llvm-6502/lib/Target/SparcV9/SparcV9InstrInfo.h
Misha Brukman d71295a684 Reorganized the Sparc backend to be more modular -- each different
implementation of a Target{RegInfo, InstrInfo, Machine, etc} now has a separate
header and a separate implementation file.

This means that instead of a massive SparcInternals.h that forces a
recompilation of the whole target whenever a minor detail is changed, you should
only recompile a few files.

Note that SparcInternals.h is still around; its contents should be minimized.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10500 91177308-0d34-0410-b5e6-96231b3b80d8
2003-12-17 22:04:00 +00:00

202 lines
9.1 KiB
C++

//===-- SparcInstrInfo.h - Define TargetInstrInfo for Sparc -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class contains information about individual instructions.
// Most information is stored in the SparcMachineInstrDesc array above.
// Other information is computed on demand, and most such functions
// default to member functions in base class TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#ifndef SPARC_INSTRINFO_H
#define SPARC_INSTRINFO_H
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "SparcInternals.h"
namespace llvm {
struct SparcInstrInfo : public TargetInstrInfo {
SparcInstrInfo();
// All immediate constants are in position 1 except the
// store instructions and SETxx.
//
virtual int getImmedConstantPos(MachineOpCode opCode) const {
bool ignore;
if (this->maxImmedConstant(opCode, ignore) != 0) {
// 1st store opcode
assert(! this->isStore((MachineOpCode) V9::STBr - 1));
// last store opcode
assert(! this->isStore((MachineOpCode) V9::STXFSRi + 1));
if (opCode == V9::SETSW || opCode == V9::SETUW ||
opCode == V9::SETX || opCode == V9::SETHI)
return 0;
if (opCode >= V9::STBr && opCode <= V9::STXFSRi)
return 2;
return 1;
}
else
return -1;
}
/// createNOPinstr - returns the target's implementation of NOP, which is
/// usually a pseudo-instruction, implemented by a degenerate version of
/// another instruction, e.g. X86: xchg ax, ax; SparcV9: sethi 0, g0
///
MachineInstr* createNOPinstr() const {
return BuildMI(V9::SETHI, 2).addZImm(0).addReg(SparcIntRegClass::g0);
}
/// isNOPinstr - not having a special NOP opcode, we need to know if a given
/// instruction is interpreted as an `official' NOP instr, i.e., there may be
/// more than one way to `do nothing' but only one canonical way to slack off.
///
bool isNOPinstr(const MachineInstr &MI) const {
// Make sure the instruction is EXACTLY `sethi g0, 0'
if (MI.getOpcode() == V9::SETHI && MI.getNumOperands() == 2) {
const MachineOperand &op0 = MI.getOperand(0), &op1 = MI.getOperand(1);
if (op0.isImmediate() && op0.getImmedValue() == 0 &&
op1.isMachineRegister() &&
op1.getMachineRegNum() == SparcIntRegClass::g0)
{
return true;
}
}
return false;
}
virtual bool hasResultInterlock(MachineOpCode opCode) const
{
// All UltraSPARC instructions have interlocks (note that delay slots
// are not considered here).
// However, instructions that use the result of an FCMP produce a
// 9-cycle stall if they are issued less than 3 cycles after the FCMP.
// Force the compiler to insert a software interlock (i.e., gap of
// 2 other groups, including NOPs if necessary).
return (opCode == V9::FCMPS || opCode == V9::FCMPD || opCode == V9::FCMPQ);
}
//-------------------------------------------------------------------------
// Queries about representation of LLVM quantities (e.g., constants)
//-------------------------------------------------------------------------
virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
const Instruction* I) const;
//-------------------------------------------------------------------------
// Code generation support for creating individual machine instructions
//-------------------------------------------------------------------------
// Get certain common op codes for the current target. This and all the
// Create* methods below should be moved to a machine code generation class
//
virtual MachineOpCode getNOPOpCode() const { return V9::NOP; }
// Get the value of an integral constant in the form that must
// be put into the machine register. The specified constant is interpreted
// as (i.e., converted if necessary to) the specified destination type. The
// result is always returned as an uint64_t, since the representation of
// int64_t and uint64_t are identical. The argument can be any known const.
//
// isValidConstant is set to true if a valid constant was found.
//
virtual uint64_t ConvertConstantToIntType(const TargetMachine &target,
const Value *V,
const Type *destType,
bool &isValidConstant) const;
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. `val' may be a Constant or a
// GlobalValue, viz., the constant address of a global variable or function.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCodeToLoadConst(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create an instruction sequence to copy an integer value `val'
// to a floating point value `dest' by copying to memory and back.
// val must be an integral type. dest must be a Float or Double.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Similarly, create an instruction sequence to copy an FP value
// `val' to an integer value `dest' by copying to memory and back.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create instruction(s) to copy src to dest, for arbitrary types
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCopyInstructionsByType(const TargetMachine& target,
Function* F,
Value* src,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create instruction sequence to produce a sign-extended register value
// from an arbitrary sized value (sized in bits, not bytes).
// The generated instructions are appended to `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateSignExtensionInstructions(const TargetMachine& target,
Function* F,
Value* srcVal,
Value* destVal,
unsigned int numLowBits,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create instruction sequence to produce a zero-extended register value
// from an arbitrary sized value (sized in bits, not bytes).
// The generated instructions are appended to `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
Function* F,
Value* srcVal,
Value* destVal,
unsigned int numLowBits,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
};
} // End llvm namespace
#endif