mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-16 11:05:54 +00:00
531ebc8a3c
Summary: This is the beginning of user documentation for the NVPTX back-end. I want to ensure I am integrating this properly into the rest of the LLVM documentation. Differential Revision: http://llvm-reviews.chandlerc.com/D600 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178428 91177308-0d34-0410-b5e6-96231b3b80d8
277 lines
7.9 KiB
ReStructuredText
277 lines
7.9 KiB
ReStructuredText
=============================
|
|
User Guide for NVPTX Back-end
|
|
=============================
|
|
|
|
.. contents::
|
|
:local:
|
|
:depth: 3
|
|
|
|
|
|
Introduction
|
|
============
|
|
|
|
To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
|
|
along with a defined set of conventions used to represent GPU programming
|
|
concepts. This document provides an overview of the general usage of the back-
|
|
end, including a description of the conventions used and the set of accepted
|
|
LLVM IR.
|
|
|
|
.. note::
|
|
|
|
This document assumes a basic familiarity with CUDA and the PTX
|
|
assembly language. Information about the CUDA Driver API and the PTX assembly
|
|
language can be found in the `CUDA documentation
|
|
<http://docs.nvidia.com/cuda/index.html>`_.
|
|
|
|
|
|
|
|
Conventions
|
|
===========
|
|
|
|
Marking Functions as Kernels
|
|
----------------------------
|
|
|
|
In PTX, there are two types of functions: *device functions*, which are only
|
|
callable by device code, and *kernel functions*, which are callable by host
|
|
code. By default, the back-end will emit device functions. Metadata is used to
|
|
declare a function as a kernel function. This metadata is attached to the
|
|
``nvvm.annotations`` named metadata object, and has the following format:
|
|
|
|
.. code-block:: llvm
|
|
|
|
!0 = metadata !{<function-ref>, metadata !"kernel", i32 1}
|
|
|
|
The first parameter is a reference to the kernel function. The following
|
|
example shows a kernel function calling a device function in LLVM IR. The
|
|
function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
|
|
|
|
.. code-block:: llvm
|
|
|
|
define float @my_fmad(float %x, float %y, float %z) {
|
|
%mul = fmul float %x, %y
|
|
%add = fadd float %mul, %z
|
|
ret float %add
|
|
}
|
|
|
|
define void @my_kernel(float* %ptr) {
|
|
%val = load float* %ptr
|
|
%ret = call float @my_fmad(float %val, float %val, float %val)
|
|
store float %ret, float* %ptr
|
|
ret void
|
|
}
|
|
|
|
!nvvm.annotations = !{!1}
|
|
!1 = metadata !{void (float*)* @my_kernel, metadata !"kernel", i32 1}
|
|
|
|
When compiled, the PTX kernel functions are callable by host-side code.
|
|
|
|
|
|
Address Spaces
|
|
--------------
|
|
|
|
The NVPTX back-end uses the following address space mapping:
|
|
|
|
============= ======================
|
|
Address Space Memory Space
|
|
============= ======================
|
|
0 Generic
|
|
1 Global
|
|
2 Internal Use
|
|
3 Shared
|
|
4 Constant
|
|
5 Local
|
|
============= ======================
|
|
|
|
Every global variable and pointer type is assigned to one of these address
|
|
spaces, with 0 being the default address space. Intrinsics are provided which
|
|
can be used to convert pointers between the generic and non-generic address
|
|
spaces.
|
|
|
|
As an example, the following IR will define an array ``@g`` that resides in
|
|
global device memory.
|
|
|
|
.. code-block:: llvm
|
|
|
|
@g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]
|
|
|
|
LLVM IR functions can read and write to this array, and host-side code can
|
|
copy data to it by name with the CUDA Driver API.
|
|
|
|
Note that since address space 0 is the generic space, it is illegal to have
|
|
global variables in address space 0. Address space 0 is the default address
|
|
space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
|
|
variables.
|
|
|
|
|
|
NVPTX Intrinsics
|
|
================
|
|
|
|
Address Space Conversion
|
|
------------------------
|
|
|
|
'``llvm.nvvm.ptr.*.to.gen``' Intrinsics
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Syntax:
|
|
"""""""
|
|
|
|
These are overloaded intrinsics. You can use these on any pointer types.
|
|
|
|
.. code-block:: llvm
|
|
|
|
declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*)
|
|
declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*)
|
|
declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*)
|
|
declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.nvvm.ptr.*.to.gen``' intrinsics convert a pointer in a non-generic
|
|
address space to a generic address space pointer.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
These intrinsics modify the pointer value to be a valid generic address space
|
|
pointer.
|
|
|
|
|
|
'``llvm.nvvm.ptr.gen.to.*``' Intrinsics
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Syntax:
|
|
"""""""
|
|
|
|
These are overloaded intrinsics. You can use these on any pointer types.
|
|
|
|
.. code-block:: llvm
|
|
|
|
declare i8* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8 addrspace(1)*)
|
|
declare i8* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8 addrspace(3)*)
|
|
declare i8* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8 addrspace(4)*)
|
|
declare i8* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8 addrspace(5)*)
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``llvm.nvvm.ptr.gen.to.*``' intrinsics convert a pointer in the generic
|
|
address space to a pointer in the target address space. Note that these
|
|
intrinsics are only useful if the address space of the target address space of
|
|
the pointer is known. It is not legal to use address space conversion
|
|
intrinsics to convert a pointer from one non-generic address space to another
|
|
non-generic address space.
|
|
|
|
Semantics:
|
|
""""""""""
|
|
|
|
These intrinsics modify the pointer value to be a valid pointer in the target
|
|
non-generic address space.
|
|
|
|
|
|
Reading PTX Special Registers
|
|
-----------------------------
|
|
|
|
'``llvm.nvvm.read.ptx.sreg.*``'
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Syntax:
|
|
"""""""
|
|
|
|
.. code-block:: llvm
|
|
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
|
|
declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX
|
|
special registers, in particular the kernel launch bounds. These registers
|
|
map in the following way to CUDA builtins:
|
|
|
|
============ =====================================
|
|
CUDA Builtin PTX Special Register Intrinsic
|
|
============ =====================================
|
|
``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*``
|
|
``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*``
|
|
``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*``
|
|
``gridDim`` ``@llvm.nvvm.read.ptx.sreg.nctaid.*``
|
|
============ =====================================
|
|
|
|
|
|
Barriers
|
|
--------
|
|
|
|
'``llvm.nvvm.barrier0``'
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Syntax:
|
|
"""""""
|
|
|
|
.. code-block:: llvm
|
|
|
|
declare void @llvm.nvvm.barrier0()
|
|
|
|
Overview:
|
|
"""""""""
|
|
|
|
The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0``
|
|
instruction, equivalent to the ``__syncthreads()`` call in CUDA.
|
|
|
|
|
|
Other Intrinsics
|
|
----------------
|
|
|
|
For the full set of NVPTX intrinsics, please see the
|
|
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
|
|
|
|
|
|
Executing PTX
|
|
=============
|
|
|
|
The most common way to execute PTX assembly on a GPU device is to use the CUDA
|
|
Driver API. This API is a low-level interface to the GPU driver and allows for
|
|
JIT compilation of PTX code to native GPU machine code.
|
|
|
|
Initializing the Driver API:
|
|
|
|
.. code-block:: c++
|
|
|
|
CUdevice device;
|
|
CUcontext context;
|
|
|
|
// Initialize the driver API
|
|
cuInit(0);
|
|
// Get a handle to the first compute device
|
|
cuDeviceGet(&device, 0);
|
|
// Create a compute device context
|
|
cuCtxCreate(&context, 0, device);
|
|
|
|
JIT compiling a PTX string to a device binary:
|
|
|
|
.. code-block:: c++
|
|
|
|
CUmodule module;
|
|
CUfunction funcion;
|
|
|
|
// JIT compile a null-terminated PTX string
|
|
cuModuleLoadData(&module, (void*)PTXString);
|
|
|
|
// Get a handle to the "myfunction" kernel function
|
|
cuModuleGetFunction(&function, module, "myfunction");
|
|
|
|
For full examples of executing PTX assembly, please see the `CUDA Samples
|
|
<https://developer.nvidia.com/cuda-downloads>`_ distribution.
|