mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-23 15:29:51 +00:00
94c49edfe2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33609 91177308-0d34-0410-b5e6-96231b3b80d8
387 lines
15 KiB
C++
387 lines
15 KiB
C++
//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#ifndef LLVM_TYPE_H
|
|
#define LLVM_TYPE_H
|
|
|
|
#include "llvm/AbstractTypeUser.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/iterator"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class DerivedType;
|
|
class PointerType;
|
|
class IntegerType;
|
|
class TypeMapBase;
|
|
|
|
/// This file contains the declaration of the Type class. For more "Type" type
|
|
/// stuff, look in DerivedTypes.h.
|
|
///
|
|
/// The instances of the Type class are immutable: once they are created,
|
|
/// they are never changed. Also note that only one instance of a particular
|
|
/// type is ever created. Thus seeing if two types are equal is a matter of
|
|
/// doing a trivial pointer comparison. To enforce that no two equal instances
|
|
/// are created, Type instances can only be created via static factory methods
|
|
/// in class Type and in derived classes.
|
|
///
|
|
/// Once allocated, Types are never free'd, unless they are an abstract type
|
|
/// that is resolved to a more concrete type.
|
|
///
|
|
/// Types themself don't have a name, and can be named either by:
|
|
/// - using SymbolTable instance, typically from some Module,
|
|
/// - using convenience methods in the Module class (which uses module's
|
|
/// SymbolTable too).
|
|
///
|
|
/// Opaque types are simple derived types with no state. There may be many
|
|
/// different Opaque type objects floating around, but two are only considered
|
|
/// identical if they are pointer equals of each other. This allows us to have
|
|
/// two opaque types that end up resolving to different concrete types later.
|
|
///
|
|
/// Opaque types are also kinda weird and scary and different because they have
|
|
/// to keep a list of uses of the type. When, through linking, parsing, or
|
|
/// bytecode reading, they become resolved, they need to find and update all
|
|
/// users of the unknown type, causing them to reference a new, more concrete
|
|
/// type. Opaque types are deleted when their use list dwindles to zero users.
|
|
///
|
|
/// @brief Root of type hierarchy
|
|
class Type : public AbstractTypeUser {
|
|
public:
|
|
//===-------------------------------------------------------------------===//
|
|
/// Definitions of all of the base types for the Type system. Based on this
|
|
/// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
|
|
/// Note: If you add an element to this, you need to add an element to the
|
|
/// Type::getPrimitiveType function, or else things will break!
|
|
///
|
|
enum TypeID {
|
|
// PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
|
|
VoidTyID = 0, ///< 0: type with no size
|
|
FloatTyID, ///< 1: 32 bit floating point type
|
|
DoubleTyID, ///< 2: 64 bit floating point type
|
|
LabelTyID, ///< 3: Labels
|
|
|
|
// Derived types... see DerivedTypes.h file...
|
|
// Make sure FirstDerivedTyID stays up to date!!!
|
|
IntegerTyID, ///< 4: Arbitrary bit width integers
|
|
FunctionTyID, ///< 5: Functions
|
|
StructTyID, ///< 6: Structures
|
|
PackedStructTyID,///< 7: Packed Structure. This is for bytecode only
|
|
ArrayTyID, ///< 8: Arrays
|
|
PointerTyID, ///< 9: Pointers
|
|
OpaqueTyID, ///< 10: Opaque: type with unknown structure
|
|
PackedTyID, ///< 11: SIMD 'packed' format, or other vector type
|
|
|
|
NumTypeIDs, // Must remain as last defined ID
|
|
LastPrimitiveTyID = LabelTyID,
|
|
FirstDerivedTyID = IntegerTyID
|
|
};
|
|
|
|
private:
|
|
TypeID ID : 8; // The current base type of this type.
|
|
bool Abstract : 1; // True if type contains an OpaqueType
|
|
unsigned SubclassData : 23; //Space for subclasses to store data
|
|
|
|
/// RefCount - This counts the number of PATypeHolders that are pointing to
|
|
/// this type. When this number falls to zero, if the type is abstract and
|
|
/// has no AbstractTypeUsers, the type is deleted. This is only sensical for
|
|
/// derived types.
|
|
///
|
|
mutable unsigned RefCount;
|
|
|
|
const Type *getForwardedTypeInternal() const;
|
|
protected:
|
|
Type(const char *Name, TypeID id);
|
|
Type(TypeID id) : ID(id), Abstract(false), SubclassData(0), RefCount(0),
|
|
ForwardType(0) {}
|
|
virtual ~Type() {
|
|
assert(AbstractTypeUsers.empty());
|
|
}
|
|
|
|
/// Types can become nonabstract later, if they are refined.
|
|
///
|
|
inline void setAbstract(bool Val) { Abstract = Val; }
|
|
|
|
unsigned getRefCount() const { return RefCount; }
|
|
|
|
unsigned getSubclassData() const { return SubclassData; }
|
|
void setSubclassData(unsigned val) { SubclassData = val; }
|
|
|
|
/// ForwardType - This field is used to implement the union find scheme for
|
|
/// abstract types. When types are refined to other types, this field is set
|
|
/// to the more refined type. Only abstract types can be forwarded.
|
|
mutable const Type *ForwardType;
|
|
|
|
/// ContainedTys - The list of types contained by this one. For example, this
|
|
/// includes the arguments of a function type, the elements of the structure,
|
|
/// the pointee of a pointer, etc. Note that keeping this vector in the Type
|
|
/// class wastes some space for types that do not contain anything (such as
|
|
/// primitive types). However, keeping it here allows the subtype_* members
|
|
/// to be implemented MUCH more efficiently, and dynamically very few types do
|
|
/// not contain any elements (most are derived).
|
|
std::vector<PATypeHandle> ContainedTys;
|
|
|
|
/// AbstractTypeUsers - Implement a list of the users that need to be notified
|
|
/// if I am a type, and I get resolved into a more concrete type.
|
|
///
|
|
mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
|
|
public:
|
|
void print(std::ostream &O) const;
|
|
void print(std::ostream *O) const { if (O) print(*O); }
|
|
|
|
/// @brief Debugging support: print to stderr
|
|
void dump() const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Property accessors for dealing with types... Some of these virtual methods
|
|
// are defined in private classes defined in Type.cpp for primitive types.
|
|
//
|
|
|
|
/// getTypeID - Return the type id for the type. This will return one
|
|
/// of the TypeID enum elements defined above.
|
|
///
|
|
inline TypeID getTypeID() const { return ID; }
|
|
|
|
/// getDescription - Return the string representation of the type...
|
|
const std::string &getDescription() const;
|
|
|
|
/// isInteger - True if this is an instance of IntegerType.
|
|
///
|
|
bool isInteger() const { return ID == IntegerTyID; }
|
|
|
|
/// isFloatingPoint - Return true if this is one of the two floating point
|
|
/// types
|
|
bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
|
|
|
|
/// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
|
|
///
|
|
bool isFPOrFPVector() const;
|
|
|
|
/// isAbstract - True if the type is either an Opaque type, or is a derived
|
|
/// type that includes an opaque type somewhere in it.
|
|
///
|
|
inline bool isAbstract() const { return Abstract; }
|
|
|
|
/// canLosslesslyBitCastTo - Return true if this type could be converted
|
|
/// with a lossless BitCast to type 'Ty'. For example, uint to int. BitCasts
|
|
/// are valid for types of the same size only where no re-interpretation of
|
|
/// the bits is done.
|
|
/// @brief Determine if this type could be losslessly bitcast to Ty
|
|
bool canLosslesslyBitCastTo(const Type *Ty) const;
|
|
|
|
|
|
/// Here are some useful little methods to query what type derived types are
|
|
/// Note that all other types can just compare to see if this == Type::xxxTy;
|
|
///
|
|
inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
|
|
inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
|
|
|
|
/// isFirstClassType - Return true if the value is holdable in a register.
|
|
///
|
|
inline bool isFirstClassType() const {
|
|
return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
|
|
ID == IntegerTyID || ID == PointerTyID || ID == PackedTyID;
|
|
}
|
|
|
|
/// isSized - Return true if it makes sense to take the size of this type. To
|
|
/// get the actual size for a particular target, it is reasonable to use the
|
|
/// TargetData subsystem to do this.
|
|
///
|
|
bool isSized() const {
|
|
// If it's a primitive, it is always sized.
|
|
if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
|
|
return true;
|
|
// If it is not something that can have a size (e.g. a function or label),
|
|
// it doesn't have a size.
|
|
if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID &&
|
|
ID != PackedStructTyID)
|
|
return false;
|
|
// If it is something that can have a size and it's concrete, it definitely
|
|
// has a size, otherwise we have to try harder to decide.
|
|
return !isAbstract() || isSizedDerivedType();
|
|
}
|
|
|
|
/// getPrimitiveSize - Return the basic size of this type if it is a primitive
|
|
/// type. These are fixed by LLVM and are not target dependent. This will
|
|
/// return zero if the type does not have a size or is not a primitive type.
|
|
///
|
|
unsigned getPrimitiveSizeInBits() const;
|
|
|
|
/// getForwaredType - Return the type that this type has been resolved to if
|
|
/// it has been resolved to anything. This is used to implement the
|
|
/// union-find algorithm for type resolution, and shouldn't be used by general
|
|
/// purpose clients.
|
|
const Type *getForwardedType() const {
|
|
if (!ForwardType) return 0;
|
|
return getForwardedTypeInternal();
|
|
}
|
|
|
|
/// getVAArgsPromotedType - Return the type an argument of this type
|
|
/// will be promoted to if passed through a variable argument
|
|
/// function.
|
|
const Type *getVAArgsPromotedType() const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Iteration support
|
|
//
|
|
typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
|
|
subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
|
|
subtype_iterator subtype_end() const { return ContainedTys.end(); }
|
|
|
|
/// getContainedType - This method is used to implement the type iterator
|
|
/// (defined a the end of the file). For derived types, this returns the
|
|
/// types 'contained' in the derived type.
|
|
///
|
|
const Type *getContainedType(unsigned i) const {
|
|
assert(i < ContainedTys.size() && "Index out of range!");
|
|
return ContainedTys[i];
|
|
}
|
|
|
|
/// getNumContainedTypes - Return the number of types in the derived type.
|
|
///
|
|
typedef std::vector<PATypeHandle>::size_type size_type;
|
|
size_type getNumContainedTypes() const { return ContainedTys.size(); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Static members exported by the Type class itself. Useful for getting
|
|
// instances of Type.
|
|
//
|
|
|
|
/// getPrimitiveType - Return a type based on an identifier.
|
|
static const Type *getPrimitiveType(TypeID IDNumber);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// These are the builtin types that are always available...
|
|
//
|
|
static const Type *VoidTy, *LabelTy, *FloatTy, *DoubleTy;
|
|
static const IntegerType *Int1Ty, *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty;
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Type *T) { return true; }
|
|
|
|
void addRef() const {
|
|
assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
|
|
++RefCount;
|
|
}
|
|
|
|
void dropRef() const {
|
|
assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
|
|
assert(RefCount && "No objects are currently referencing this object!");
|
|
|
|
// If this is the last PATypeHolder using this object, and there are no
|
|
// PATypeHandles using it, the type is dead, delete it now.
|
|
if (--RefCount == 0 && AbstractTypeUsers.empty())
|
|
delete this;
|
|
}
|
|
|
|
/// addAbstractTypeUser - Notify an abstract type that there is a new user of
|
|
/// it. This function is called primarily by the PATypeHandle class.
|
|
///
|
|
void addAbstractTypeUser(AbstractTypeUser *U) const {
|
|
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
|
|
AbstractTypeUsers.push_back(U);
|
|
}
|
|
|
|
/// removeAbstractTypeUser - Notify an abstract type that a user of the class
|
|
/// no longer has a handle to the type. This function is called primarily by
|
|
/// the PATypeHandle class. When there are no users of the abstract type, it
|
|
/// is annihilated, because there is no way to get a reference to it ever
|
|
/// again.
|
|
///
|
|
void removeAbstractTypeUser(AbstractTypeUser *U) const;
|
|
|
|
private:
|
|
/// isSizedDerivedType - Derived types like structures and arrays are sized
|
|
/// iff all of the members of the type are sized as well. Since asking for
|
|
/// their size is relatively uncommon, move this operation out of line.
|
|
bool isSizedDerivedType() const;
|
|
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
protected:
|
|
// PromoteAbstractToConcrete - This is an internal method used to calculate
|
|
// change "Abstract" from true to false when types are refined.
|
|
void PromoteAbstractToConcrete();
|
|
friend class TypeMapBase;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
|
|
// These are defined here because they MUST be inlined, yet are dependent on
|
|
// the definition of the Type class.
|
|
//
|
|
inline void PATypeHandle::addUser() {
|
|
assert(Ty && "Type Handle has a null type!");
|
|
if (Ty->isAbstract())
|
|
Ty->addAbstractTypeUser(User);
|
|
}
|
|
inline void PATypeHandle::removeUser() {
|
|
if (Ty->isAbstract())
|
|
Ty->removeAbstractTypeUser(User);
|
|
}
|
|
|
|
// Define inline methods for PATypeHolder...
|
|
|
|
inline void PATypeHolder::addRef() {
|
|
if (Ty->isAbstract())
|
|
Ty->addRef();
|
|
}
|
|
|
|
inline void PATypeHolder::dropRef() {
|
|
if (Ty->isAbstract())
|
|
Ty->dropRef();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Provide specializations of GraphTraits to be able to treat a type as a
|
|
// graph of sub types...
|
|
|
|
template <> struct GraphTraits<Type*> {
|
|
typedef Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const Type*> {
|
|
typedef const Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(const Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
|
|
return Ty.getTypeID() == Type::PointerTyID;
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &OS, const Type &T);
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|