mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
cd52a7a381
Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
450 lines
17 KiB
C++
450 lines
17 KiB
C++
//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveInterval analysis pass. Given some numbering of
|
|
// each the machine instructions (in this implemention depth-first order) an
|
|
// interval [i, j) is said to be a live interval for register v if there is no
|
|
// instruction with number j' > j such that v is live at j' and there is no
|
|
// instruction with number i' < i such that v is live at i'. In this
|
|
// implementation intervals can have holes, i.e. an interval might look like
|
|
// [1,20), [50,65), [1000,1001).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
|
|
#define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
|
|
|
|
#include "llvm/ADT/IndexedMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <cmath>
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
extern cl::opt<bool> UseSegmentSetForPhysRegs;
|
|
|
|
class AliasAnalysis;
|
|
class BitVector;
|
|
class BlockFrequency;
|
|
class LiveRangeCalc;
|
|
class LiveVariables;
|
|
class MachineDominatorTree;
|
|
class MachineLoopInfo;
|
|
class TargetRegisterInfo;
|
|
class MachineRegisterInfo;
|
|
class TargetInstrInfo;
|
|
class TargetRegisterClass;
|
|
class VirtRegMap;
|
|
class MachineBlockFrequencyInfo;
|
|
|
|
class LiveIntervals : public MachineFunctionPass {
|
|
MachineFunction* MF;
|
|
MachineRegisterInfo* MRI;
|
|
const TargetRegisterInfo* TRI;
|
|
const TargetInstrInfo* TII;
|
|
AliasAnalysis *AA;
|
|
SlotIndexes* Indexes;
|
|
MachineDominatorTree *DomTree;
|
|
LiveRangeCalc *LRCalc;
|
|
|
|
/// Special pool allocator for VNInfo's (LiveInterval val#).
|
|
///
|
|
VNInfo::Allocator VNInfoAllocator;
|
|
|
|
/// Live interval pointers for all the virtual registers.
|
|
IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
|
|
|
|
/// RegMaskSlots - Sorted list of instructions with register mask operands.
|
|
/// Always use the 'r' slot, RegMasks are normal clobbers, not early
|
|
/// clobbers.
|
|
SmallVector<SlotIndex, 8> RegMaskSlots;
|
|
|
|
/// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
|
|
/// pointer to the corresponding register mask. This pointer can be
|
|
/// recomputed as:
|
|
///
|
|
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
|
|
/// unsigned OpNum = findRegMaskOperand(MI);
|
|
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
|
|
///
|
|
/// This is kept in a separate vector partly because some standard
|
|
/// libraries don't support lower_bound() with mixed objects, partly to
|
|
/// improve locality when searching in RegMaskSlots.
|
|
/// Also see the comment in LiveInterval::find().
|
|
SmallVector<const uint32_t*, 8> RegMaskBits;
|
|
|
|
/// For each basic block number, keep (begin, size) pairs indexing into the
|
|
/// RegMaskSlots and RegMaskBits arrays.
|
|
/// Note that basic block numbers may not be layout contiguous, that's why
|
|
/// we can't just keep track of the first register mask in each basic
|
|
/// block.
|
|
SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
|
|
|
|
/// Keeps a live range set for each register unit to track fixed physreg
|
|
/// interference.
|
|
SmallVector<LiveRange*, 0> RegUnitRanges;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
LiveIntervals();
|
|
~LiveIntervals() override;
|
|
|
|
// Calculate the spill weight to assign to a single instruction.
|
|
static float getSpillWeight(bool isDef, bool isUse,
|
|
const MachineBlockFrequencyInfo *MBFI,
|
|
const MachineInstr *Instr);
|
|
|
|
LiveInterval &getInterval(unsigned Reg) {
|
|
if (hasInterval(Reg))
|
|
return *VirtRegIntervals[Reg];
|
|
else
|
|
return createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
|
|
const LiveInterval &getInterval(unsigned Reg) const {
|
|
return const_cast<LiveIntervals*>(this)->getInterval(Reg);
|
|
}
|
|
|
|
bool hasInterval(unsigned Reg) const {
|
|
return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
|
|
}
|
|
|
|
// Interval creation.
|
|
LiveInterval &createEmptyInterval(unsigned Reg) {
|
|
assert(!hasInterval(Reg) && "Interval already exists!");
|
|
VirtRegIntervals.grow(Reg);
|
|
VirtRegIntervals[Reg] = createInterval(Reg);
|
|
return *VirtRegIntervals[Reg];
|
|
}
|
|
|
|
LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
|
|
LiveInterval &LI = createEmptyInterval(Reg);
|
|
computeVirtRegInterval(LI);
|
|
return LI;
|
|
}
|
|
|
|
// Interval removal.
|
|
void removeInterval(unsigned Reg) {
|
|
delete VirtRegIntervals[Reg];
|
|
VirtRegIntervals[Reg] = nullptr;
|
|
}
|
|
|
|
/// Given a register and an instruction, adds a live segment from that
|
|
/// instruction to the end of its MBB.
|
|
LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
|
|
MachineInstr* startInst);
|
|
|
|
/// shrinkToUses - After removing some uses of a register, shrink its live
|
|
/// range to just the remaining uses. This method does not compute reaching
|
|
/// defs for new uses, and it doesn't remove dead defs.
|
|
/// Dead PHIDef values are marked as unused.
|
|
/// New dead machine instructions are added to the dead vector.
|
|
/// Return true if the interval may have been separated into multiple
|
|
/// connected components.
|
|
bool shrinkToUses(LiveInterval *li,
|
|
SmallVectorImpl<MachineInstr*> *dead = nullptr);
|
|
|
|
/// Specialized version of
|
|
/// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
|
|
/// that works on a subregister live range and only looks at uses matching
|
|
/// the lane mask of the subregister range.
|
|
void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
|
|
|
|
/// extendToIndices - Extend the live range of LI to reach all points in
|
|
/// Indices. The points in the Indices array must be jointly dominated by
|
|
/// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
|
|
///
|
|
/// If a SlotIndex in Indices is the end index of a basic block, LI will be
|
|
/// extended to be live out of the basic block.
|
|
///
|
|
/// See also LiveRangeCalc::extend().
|
|
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
|
|
|
|
|
|
/// If @p LR has a live value at @p Kill, prune its live range by removing
|
|
/// any liveness reachable from Kill. Add live range end points to
|
|
/// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
|
|
/// value's live range.
|
|
///
|
|
/// Calling pruneValue() and extendToIndices() can be used to reconstruct
|
|
/// SSA form after adding defs to a virtual register.
|
|
void pruneValue(LiveRange &LR, SlotIndex Kill,
|
|
SmallVectorImpl<SlotIndex> *EndPoints);
|
|
|
|
SlotIndexes *getSlotIndexes() const {
|
|
return Indexes;
|
|
}
|
|
|
|
AliasAnalysis *getAliasAnalysis() const {
|
|
return AA;
|
|
}
|
|
|
|
/// isNotInMIMap - returns true if the specified machine instr has been
|
|
/// removed or was never entered in the map.
|
|
bool isNotInMIMap(const MachineInstr* Instr) const {
|
|
return !Indexes->hasIndex(Instr);
|
|
}
|
|
|
|
/// Returns the base index of the given instruction.
|
|
SlotIndex getInstructionIndex(const MachineInstr *instr) const {
|
|
return Indexes->getInstructionIndex(instr);
|
|
}
|
|
|
|
/// Returns the instruction associated with the given index.
|
|
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
|
|
return Indexes->getInstructionFromIndex(index);
|
|
}
|
|
|
|
/// Return the first index in the given basic block.
|
|
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
|
|
return Indexes->getMBBStartIdx(mbb);
|
|
}
|
|
|
|
/// Return the last index in the given basic block.
|
|
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
|
|
return Indexes->getMBBEndIdx(mbb);
|
|
}
|
|
|
|
bool isLiveInToMBB(const LiveRange &LR,
|
|
const MachineBasicBlock *mbb) const {
|
|
return LR.liveAt(getMBBStartIdx(mbb));
|
|
}
|
|
|
|
bool isLiveOutOfMBB(const LiveRange &LR,
|
|
const MachineBasicBlock *mbb) const {
|
|
return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
|
|
}
|
|
|
|
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
|
|
return Indexes->getMBBFromIndex(index);
|
|
}
|
|
|
|
void insertMBBInMaps(MachineBasicBlock *MBB) {
|
|
Indexes->insertMBBInMaps(MBB);
|
|
assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
|
|
"Blocks must be added in order.");
|
|
RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
|
|
}
|
|
|
|
SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
|
|
return Indexes->insertMachineInstrInMaps(MI);
|
|
}
|
|
|
|
void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
|
|
MachineBasicBlock::iterator E) {
|
|
for (MachineBasicBlock::iterator I = B; I != E; ++I)
|
|
Indexes->insertMachineInstrInMaps(I);
|
|
}
|
|
|
|
void RemoveMachineInstrFromMaps(MachineInstr *MI) {
|
|
Indexes->removeMachineInstrFromMaps(MI);
|
|
}
|
|
|
|
void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
|
|
Indexes->replaceMachineInstrInMaps(MI, NewMI);
|
|
}
|
|
|
|
bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
|
|
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
|
|
return Indexes->findLiveInMBBs(Start, End, MBBs);
|
|
}
|
|
|
|
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
void releaseMemory() override;
|
|
|
|
/// runOnMachineFunction - pass entry point
|
|
bool runOnMachineFunction(MachineFunction&) override;
|
|
|
|
/// print - Implement the dump method.
|
|
void print(raw_ostream &O, const Module* = nullptr) const override;
|
|
|
|
/// intervalIsInOneMBB - If LI is confined to a single basic block, return
|
|
/// a pointer to that block. If LI is live in to or out of any block,
|
|
/// return NULL.
|
|
MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
|
|
|
|
/// Returns true if VNI is killed by any PHI-def values in LI.
|
|
/// This may conservatively return true to avoid expensive computations.
|
|
bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
|
|
|
|
/// addKillFlags - Add kill flags to any instruction that kills a virtual
|
|
/// register.
|
|
void addKillFlags(const VirtRegMap*);
|
|
|
|
/// handleMove - call this method to notify LiveIntervals that
|
|
/// instruction 'mi' has been moved within a basic block. This will update
|
|
/// the live intervals for all operands of mi. Moves between basic blocks
|
|
/// are not supported.
|
|
///
|
|
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
|
|
void handleMove(MachineInstr* MI, bool UpdateFlags = false);
|
|
|
|
/// moveIntoBundle - Update intervals for operands of MI so that they
|
|
/// begin/end on the SlotIndex for BundleStart.
|
|
///
|
|
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
|
|
///
|
|
/// Requires MI and BundleStart to have SlotIndexes, and assumes
|
|
/// existing liveness is accurate. BundleStart should be the first
|
|
/// instruction in the Bundle.
|
|
void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
|
|
bool UpdateFlags = false);
|
|
|
|
/// repairIntervalsInRange - Update live intervals for instructions in a
|
|
/// range of iterators. It is intended for use after target hooks that may
|
|
/// insert or remove instructions, and is only efficient for a small number
|
|
/// of instructions.
|
|
///
|
|
/// OrigRegs is a vector of registers that were originally used by the
|
|
/// instructions in the range between the two iterators.
|
|
///
|
|
/// Currently, the only only changes that are supported are simple removal
|
|
/// and addition of uses.
|
|
void repairIntervalsInRange(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
ArrayRef<unsigned> OrigRegs);
|
|
|
|
// Register mask functions.
|
|
//
|
|
// Machine instructions may use a register mask operand to indicate that a
|
|
// large number of registers are clobbered by the instruction. This is
|
|
// typically used for calls.
|
|
//
|
|
// For compile time performance reasons, these clobbers are not recorded in
|
|
// the live intervals for individual physical registers. Instead,
|
|
// LiveIntervalAnalysis maintains a sorted list of instructions with
|
|
// register mask operands.
|
|
|
|
/// getRegMaskSlots - Returns a sorted array of slot indices of all
|
|
/// instructions with register mask operands.
|
|
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
|
|
|
|
/// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
|
|
/// instructions with register mask operands in the basic block numbered
|
|
/// MBBNum.
|
|
ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
|
|
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
|
|
return getRegMaskSlots().slice(P.first, P.second);
|
|
}
|
|
|
|
/// getRegMaskBits() - Returns an array of register mask pointers
|
|
/// corresponding to getRegMaskSlots().
|
|
ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
|
|
|
|
/// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
|
|
/// to getRegMaskSlotsInBlock(MBBNum).
|
|
ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
|
|
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
|
|
return getRegMaskBits().slice(P.first, P.second);
|
|
}
|
|
|
|
/// checkRegMaskInterference - Test if LI is live across any register mask
|
|
/// instructions, and compute a bit mask of physical registers that are not
|
|
/// clobbered by any of them.
|
|
///
|
|
/// Returns false if LI doesn't cross any register mask instructions. In
|
|
/// that case, the bit vector is not filled in.
|
|
bool checkRegMaskInterference(LiveInterval &LI,
|
|
BitVector &UsableRegs);
|
|
|
|
// Register unit functions.
|
|
//
|
|
// Fixed interference occurs when MachineInstrs use physregs directly
|
|
// instead of virtual registers. This typically happens when passing
|
|
// arguments to a function call, or when instructions require operands in
|
|
// fixed registers.
|
|
//
|
|
// Each physreg has one or more register units, see MCRegisterInfo. We
|
|
// track liveness per register unit to handle aliasing registers more
|
|
// efficiently.
|
|
|
|
/// getRegUnit - Return the live range for Unit.
|
|
/// It will be computed if it doesn't exist.
|
|
LiveRange &getRegUnit(unsigned Unit) {
|
|
LiveRange *LR = RegUnitRanges[Unit];
|
|
if (!LR) {
|
|
// Compute missing ranges on demand.
|
|
// Use segment set to speed-up initial computation of the live range.
|
|
RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
|
|
computeRegUnitRange(*LR, Unit);
|
|
}
|
|
return *LR;
|
|
}
|
|
|
|
/// getCachedRegUnit - Return the live range for Unit if it has already
|
|
/// been computed, or NULL if it hasn't been computed yet.
|
|
LiveRange *getCachedRegUnit(unsigned Unit) {
|
|
return RegUnitRanges[Unit];
|
|
}
|
|
|
|
const LiveRange *getCachedRegUnit(unsigned Unit) const {
|
|
return RegUnitRanges[Unit];
|
|
}
|
|
|
|
/// Remove value numbers and related live segments starting at position
|
|
/// @p Pos that are part of any liverange of physical register @p Reg or one
|
|
/// of its subregisters.
|
|
void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
|
|
|
|
/// Remove value number and related live segments of @p LI and its subranges
|
|
/// that start at position @p Pos.
|
|
void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
|
|
|
|
private:
|
|
/// Compute live intervals for all virtual registers.
|
|
void computeVirtRegs();
|
|
|
|
/// Compute RegMaskSlots and RegMaskBits.
|
|
void computeRegMasks();
|
|
|
|
/// Walk the values in @p LI and check for dead values:
|
|
/// - Dead PHIDef values are marked as unused.
|
|
/// - Dead operands are marked as such.
|
|
/// - Completely dead machine instructions are added to the @p dead vector
|
|
/// if it is not nullptr.
|
|
/// Returns true if any PHI value numbers have been removed which may
|
|
/// have separated the interval into multiple connected components.
|
|
bool computeDeadValues(LiveInterval &LI,
|
|
SmallVectorImpl<MachineInstr*> *dead);
|
|
|
|
static LiveInterval* createInterval(unsigned Reg);
|
|
|
|
void printInstrs(raw_ostream &O) const;
|
|
void dumpInstrs() const;
|
|
|
|
void computeLiveInRegUnits();
|
|
void computeRegUnitRange(LiveRange&, unsigned Unit);
|
|
void computeVirtRegInterval(LiveInterval&);
|
|
|
|
|
|
/// Helper function for repairIntervalsInRange(), walks backwards and
|
|
/// creates/modifies live segments in @p LR to match the operands found.
|
|
/// Only full operands or operands with subregisters matching @p LaneMask
|
|
/// are considered.
|
|
void repairOldRegInRange(MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
const SlotIndex endIdx, LiveRange &LR,
|
|
unsigned Reg, unsigned LaneMask = ~0u);
|
|
|
|
class HMEditor;
|
|
};
|
|
} // End llvm namespace
|
|
|
|
#endif
|