
if (Raw->NumOperands > 2) {
std::vector<unsigned> &args = *Raw->VarArgs;
if (args.size() < 1) throw std::string("Invalid call instruction!");
if ((args.size() & 1) != 0) // Must be pairs of type/value
throw std::string("Invalid call instruction!");
for (unsigned i = 0; i < args.size(); i+=2) {
const Type *Ty = getType(args[i]);
if (Ty == 0) throw std::string("Invalid call instruction!");
Params.push_back(getValue(Ty, args[i+1]));
}
delete Raw->VarArgs;
}
}
return new CallInst(F, Params);
}
case Instruction::Invoke: {
Value *F = getValue(Raw->Ty, Raw->Arg1);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0) throw std::string("Invoke to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0) throw std::string("Invoke to non function pointer value!");
std::vector<Value *> Params;
const FunctionType::ParamTypes &PL = FTy->getParamTypes();
std::vector<unsigned> &args = *Raw->VarArgs;
BasicBlock *Normal, *Except;
if (!FTy->isVarArg()) {
if (Raw->NumOperands < 3) throw std::string("Invalid call instruction!");
Normal = getBasicBlock(Raw->Arg2);
if (Raw->NumOperands == 3)
Except = getBasicBlock(Raw->Arg3);
else {
Except = getBasicBlock(args[0]);
FunctionType::ParamTypes::const_iterator It = PL.begin();
for (unsigned i = 1; i < args.size(); i++) {
if (It == PL.end()) throw std::string("Invalid invoke instruction!");
Params.push_back(getValue(*It++, args[i]));
}
if (It != PL.end()) throw std::string("Invalid invoke instruction!");
}
} else {
if (args.size() < 4) throw std::string("Invalid invoke instruction!");
if (args[0] != Type::LabelTyID || args[2] != Type::LabelTyID)
throw std::string("Invalid invoke instruction!");
Normal = getBasicBlock(args[1]);
Except = getBasicBlock(args[3]);
if ((args.size() & 1) != 0) // Must be pairs of type/value
throw std::string("Invalid invoke instruction!");
for (unsigned i = 4; i < args.size(); i += 2)
Params.push_back(getValue(args[i], args[i+1]));
}
if (Raw->NumOperands > 3)
delete Raw->VarArgs;
return new InvokeInst(F, Normal, Except, Params);
}
case Instruction::Malloc:
if (Raw->NumOperands > 2) throw std::string("Invalid malloc instruction!");
if (!isa<PointerType>(Raw->Ty))
throw std::string("Invalid malloc instruction!");
return new MallocInst(cast<PointerType>(Raw->Ty)->getElementType(),
Raw->NumOperands ? getValue(Type::UIntTyID,
Raw->Arg1) : 0);
case Instruction::Alloca:
if (Raw->NumOperands > 2) throw std::string("Invalid alloca instruction!");
if (!isa<PointerType>(Raw->Ty))
throw std::string("Invalid alloca instruction!");
return new AllocaInst(cast<PointerType>(Raw->Ty)->getElementType(),
Raw->NumOperands ? getValue(Type::UIntTyID,
Raw->Arg1) : 0);
case Instruction::Free:
if (!isa<PointerType>(Raw->Ty))
throw std::string("Invalid free instruction!");
return new FreeInst(getValue(Raw->Ty, Raw->Arg1));
case Instruction::GetElementPtr: {
std::vector<Value*> Idx;
if (!isa<PointerType>(Raw->Ty))
throw std::string("Invalid getelementptr instruction!");
const CompositeType *TopTy = dyn_cast<CompositeType>(Raw->Ty);
switch (Raw->NumOperands) {
case 0: throw std::string("Invalid getelementptr instruction!");
case 1: break;
case 2:
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
Idx.push_back(getValue(TopTy->getIndexType(), Raw->Arg2));
break;
case 3: {
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
Idx.push_back(getValue(TopTy->getIndexType(), Raw->Arg2));
const Type *ETy = GetElementPtrInst::getIndexedType(TopTy, Idx, true);
const CompositeType *ElTy = dyn_cast_or_null<CompositeType>(ETy);
if (!ElTy) throw std::string("Invalid getelementptr instruction!");
Idx.push_back(getValue(ElTy->getIndexType(), Raw->Arg3));
break;
}
default:
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
Idx.push_back(getValue(TopTy->getIndexType(), Raw->Arg2));
std::vector<unsigned> &args = *Raw->VarArgs;
for (unsigned i = 0, E = args.size(); i != E; ++i) {
const Type *ETy = GetElementPtrInst::getIndexedType(Raw->Ty, Idx, true);
const CompositeType *ElTy = dyn_cast_or_null<CompositeType>(ETy);
if (!ElTy) throw std::string("Invalid getelementptr instruction!");
Idx.push_back(getValue(ElTy->getIndexType(), args[i]));
}
delete Raw->VarArgs;
break;
}
return new GetElementPtrInst(getValue(Raw->Ty, Raw->Arg1), Idx);
}
case 62: // volatile load
case Instruction::Load:
if (Raw->NumOperands != 1 || !isa<PointerType>(Raw->Ty))
throw std::string("Invalid load instruction!");
return new LoadInst(getValue(Raw->Ty, Raw->Arg1), "", Raw->Opcode == 62);
case 63: // volatile store
case Instruction::Store: {
if (!isa<PointerType>(Raw->Ty) || Raw->NumOperands != 2)
throw std::string("Invalid store instruction!");
Value *Ptr = getValue(Raw->Ty, Raw->Arg2);
const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
return new StoreInst(getValue(ValTy, Raw->Arg1), Ptr, Raw->Opcode == 63);
}
case Instruction::Unwind:
if (Raw->NumOperands != 0) throw std::string("Invalid unwind instruction!");
return new UnwindInst();
} // end switch(Raw->Opcode)
std::cerr << "Unrecognized instruction! " << Raw->Opcode
<< " ADDR = 0x" << (void*)Buf << "\n";
throw std::string("Unrecognized instruction!");
}