mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
c94da20917
Summary: DataLayout keeps the string used for its creation. As a side effect it is no longer needed in the Module. This is "almost" NFC, the string is no longer canonicalized, you can't rely on two "equals" DataLayout having the same string returned by getStringRepresentation(). Get rid of DataLayoutPass: the DataLayout is in the Module The DataLayout is "per-module", let's enforce this by not duplicating it more than necessary. One more step toward non-optionality of the DataLayout in the module. Make DataLayout Non-Optional in the Module Module->getDataLayout() will never returns nullptr anymore. Reviewers: echristo Subscribers: resistor, llvm-commits, jholewinski Differential Revision: http://reviews.llvm.org/D7992 From: Mehdi Amini <mehdi.amini@apple.com> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
787 lines
32 KiB
C++
787 lines
32 KiB
C++
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers LLVM IR exception handling into something closer to what the
|
|
// backend wants. It snifs the personality function to see which kind of
|
|
// preparation is necessary. If the personality function uses the Itanium LSDA,
|
|
// this pass delegates to the DWARF EH preparation pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Analysis/LibCallSemantics.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "winehprepare"
|
|
|
|
namespace {
|
|
|
|
struct HandlerAllocas {
|
|
TinyPtrVector<AllocaInst *> Allocas;
|
|
int ParentFrameAllocationIndex;
|
|
};
|
|
|
|
// This map is used to model frame variable usage during outlining, to
|
|
// construct a structure type to hold the frame variables in a frame
|
|
// allocation block, and to remap the frame variable allocas (including
|
|
// spill locations as needed) to GEPs that get the variable from the
|
|
// frame allocation structure.
|
|
typedef MapVector<Value *, HandlerAllocas> FrameVarInfoMap;
|
|
|
|
class WinEHPrepare : public FunctionPass {
|
|
std::unique_ptr<FunctionPass> DwarfPrepare;
|
|
|
|
enum HandlerType { Catch, Cleanup };
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
WinEHPrepare(const TargetMachine *TM = nullptr)
|
|
: FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {}
|
|
|
|
bool runOnFunction(Function &Fn) override;
|
|
|
|
bool doFinalization(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
const char *getPassName() const override {
|
|
return "Windows exception handling preparation";
|
|
}
|
|
|
|
private:
|
|
bool prepareCPPEHHandlers(Function &F,
|
|
SmallVectorImpl<LandingPadInst *> &LPads);
|
|
bool outlineHandler(HandlerType CatchOrCleanup, Function *SrcFn,
|
|
Constant *SelectorType, LandingPadInst *LPad,
|
|
CallInst *&EHAlloc, FrameVarInfoMap &VarInfo);
|
|
};
|
|
|
|
class WinEHFrameVariableMaterializer : public ValueMaterializer {
|
|
public:
|
|
WinEHFrameVariableMaterializer(Function *OutlinedFn,
|
|
FrameVarInfoMap &FrameVarInfo);
|
|
~WinEHFrameVariableMaterializer() {}
|
|
|
|
virtual Value *materializeValueFor(Value *V) override;
|
|
|
|
private:
|
|
FrameVarInfoMap &FrameVarInfo;
|
|
IRBuilder<> Builder;
|
|
};
|
|
|
|
class WinEHCloningDirectorBase : public CloningDirector {
|
|
public:
|
|
WinEHCloningDirectorBase(LandingPadInst *LPI, Function *HandlerFn,
|
|
FrameVarInfoMap &VarInfo)
|
|
: LPI(LPI), Materializer(HandlerFn, VarInfo),
|
|
SelectorIDType(Type::getInt32Ty(LPI->getContext())),
|
|
Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {}
|
|
|
|
CloningAction handleInstruction(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
|
|
virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleResume(ValueToValueMapTy &VMap,
|
|
const ResumeInst *Resume,
|
|
BasicBlock *NewBB) = 0;
|
|
|
|
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
|
|
|
|
protected:
|
|
LandingPadInst *LPI;
|
|
WinEHFrameVariableMaterializer Materializer;
|
|
Type *SelectorIDType;
|
|
Type *Int8PtrType;
|
|
|
|
const Value *ExtractedEHPtr;
|
|
const Value *ExtractedSelector;
|
|
const Value *EHPtrStoreAddr;
|
|
const Value *SelectorStoreAddr;
|
|
};
|
|
|
|
class WinEHCatchDirector : public WinEHCloningDirectorBase {
|
|
public:
|
|
WinEHCatchDirector(LandingPadInst *LPI, Function *CatchFn, Value *Selector,
|
|
FrameVarInfoMap &VarInfo)
|
|
: WinEHCloningDirectorBase(LPI, CatchFn, VarInfo),
|
|
CurrentSelector(Selector->stripPointerCasts()) {}
|
|
|
|
CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
|
|
BasicBlock *NewBB) override;
|
|
|
|
private:
|
|
Value *CurrentSelector;
|
|
};
|
|
|
|
class WinEHCleanupDirector : public WinEHCloningDirectorBase {
|
|
public:
|
|
WinEHCleanupDirector(LandingPadInst *LPI, Function *CleanupFn,
|
|
FrameVarInfoMap &VarInfo)
|
|
: WinEHCloningDirectorBase(LPI, CleanupFn, VarInfo) {}
|
|
|
|
CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
|
|
BasicBlock *NewBB) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char WinEHPrepare::ID = 0;
|
|
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
|
|
return new WinEHPrepare(TM);
|
|
}
|
|
|
|
static bool isMSVCPersonality(EHPersonality Pers) {
|
|
return Pers == EHPersonality::MSVC_Win64SEH ||
|
|
Pers == EHPersonality::MSVC_CXX;
|
|
}
|
|
|
|
bool WinEHPrepare::runOnFunction(Function &Fn) {
|
|
SmallVector<LandingPadInst *, 4> LPads;
|
|
SmallVector<ResumeInst *, 4> Resumes;
|
|
for (BasicBlock &BB : Fn) {
|
|
if (auto *LP = BB.getLandingPadInst())
|
|
LPads.push_back(LP);
|
|
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
|
|
Resumes.push_back(Resume);
|
|
}
|
|
|
|
// No need to prepare functions that lack landing pads.
|
|
if (LPads.empty())
|
|
return false;
|
|
|
|
// Classify the personality to see what kind of preparation we need.
|
|
EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn());
|
|
|
|
// Delegate through to the DWARF pass if this is unrecognized.
|
|
if (!isMSVCPersonality(Pers))
|
|
return DwarfPrepare->runOnFunction(Fn);
|
|
|
|
// FIXME: This only returns true if the C++ EH handlers were outlined.
|
|
// When that code is complete, it should always return whatever
|
|
// prepareCPPEHHandlers returns.
|
|
if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads))
|
|
return true;
|
|
|
|
// FIXME: SEH Cleanups are unimplemented. Replace them with unreachable.
|
|
if (Resumes.empty())
|
|
return false;
|
|
|
|
for (ResumeInst *Resume : Resumes) {
|
|
IRBuilder<>(Resume).CreateUnreachable();
|
|
Resume->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WinEHPrepare::doFinalization(Module &M) {
|
|
return DwarfPrepare->doFinalization(M);
|
|
}
|
|
|
|
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
DwarfPrepare->getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool WinEHPrepare::prepareCPPEHHandlers(
|
|
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
|
|
// These containers are used to re-map frame variables that are used in
|
|
// outlined catch and cleanup handlers. They will be populated as the
|
|
// handlers are outlined.
|
|
FrameVarInfoMap FrameVarInfo;
|
|
SmallVector<CallInst *, 4> HandlerAllocs;
|
|
|
|
bool HandlersOutlined = false;
|
|
|
|
for (LandingPadInst *LPad : LPads) {
|
|
// Look for evidence that this landingpad has already been processed.
|
|
bool LPadHasActionList = false;
|
|
BasicBlock *LPadBB = LPad->getParent();
|
|
for (Instruction &Inst : LPadBB->getInstList()) {
|
|
// FIXME: Make this an intrinsic.
|
|
if (auto *Call = dyn_cast<CallInst>(&Inst))
|
|
if (Call->getCalledFunction()->getName() == "llvm.eh.actions") {
|
|
LPadHasActionList = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we've already outlined the handlers for this landingpad,
|
|
// there's nothing more to do here.
|
|
if (LPadHasActionList)
|
|
continue;
|
|
|
|
for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses;
|
|
++Idx) {
|
|
if (LPad->isCatch(Idx)) {
|
|
// Create a new instance of the handler data structure in the
|
|
// HandlerData vector.
|
|
CallInst *EHAlloc = nullptr;
|
|
bool Outlined = outlineHandler(Catch, &F, LPad->getClause(Idx), LPad,
|
|
EHAlloc, FrameVarInfo);
|
|
if (Outlined) {
|
|
HandlersOutlined = true;
|
|
// These values must be resolved after all handlers have been
|
|
// outlined.
|
|
if (EHAlloc)
|
|
HandlerAllocs.push_back(EHAlloc);
|
|
}
|
|
} // End if (isCatch)
|
|
} // End for each clause
|
|
|
|
// FIXME: This only handles the simple case where there is a 1:1
|
|
// correspondence between landing pad and cleanup blocks.
|
|
// It does not handle cases where there are catch blocks between
|
|
// cleanup blocks or the case where a cleanup block is shared by
|
|
// multiple landing pads. Those cases will be supported later
|
|
// when landing pad block analysis is added.
|
|
if (LPad->isCleanup()) {
|
|
CallInst *EHAlloc = nullptr;
|
|
bool Outlined =
|
|
outlineHandler(Cleanup, &F, nullptr, LPad, EHAlloc, FrameVarInfo);
|
|
if (Outlined) {
|
|
HandlersOutlined = true;
|
|
// This value must be resolved after all handlers have been outlined.
|
|
if (EHAlloc)
|
|
HandlerAllocs.push_back(EHAlloc);
|
|
}
|
|
}
|
|
} // End for each landingpad
|
|
|
|
// If nothing got outlined, there is no more processing to be done.
|
|
if (!HandlersOutlined)
|
|
return false;
|
|
|
|
// FIXME: We will replace the landingpad bodies with llvm.eh.actions
|
|
// calls and indirect branches here and then delete blocks
|
|
// which are no longer reachable. That will get rid of the
|
|
// handlers that we have outlined. There is code below
|
|
// that looks for allocas with no uses in the parent function.
|
|
// That will only happen after the pruning is implemented.
|
|
|
|
// Remap the frame variables.
|
|
SmallVector<Type *, 2> StructTys;
|
|
StructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state
|
|
StructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object
|
|
|
|
// Start the index at two since we always have the above fields at 0 and 1.
|
|
int Idx = 2;
|
|
|
|
// FIXME: Sort the FrameVarInfo vector by the ParentAlloca size and alignment
|
|
// and add padding as necessary to provide the proper alignment.
|
|
|
|
// Map the alloca instructions to the corresponding index in the
|
|
// frame allocation structure. If any alloca is used only in a single
|
|
// handler and is not used in the parent frame after outlining, it will
|
|
// be assigned an index of -1, meaning the handler can keep its
|
|
// "temporary" alloca and the original alloca can be erased from the
|
|
// parent function. If we later encounter this alloca in a second
|
|
// handler, we will assign it a place in the frame allocation structure
|
|
// at that time. Since the instruction replacement doesn't happen until
|
|
// all the entries in the HandlerData have been processed this isn't a
|
|
// problem.
|
|
for (auto &VarInfoEntry : FrameVarInfo) {
|
|
Value *ParentVal = VarInfoEntry.first;
|
|
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
|
|
|
|
if (auto *ParentAlloca = dyn_cast<AllocaInst>(ParentVal)) {
|
|
// If the instruction still has uses in the parent function or if it is
|
|
// referenced by more than one handler, add it to the frame allocation
|
|
// structure.
|
|
if (ParentAlloca->getNumUses() != 0 || AllocaInfo.Allocas.size() > 1) {
|
|
Type *VarTy = ParentAlloca->getAllocatedType();
|
|
StructTys.push_back(VarTy);
|
|
AllocaInfo.ParentFrameAllocationIndex = Idx++;
|
|
} else {
|
|
// If the variable is not used in the parent frame and it is only used
|
|
// in one handler, the alloca can be removed from the parent frame
|
|
// and the handler will keep its "temporary" alloca to define the value.
|
|
// An element index of -1 is used to indicate this condition.
|
|
AllocaInfo.ParentFrameAllocationIndex = -1;
|
|
}
|
|
} else {
|
|
// FIXME: Sink non-alloca values into the handler if they have no other
|
|
// uses in the parent function after outlining and are only used in
|
|
// one handler.
|
|
Type *VarTy = ParentVal->getType();
|
|
StructTys.push_back(VarTy);
|
|
AllocaInfo.ParentFrameAllocationIndex = Idx++;
|
|
}
|
|
}
|
|
|
|
// Having filled the StructTys vector and assigned an index to each element,
|
|
// we can now create the structure.
|
|
StructType *EHDataStructTy = StructType::create(
|
|
F.getContext(), StructTys, "struct." + F.getName().str() + ".ehdata");
|
|
IRBuilder<> Builder(F.getParent()->getContext());
|
|
|
|
// Create a frame allocation.
|
|
Module *M = F.getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
BasicBlock *Entry = &F.getEntryBlock();
|
|
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
|
|
Function *FrameAllocFn =
|
|
Intrinsic::getDeclaration(M, Intrinsic::frameallocate);
|
|
uint64_t EHAllocSize = M->getDataLayout().getTypeAllocSize(EHDataStructTy);
|
|
Value *FrameAllocArgs[] = {
|
|
ConstantInt::get(Type::getInt32Ty(Context), EHAllocSize)};
|
|
CallInst *FrameAlloc =
|
|
Builder.CreateCall(FrameAllocFn, FrameAllocArgs, "frame.alloc");
|
|
|
|
Value *FrameEHData = Builder.CreateBitCast(
|
|
FrameAlloc, EHDataStructTy->getPointerTo(), "eh.data");
|
|
|
|
// Now visit each handler that is using the structure and bitcast its EHAlloc
|
|
// value to be a pointer to the frame alloc structure.
|
|
DenseMap<Function *, Value *> EHDataMap;
|
|
for (CallInst *EHAlloc : HandlerAllocs) {
|
|
// The EHAlloc has no uses at this time, so we need to just insert the
|
|
// cast before the next instruction. There is always a next instruction.
|
|
BasicBlock::iterator II = EHAlloc;
|
|
++II;
|
|
Builder.SetInsertPoint(cast<Instruction>(II));
|
|
Value *EHData = Builder.CreateBitCast(
|
|
EHAlloc, EHDataStructTy->getPointerTo(), "eh.data");
|
|
EHDataMap[EHAlloc->getParent()->getParent()] = EHData;
|
|
}
|
|
|
|
// Finally, replace all of the temporary allocas for frame variables used in
|
|
// the outlined handlers and the original frame allocas with GEP instructions
|
|
// that get the equivalent pointer from the frame allocation struct.
|
|
Instruction *FrameEHDataInst = cast<Instruction>(FrameEHData);
|
|
BasicBlock::iterator II = FrameEHDataInst;
|
|
++II;
|
|
Instruction *AllocaInsertPt = II;
|
|
for (auto &VarInfoEntry : FrameVarInfo) {
|
|
Value *ParentVal = VarInfoEntry.first;
|
|
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
|
|
int Idx = AllocaInfo.ParentFrameAllocationIndex;
|
|
|
|
// If the mapped value isn't already an alloca, we need to spill it if it
|
|
// is a computed value or copy it if it is an argument.
|
|
AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
|
|
if (!ParentAlloca) {
|
|
if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
|
|
// Lower this argument to a copy and then demote that to the stack.
|
|
// We can't just use the argument location because the handler needs
|
|
// it to be in the frame allocation block.
|
|
// Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
|
|
Value *TrueValue = ConstantInt::getTrue(Context);
|
|
Value *UndefValue = UndefValue::get(Arg->getType());
|
|
Instruction *SI =
|
|
SelectInst::Create(TrueValue, Arg, UndefValue,
|
|
Arg->getName() + ".tmp", AllocaInsertPt);
|
|
Arg->replaceAllUsesWith(SI);
|
|
// Reset the select operand, because it was clobbered by the RAUW above.
|
|
SI->setOperand(1, Arg);
|
|
ParentAlloca = DemoteRegToStack(*SI, true, SI);
|
|
} else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
|
|
ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
|
|
} else {
|
|
Instruction *ParentInst = cast<Instruction>(ParentVal);
|
|
ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst);
|
|
}
|
|
}
|
|
|
|
// If we have an index of -1 for this instruction, it means it isn't used
|
|
// outside of this handler. In that case, we just keep the "temporary"
|
|
// alloca in the handler and erase the original alloca from the parent.
|
|
if (Idx == -1) {
|
|
ParentAlloca->eraseFromParent();
|
|
} else {
|
|
// Otherwise, we replace the parent alloca and all outlined allocas
|
|
// which map to it with GEP instructions.
|
|
|
|
// First replace the original alloca.
|
|
Builder.SetInsertPoint(ParentAlloca);
|
|
Builder.SetCurrentDebugLocation(ParentAlloca->getDebugLoc());
|
|
Value *ElementPtr =
|
|
Builder.CreateConstInBoundsGEP2_32(FrameEHData, 0, Idx);
|
|
ParentAlloca->replaceAllUsesWith(ElementPtr);
|
|
ParentAlloca->removeFromParent();
|
|
ElementPtr->takeName(ParentAlloca);
|
|
if (ParentAlloca == AllocaInsertPt)
|
|
AllocaInsertPt = dyn_cast<Instruction>(ElementPtr);
|
|
delete ParentAlloca;
|
|
|
|
// Next replace all outlined allocas that are mapped to it.
|
|
for (AllocaInst *TempAlloca : AllocaInfo.Allocas) {
|
|
Value *EHData = EHDataMap[TempAlloca->getParent()->getParent()];
|
|
// FIXME: Sink this GEP into the blocks where it is used.
|
|
Builder.SetInsertPoint(TempAlloca);
|
|
Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
|
|
ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, Idx);
|
|
TempAlloca->replaceAllUsesWith(ElementPtr);
|
|
TempAlloca->removeFromParent();
|
|
ElementPtr->takeName(TempAlloca);
|
|
delete TempAlloca;
|
|
}
|
|
} // end else of if (Idx == -1)
|
|
} // End for each FrameVarInfo entry.
|
|
|
|
return HandlersOutlined;
|
|
}
|
|
|
|
bool WinEHPrepare::outlineHandler(HandlerType CatchOrCleanup, Function *SrcFn,
|
|
Constant *SelectorType, LandingPadInst *LPad,
|
|
CallInst *&EHAlloc,
|
|
FrameVarInfoMap &VarInfo) {
|
|
Module *M = SrcFn->getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
|
|
// Create a new function to receive the handler contents.
|
|
Type *Int8PtrType = Type::getInt8PtrTy(Context);
|
|
std::vector<Type *> ArgTys;
|
|
ArgTys.push_back(Int8PtrType);
|
|
ArgTys.push_back(Int8PtrType);
|
|
Function *Handler;
|
|
if (CatchOrCleanup == Catch) {
|
|
FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
|
|
Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
|
|
SrcFn->getName() + ".catch", M);
|
|
} else {
|
|
FunctionType *FnType =
|
|
FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
|
|
Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
|
|
SrcFn->getName() + ".cleanup", M);
|
|
}
|
|
|
|
// Generate a standard prolog to setup the frame recovery structure.
|
|
IRBuilder<> Builder(Context);
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "entry");
|
|
Handler->getBasicBlockList().push_front(Entry);
|
|
Builder.SetInsertPoint(Entry);
|
|
Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
|
|
|
|
// The outlined handler will be called with the parent's frame pointer as
|
|
// its second argument. To enable the handler to access variables from
|
|
// the parent frame, we use that pointer to get locate a special block
|
|
// of memory that was allocated using llvm.eh.allocateframe for this
|
|
// purpose. During the outlining process we will determine which frame
|
|
// variables are used in handlers and create a structure that maps these
|
|
// variables into the frame allocation block.
|
|
//
|
|
// The frame allocation block also contains an exception state variable
|
|
// used by the runtime and a pointer to the exception object pointer
|
|
// which will be filled in by the runtime for use in the handler.
|
|
Function *RecoverFrameFn =
|
|
Intrinsic::getDeclaration(M, Intrinsic::framerecover);
|
|
Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""),
|
|
&(Handler->getArgumentList().back())};
|
|
EHAlloc = Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");
|
|
|
|
std::unique_ptr<WinEHCloningDirectorBase> Director;
|
|
|
|
if (CatchOrCleanup == Catch) {
|
|
Director.reset(
|
|
new WinEHCatchDirector(LPad, Handler, SelectorType, VarInfo));
|
|
} else {
|
|
Director.reset(new WinEHCleanupDirector(LPad, Handler, VarInfo));
|
|
}
|
|
|
|
ValueToValueMapTy VMap;
|
|
|
|
// FIXME: Map other values referenced in the filter handler.
|
|
|
|
SmallVector<ReturnInst *, 8> Returns;
|
|
ClonedCodeInfo InlinedFunctionInfo;
|
|
|
|
BasicBlock::iterator II = LPad;
|
|
|
|
CloneAndPruneIntoFromInst(
|
|
Handler, SrcFn, ++II, VMap,
|
|
/*ModuleLevelChanges=*/false, Returns, "", &InlinedFunctionInfo,
|
|
&SrcFn->getParent()->getDataLayout(), Director.get());
|
|
|
|
// Move all the instructions in the first cloned block into our entry block.
|
|
BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
|
|
Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
|
|
FirstClonedBB->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// Intercept instructions which extract values from the landing pad aggregate.
|
|
if (auto *Extract = dyn_cast<ExtractValueInst>(Inst)) {
|
|
if (Extract->getAggregateOperand() == LPI) {
|
|
assert(Extract->getNumIndices() == 1 &&
|
|
"Unexpected operation: extracting both landing pad values");
|
|
assert((*(Extract->idx_begin()) == 0 || *(Extract->idx_begin()) == 1) &&
|
|
"Unexpected operation: extracting an unknown landing pad element");
|
|
|
|
if (*(Extract->idx_begin()) == 0) {
|
|
// Element 0 doesn't directly corresponds to anything in the WinEH
|
|
// scheme.
|
|
// It will be stored to a memory location, then later loaded and finally
|
|
// the loaded value will be used as the argument to an
|
|
// llvm.eh.begincatch
|
|
// call. We're tracking it here so that we can skip the store and load.
|
|
ExtractedEHPtr = Inst;
|
|
} else {
|
|
// Element 1 corresponds to the filter selector. We'll map it to 1 for
|
|
// matching purposes, but it will also probably be stored to memory and
|
|
// reloaded, so we need to track the instuction so that we can map the
|
|
// loaded value too.
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
ExtractedSelector = Inst;
|
|
}
|
|
|
|
// Tell the caller not to clone this instruction.
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
// Other extract value instructions just get cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
|
|
// Look for and suppress stores of the extracted landingpad values.
|
|
const Value *StoredValue = Store->getValueOperand();
|
|
if (StoredValue == ExtractedEHPtr) {
|
|
EHPtrStoreAddr = Store->getPointerOperand();
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
if (StoredValue == ExtractedSelector) {
|
|
SelectorStoreAddr = Store->getPointerOperand();
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
// Any other store just gets cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
|
|
// Look for loads of (previously suppressed) landingpad values.
|
|
// The EHPtr load can be ignored (it should only be used as
|
|
// an argument to llvm.eh.begincatch), but the selector value
|
|
// needs to be mapped to a constant value of 1 to be used to
|
|
// simplify the branching to always flow to the current handler.
|
|
const Value *LoadAddr = Load->getPointerOperand();
|
|
if (LoadAddr == EHPtrStoreAddr) {
|
|
VMap[Inst] = UndefValue::get(Int8PtrType);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
if (LoadAddr == SelectorStoreAddr) {
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
// Any other loads just get cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
if (auto *Resume = dyn_cast<ResumeInst>(Inst))
|
|
return handleResume(VMap, Resume, NewBB);
|
|
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
|
|
return handleBeginCatch(VMap, Inst, NewBB);
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
|
|
return handleEndCatch(VMap, Inst, NewBB);
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
|
|
return handleTypeIdFor(VMap, Inst, NewBB);
|
|
|
|
// Continue with the default cloning behavior.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// The argument to the call is some form of the first element of the
|
|
// landingpad aggregate value, but that doesn't matter. It isn't used
|
|
// here.
|
|
// The second argument is an outparameter where the exception object will be
|
|
// stored. Typically the exception object is a scalar, but it can be an
|
|
// aggregate when catching by value.
|
|
// FIXME: Leave something behind to indicate where the exception object lives
|
|
// for this handler. Should it be part of llvm.eh.actions?
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction
|
|
WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst, BasicBlock *NewBB) {
|
|
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
|
|
// It might be interesting to track whether or not we are inside a catch
|
|
// function, but that might make the algorithm more brittle than it needs
|
|
// to be.
|
|
|
|
// The end catch call can occur in one of two places: either in a
|
|
// landingpad
|
|
// block that is part of the catch handlers exception mechanism, or at the
|
|
// end of the catch block. If it occurs in a landing pad, we must skip it
|
|
// and continue so that the landing pad gets cloned.
|
|
// FIXME: This case isn't fully supported yet and shouldn't turn up in any
|
|
// of the test cases until it is.
|
|
if (IntrinCall->getParent()->isLandingPad())
|
|
return CloningDirector::SkipInstruction;
|
|
|
|
// If an end catch occurs anywhere else the next instruction should be an
|
|
// unconditional branch instruction that we want to replace with a return
|
|
// to the the address of the branch target.
|
|
const BasicBlock *EndCatchBB = IntrinCall->getParent();
|
|
const TerminatorInst *Terminator = EndCatchBB->getTerminator();
|
|
const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
|
|
assert(Branch && Branch->isUnconditional());
|
|
assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
|
|
BasicBlock::const_iterator(Branch));
|
|
|
|
ReturnInst::Create(NewBB->getContext(),
|
|
BlockAddress::get(Branch->getSuccessor(0)), NewBB);
|
|
|
|
// We just added a terminator to the cloned block.
|
|
// Tell the caller to stop processing the current basic block so that
|
|
// the branch instruction will be skipped.
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
|
|
Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
|
|
// This causes a replacement that will collapse the landing pad CFG based
|
|
// on the filter function we intend to match.
|
|
if (Selector == CurrentSelector)
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
else
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
|
|
// Tell the caller not to clone this instruction.
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction
|
|
WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
|
|
const ResumeInst *Resume, BasicBlock *NewBB) {
|
|
// Resume instructions shouldn't be reachable from catch handlers.
|
|
// We still need to handle it, but it will be pruned.
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// Catch blocks within cleanup handlers will always be unreachable.
|
|
// We'll insert an unreachable instruction now, but it will be pruned
|
|
// before the cloning process is complete.
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// Catch blocks within cleanup handlers will always be unreachable.
|
|
// We'll insert an unreachable instruction now, but it will be pruned
|
|
// before the cloning process is complete.
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// This causes a replacement that will collapse the landing pad CFG
|
|
// to just the cleanup code.
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
|
|
// Tell the caller not to clone this instruction.
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
|
|
ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
|
|
ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
|
|
|
|
// We just added a terminator to the cloned block.
|
|
// Tell the caller to stop processing the current basic block so that
|
|
// the branch instruction will be skipped.
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
|
|
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
|
|
: FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
|
|
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
|
|
// FIXME: Do something with the FrameVarMapped so that it is shared across the
|
|
// function.
|
|
}
|
|
|
|
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
|
|
// If we're asked to materialize a value that is an instruction, we
|
|
// temporarily create an alloca in the outlined function and add this
|
|
// to the FrameVarInfo map. When all the outlining is complete, we'll
|
|
// collect these into a structure, spilling non-alloca values in the
|
|
// parent frame as necessary, and replace these temporary allocas with
|
|
// GEPs referencing the frame allocation block.
|
|
|
|
// If the value is an alloca, the mapping is direct.
|
|
if (auto *AV = dyn_cast<AllocaInst>(V)) {
|
|
AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
|
|
Builder.Insert(NewAlloca, AV->getName());
|
|
FrameVarInfo[AV].Allocas.push_back(NewAlloca);
|
|
return NewAlloca;
|
|
}
|
|
|
|
// For other types of instructions or arguments, we need an alloca based on
|
|
// the value's type and a load of the alloca. The alloca will be replaced
|
|
// by a GEP, but the load will stay. In the parent function, the value will
|
|
// be spilled to a location in the frame allocation block.
|
|
if (isa<Instruction>(V) || isa<Argument>(V)) {
|
|
AllocaInst *NewAlloca =
|
|
Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
|
|
FrameVarInfo[V].Allocas.push_back(NewAlloca);
|
|
LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
|
|
return NewLoad;
|
|
}
|
|
|
|
// Don't materialize other values.
|
|
return nullptr;
|
|
}
|