llvm-6502/include/llvm/CodeGen/SelectionDAGNodes.h
Nate Begeman f7f3d32191 Add AssertSext, AssertZext nodes for targets that pass arguments in
registers, and the incoming values have already been zero or sign extended
from the appopriate type to the register width.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23146 91177308-0d34-0410-b5e6-96231b3b80d8
2005-08-30 02:39:32 +00:00

1015 lines
36 KiB
C++

//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Value.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <vector>
namespace llvm {
class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class SDNode;
template <typename T> struct simplify_type;
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
//===--------------------------------------------------------------------===//
/// ISD::NodeType enum - This enum defines all of the operators valid in a
/// SelectionDAG.
///
enum NodeType {
// EntryToken - This is the marker used to indicate the start of the region.
EntryToken,
// Token factor - This node takes multiple tokens as input and produces a
// single token result. This is used to represent the fact that the operand
// operators are independent of each other.
TokenFactor,
// AssertSext, AssertZext - These nodes record if a register contains a
// value that has already been zero or sign extended from a narrower type.
// These nodes take two operands. The first is the node that has already
// been extended, and the second is a value type node indicating the width
// of the extension
AssertSext, AssertZext,
// Various leaf nodes.
Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
BasicBlock, ExternalSymbol, VALUETYPE, CONDCODE, Register,
// TargetConstant - Like Constant, but the DAG does not do any folding or
// simplification of the constant. This is used by the DAG->DAG selector.
TargetConstant,
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
// anything else with this node, and this is valid in the target-specific
// dag, turning into a GlobalAddress operand.
TargetGlobalAddress,
TargetFrameIndex,
TargetConstantPool,
// CopyToReg - This node has three operands: a chain, a register number to
// set to this value, and a value.
CopyToReg,
// CopyFromReg - This node indicates that the input value is a virtual or
// physical register that is defined outside of the scope of this
// SelectionDAG. The register is available from the RegSDNode object.
CopyFromReg,
// ImplicitDef - This node indicates that the specified register is
// implicitly defined by some operation (e.g. its a live-in argument). The
// two operands to this are the token chain coming in and the register.
// The only result is the token chain going out.
ImplicitDef,
// UNDEF - An undefined node
UNDEF,
// EXTRACT_ELEMENT - This is used to get the first or second (determined by
// a Constant, which is required to be operand #1), element of the aggregate
// value specified as operand #0. This is only for use before legalization,
// for values that will be broken into multiple registers.
EXTRACT_ELEMENT,
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
// two values of the same integer value type, this produces a value twice as
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
BUILD_PAIR,
// Simple binary arithmetic operators.
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
// an unsigned/signed value of type i[2*n], then return the top part.
MULHU, MULHS,
// Bitwise operators.
AND, OR, XOR, SHL, SRA, SRL,
// Counting operators
CTTZ, CTLZ, CTPOP,
// Select
SELECT,
// Select with condition operator - This selects between a true value and
// a false value (ops #2 and #3) based on the boolean result of comparing
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
// condition code in op #4, a CondCodeSDNode.
SELECT_CC,
// SetCC operator - This evaluates to a boolean (i1) true value if the
// condition is true. The operands to this are the left and right operands
// to compare (ops #0, and #1) and the condition code to compare them with
// (op #2) as a CondCodeSDNode.
SETCC,
// ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
// broken into a multiple pieces each, and return the resulting pieces of
// doing an atomic add/sub operation. This is used to handle add/sub of
// expanded types. The operation ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
ADD_PARTS, SUB_PARTS,
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
// integer shift operations, just like ADD/SUB_PARTS. The operation
// ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
SHL_PARTS, SRA_PARTS, SRL_PARTS,
// Conversion operators. These are all single input single output
// operations. For all of these, the result type must be strictly
// wider or narrower (depending on the operation) than the source
// type.
// SIGN_EXTEND - Used for integer types, replicating the sign bit
// into new bits.
SIGN_EXTEND,
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
ZERO_EXTEND,
// TRUNCATE - Completely drop the high bits.
TRUNCATE,
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
// depends on the first letter) to floating point.
SINT_TO_FP,
UINT_TO_FP,
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
// sign extend a small value in a large integer register (e.g. sign
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
// with the 7th bit). The size of the smaller type is indicated by the 1th
// operand, a ValueType node.
SIGN_EXTEND_INREG,
// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
// integer.
FP_TO_SINT,
FP_TO_UINT,
// FP_ROUND - Perform a rounding operation from the current
// precision down to the specified precision (currently always 64->32).
FP_ROUND,
// FP_ROUND_INREG - This operator takes a floating point register, and
// rounds it to a floating point value. It then promotes it and returns it
// in a register of the same size. This operation effectively just discards
// excess precision. The type to round down to is specified by the 1th
// operation, a VTSDNode (currently always 64->32->64).
FP_ROUND_INREG,
// FP_EXTEND - Extend a smaller FP type into a larger FP type.
FP_EXTEND,
// FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
// absolute value, square root, sine and cosine operations.
FNEG, FABS, FSQRT, FSIN, FCOS,
// Other operators. LOAD and STORE have token chains as their first
// operand, then the same operands as an LLVM load/store instruction, then a
// SRCVALUE node that provides alias analysis information.
LOAD, STORE,
// EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
// memory and extend them to a larger value (e.g. load a byte into a word
// register). All three of these have four operands, a token chain, a
// pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
// indicating the type to load.
//
// SEXTLOAD loads the integer operand and sign extends it to a larger
// integer result type.
// ZEXTLOAD loads the integer operand and zero extends it to a larger
// integer result type.
// EXTLOAD is used for two things: floating point extending loads, and
// integer extending loads where it doesn't matter what the high
// bits are set to. The code generator is allowed to codegen this
// into whichever operation is more efficient.
EXTLOAD, SEXTLOAD, ZEXTLOAD,
// TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
// value and stores it to memory in one operation. This can be used for
// either integer or floating point operands. The first four operands of
// this are the same as a standard store. The fifth is the ValueType to
// store it as (which will be smaller than the source value).
TRUNCSTORE,
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
// to a specified boundary. The first operand is the token chain, the
// second is the number of bytes to allocate, and the third is the alignment
// boundary. The size is guaranteed to be a multiple of the stack
// alignment, and the alignment is guaranteed to be bigger than the stack
// alignment (if required) or 0 to get standard stack alignment.
DYNAMIC_STACKALLOC,
// Control flow instructions. These all have token chains.
// BR - Unconditional branch. The first operand is the chain
// operand, the second is the MBB to branch to.
BR,
// BRCOND - Conditional branch. The first operand is the chain,
// the second is the condition, the third is the block to branch
// to if the condition is true.
BRCOND,
// BRCONDTWOWAY - Two-way conditional branch. The first operand is the
// chain, the second is the condition, the third is the block to branch to
// if true, and the forth is the block to branch to if false. Targets
// usually do not implement this, preferring to have legalize demote the
// operation to BRCOND/BR pairs when necessary.
BRCONDTWOWAY,
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
// that the condition is represented as condition code, and two nodes to
// compare, rather than as a combined SetCC node. The operands in order are
// chain, cc, lhs, rhs, block to branch to if condition is true.
BR_CC,
// BRTWOWAY_CC - Two-way conditional branch. The operands in order are
// chain, cc, lhs, rhs, block to branch to if condition is true, block to
// branch to if condition is false. Targets usually do not implement this,
// preferring to have legalize demote the operation to BRCOND/BR pairs.
BRTWOWAY_CC,
// RET - Return from function. The first operand is the chain,
// and any subsequent operands are the return values for the
// function. This operation can have variable number of operands.
RET,
// CALL - Call to a function pointer. The first operand is the chain, the
// second is the destination function pointer (a GlobalAddress for a direct
// call). Arguments have already been lowered to explicit DAGs according to
// the calling convention in effect here. TAILCALL is the same as CALL, but
// the callee is known not to access the stack of the caller.
CALL,
TAILCALL,
// MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
// correspond to the operands of the LLVM intrinsic functions. The only
// result is a token chain. The alignment argument is guaranteed to be a
// Constant node.
MEMSET,
MEMMOVE,
MEMCPY,
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
// a call sequence, and carry arbitrary information that target might want
// to know. The first operand is a chain, the rest are specified by the
// target and not touched by the DAG optimizers.
CALLSEQ_START, // Beginning of a call sequence
CALLSEQ_END, // End of a call sequence
// SRCVALUE - This corresponds to a Value*, and is used to associate memory
// locations with their value. This allows one use alias analysis
// information in the backend.
SRCVALUE,
// PCMARKER - This corresponds to the pcmarker intrinsic.
PCMARKER,
// READPORT, WRITEPORT, READIO, WRITEIO - These correspond to the LLVM
// intrinsics of the same name. The first operand is a token chain, the
// other operands match the intrinsic. These produce a token chain in
// addition to a value (if any).
READPORT, WRITEPORT, READIO, WRITEIO,
// BUILTIN_OP_END - This must be the last enum value in this list.
BUILTIN_OP_END,
};
//===--------------------------------------------------------------------===//
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
/// below work out, when considering SETFALSE (something that never exists
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
/// to. If the "N" column is 1, the result of the comparison is undefined if
/// the input is a NAN.
///
/// All of these (except for the 'always folded ops') should be handled for
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
///
/// Note that these are laid out in a specific order to allow bit-twiddling
/// to transform conditions.
enum CondCode {
// Opcode N U L G E Intuitive operation
SETFALSE, // 0 0 0 0 Always false (always folded)
SETOEQ, // 0 0 0 1 True if ordered and equal
SETOGT, // 0 0 1 0 True if ordered and greater than
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
SETOLT, // 0 1 0 0 True if ordered and less than
SETOLE, // 0 1 0 1 True if ordered and less than or equal
SETONE, // 0 1 1 0 True if ordered and operands are unequal
SETO, // 0 1 1 1 True if ordered (no nans)
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
SETUEQ, // 1 0 0 1 True if unordered or equal
SETUGT, // 1 0 1 0 True if unordered or greater than
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
SETULT, // 1 1 0 0 True if unordered or less than
SETULE, // 1 1 0 1 True if unordered, less than, or equal
SETUNE, // 1 1 1 0 True if unordered or not equal
SETTRUE, // 1 1 1 1 Always true (always folded)
// Don't care operations: undefined if the input is a nan.
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
SETEQ, // 1 X 0 0 1 True if equal
SETGT, // 1 X 0 1 0 True if greater than
SETGE, // 1 X 0 1 1 True if greater than or equal
SETLT, // 1 X 1 0 0 True if less than
SETLE, // 1 X 1 0 1 True if less than or equal
SETNE, // 1 X 1 1 0 True if not equal
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
SETCC_INVALID, // Marker value.
};
/// isSignedIntSetCC - Return true if this is a setcc instruction that
/// performs a signed comparison when used with integer operands.
inline bool isSignedIntSetCC(CondCode Code) {
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
}
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
/// performs an unsigned comparison when used with integer operands.
inline bool isUnsignedIntSetCC(CondCode Code) {
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
}
/// isTrueWhenEqual - Return true if the specified condition returns true if
/// the two operands to the condition are equal. Note that if one of the two
/// operands is a NaN, this value is meaningless.
inline bool isTrueWhenEqual(CondCode Cond) {
return ((int)Cond & 1) != 0;
}
/// getUnorderedFlavor - This function returns 0 if the condition is always
/// false if an operand is a NaN, 1 if the condition is always true if the
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
/// NaN.
inline unsigned getUnorderedFlavor(CondCode Cond) {
return ((int)Cond >> 3) & 3;
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
CondCode getSetCCSwappedOperands(CondCode Operation);
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
/// getSetCCAndOperation - Return the result of a logical AND between
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
} // end llvm::ISD namespace
//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
SDNode *Val; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
SDOperand() : Val(0) {}
SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
bool operator==(const SDOperand &O) const {
return Val == O.Val && ResNo == O.ResNo;
}
bool operator!=(const SDOperand &O) const {
return !operator==(O);
}
bool operator<(const SDOperand &O) const {
return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
}
SDOperand getValue(unsigned R) const {
return SDOperand(Val, R);
}
/// getValueType - Return the ValueType of the referenced return value.
///
inline MVT::ValueType getValueType() const;
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNodeDepth() const;
inline unsigned getNumOperands() const;
inline const SDOperand &getOperand(unsigned i) const;
inline bool isTargetOpcode() const;
inline unsigned getTargetOpcode() const;
/// hasOneUse - Return true if there is exactly one operation using this
/// result value of the defining operator.
inline bool hasOneUse() const;
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
template<> struct simplify_type<const SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode {
/// NodeType - The operation that this node performs.
///
unsigned short NodeType;
/// NodeDepth - Node depth is defined as MAX(Node depth of children)+1. This
/// means that leaves have a depth of 1, things that use only leaves have a
/// depth of 2, etc.
unsigned short NodeDepth;
/// Operands - The values that are used by this operation.
///
std::vector<SDOperand> Operands;
/// Values - The types of the values this node defines. SDNode's may define
/// multiple values simultaneously.
std::vector<MVT::ValueType> Values;
/// Uses - These are all of the SDNode's that use a value produced by this
/// node.
std::vector<SDNode*> Uses;
public:
//===--------------------------------------------------------------------===//
// Accessors
//
unsigned getOpcode() const { return NodeType; }
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
unsigned getTargetOpcode() const {
assert(isTargetOpcode() && "Not a target opcode!");
return NodeType - ISD::BUILTIN_OP_END;
}
size_t use_size() const { return Uses.size(); }
bool use_empty() const { return Uses.empty(); }
bool hasOneUse() const { return Uses.size() == 1; }
/// getNodeDepth - Return the distance from this node to the leaves in the
/// graph. The leaves have a depth of 1.
unsigned getNodeDepth() const { return NodeDepth; }
typedef std::vector<SDNode*>::const_iterator use_iterator;
use_iterator use_begin() const { return Uses.begin(); }
use_iterator use_end() const { return Uses.end(); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value);
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return Operands.size(); }
const SDOperand &getOperand(unsigned Num) {
assert(Num < Operands.size() && "Invalid child # of SDNode!");
return Operands[Num];
}
const SDOperand &getOperand(unsigned Num) const {
assert(Num < Operands.size() && "Invalid child # of SDNode!");
return Operands[Num];
}
typedef std::vector<SDOperand>::const_iterator op_iterator;
op_iterator op_begin() const { return Operands.begin(); }
op_iterator op_end() const { return Operands.end(); }
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return Values.size(); }
/// getValueType - Return the type of a specified result.
///
MVT::ValueType getValueType(unsigned ResNo) const {
assert(ResNo < Values.size() && "Illegal result number!");
return Values[ResNo];
}
typedef std::vector<MVT::ValueType>::const_iterator value_iterator;
value_iterator value_begin() const { return Values.begin(); }
value_iterator value_end() const { return Values.end(); }
/// getOperationName - Return the opcode of this operation for printing.
///
const char* getOperationName(const SelectionDAG *G = 0) const;
void dump() const;
void dump(const SelectionDAG *G) const;
static bool classof(const SDNode *) { return true; }
/// setAdjCallChain - This method should only be used by the legalizer.
void setAdjCallChain(SDOperand N);
protected:
friend class SelectionDAG;
SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
Values.reserve(1);
Values.push_back(VT);
}
SDNode(unsigned NT, SDOperand Op)
: NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
Operands.reserve(1); Operands.push_back(Op);
Op.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2)
: NodeType(NT) {
if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
NodeDepth = N1.Val->getNodeDepth()+1;
else
NodeDepth = N2.Val->getNodeDepth()+1;
Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
: NodeType(NT) {
unsigned ND = N1.Val->getNodeDepth();
if (ND < N2.Val->getNodeDepth())
ND = N2.Val->getNodeDepth();
if (ND < N3.Val->getNodeDepth())
ND = N3.Val->getNodeDepth();
NodeDepth = ND+1;
Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
Operands.push_back(N3);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
: NodeType(NT) {
unsigned ND = N1.Val->getNodeDepth();
if (ND < N2.Val->getNodeDepth())
ND = N2.Val->getNodeDepth();
if (ND < N3.Val->getNodeDepth())
ND = N3.Val->getNodeDepth();
if (ND < N4.Val->getNodeDepth())
ND = N4.Val->getNodeDepth();
NodeDepth = ND+1;
Operands.reserve(4); Operands.push_back(N1); Operands.push_back(N2);
Operands.push_back(N3); Operands.push_back(N4);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
}
SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
Operands.swap(Nodes);
unsigned ND = 0;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
Operands[i].Val->Uses.push_back(this);
if (ND < Operands[i].Val->getNodeDepth())
ND = Operands[i].Val->getNodeDepth();
}
NodeDepth = ND+1;
}
virtual ~SDNode() {}
/// MorphNodeTo - This clears the return value and operands list, and sets the
/// opcode of the node to the specified value. This should only be used by
/// the SelectionDAG class.
void MorphNodeTo(unsigned Opc) {
NodeType = Opc;
Values.clear();
// Clear the operands list, updating used nodes to remove this from their
// use list.
while (!Operands.empty()) {
SDNode *O = Operands.back().Val;
Operands.pop_back();
O->removeUser(this);
}
}
void setValueTypes(MVT::ValueType VT) {
Values.reserve(1);
Values.push_back(VT);
}
void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
Values.reserve(2);
Values.push_back(VT1);
Values.push_back(VT2);
}
/// Note: this method destroys the vector passed in.
void setValueTypes(std::vector<MVT::ValueType> &VTs) {
std::swap(Values, VTs);
}
void setOperands(SDOperand Op0) {
Operands.reserve(1);
Operands.push_back(Op0);
Op0.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1) {
Operands.reserve(2);
Operands.push_back(Op0);
Operands.push_back(Op1);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
Operands.reserve(3);
Operands.push_back(Op0);
Operands.push_back(Op1);
Operands.push_back(Op2);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
Operands.reserve(4);
Operands.push_back(Op0);
Operands.push_back(Op1);
Operands.push_back(Op2);
Operands.push_back(Op3);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4) {
Operands.reserve(5);
Operands.push_back(Op0);
Operands.push_back(Op1);
Operands.push_back(Op2);
Operands.push_back(Op3);
Operands.push_back(Op4);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
Op4.Val->Uses.push_back(this);
}
void addUser(SDNode *User) {
Uses.push_back(User);
}
void removeUser(SDNode *User) {
// Remove this user from the operand's use list.
for (unsigned i = Uses.size(); ; --i) {
assert(i != 0 && "Didn't find user!");
if (Uses[i-1] == User) {
Uses[i-1] = Uses.back();
Uses.pop_back();
return;
}
}
}
};
// Define inline functions from the SDOperand class.
inline unsigned SDOperand::getOpcode() const {
return Val->getOpcode();
}
inline unsigned SDOperand::getNodeDepth() const {
return Val->getNodeDepth();
}
inline MVT::ValueType SDOperand::getValueType() const {
return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
return Val->getOperand(i);
}
inline bool SDOperand::isTargetOpcode() const {
return Val->isTargetOpcode();
}
inline unsigned SDOperand::getTargetOpcode() const {
return Val->getTargetOpcode();
}
inline bool SDOperand::hasOneUse() const {
return Val->hasNUsesOfValue(1, ResNo);
}
class ConstantSDNode : public SDNode {
uint64_t Value;
protected:
friend class SelectionDAG;
ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
}
public:
uint64_t getValue() const { return Value; }
int64_t getSignExtended() const {
unsigned Bits = MVT::getSizeInBits(getValueType(0));
return ((int64_t)Value << (64-Bits)) >> (64-Bits);
}
bool isNullValue() const { return Value == 0; }
bool isAllOnesValue() const {
int NumBits = MVT::getSizeInBits(getValueType(0));
if (NumBits == 64) return Value+1 == 0;
return Value == (1ULL << NumBits)-1;
}
static bool classof(const ConstantSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
class ConstantFPSDNode : public SDNode {
double Value;
protected:
friend class SelectionDAG;
ConstantFPSDNode(double val, MVT::ValueType VT)
: SDNode(ISD::ConstantFP, VT), Value(val) {
}
public:
double getValue() const { return Value; }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool isExactlyValue(double V) const;
static bool classof(const ConstantFPSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP;
}
};
class GlobalAddressSDNode : public SDNode {
GlobalValue *TheGlobal;
protected:
friend class SelectionDAG;
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT) {
TheGlobal = const_cast<GlobalValue*>(GA);
}
public:
GlobalValue *getGlobal() const { return TheGlobal; }
static bool classof(const GlobalAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress;
}
};
class FrameIndexSDNode : public SDNode {
int FI;
protected:
friend class SelectionDAG;
FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
public:
int getIndex() const { return FI; }
static bool classof(const FrameIndexSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
class ConstantPoolSDNode : public SDNode {
Constant *C;
protected:
friend class SelectionDAG;
ConstantPoolSDNode(Constant *c, MVT::ValueType VT, bool isTarget)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
C(c) {}
public:
Constant *get() const { return C; }
static bool classof(const ConstantPoolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
class BasicBlockSDNode : public SDNode {
MachineBasicBlock *MBB;
protected:
friend class SelectionDAG;
BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const BasicBlockSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
class SrcValueSDNode : public SDNode {
const Value *V;
int offset;
protected:
friend class SelectionDAG;
SrcValueSDNode(const Value* v, int o)
: SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
public:
const Value *getValue() const { return V; }
int getOffset() const { return offset; }
static bool classof(const SrcValueSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class RegisterSDNode : public SDNode {
unsigned Reg;
protected:
friend class SelectionDAG;
RegisterSDNode(unsigned reg, MVT::ValueType VT)
: SDNode(ISD::Register, VT), Reg(reg) {}
public:
unsigned getReg() const { return Reg; }
static bool classof(const RegisterSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class ExternalSymbolSDNode : public SDNode {
const char *Symbol;
protected:
friend class SelectionDAG;
ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
: SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
}
public:
const char *getSymbol() const { return Symbol; }
static bool classof(const ExternalSymbolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol;
}
};
class CondCodeSDNode : public SDNode {
ISD::CondCode Condition;
protected:
friend class SelectionDAG;
CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const CondCodeSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
MVT::ValueType ValueType;
protected:
friend class SelectionDAG;
VTSDNode(MVT::ValueType VT)
: SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
public:
MVT::ValueType getVT() const { return ValueType; }
static bool classof(const VTSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
SDNode *Node;
unsigned Operand;
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->getOperand(Operand).Val;
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
typedef SDNode NodeType;
typedef SDNodeIterator ChildIteratorType;
static inline NodeType *getEntryNode(SDNode *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SDNodeIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SDNodeIterator::end(N);
}
};
} // end llvm namespace
#endif