mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-15 07:34:33 +00:00
42fdb1f00f
I believe the bot failures on linux systems were due to overestimating the alignment of object-files within archives, which are only guaranteed to be two-byte aligned. I have reduced the alignment in RuntimeDyldELF::createObjectImageFromFile accordingly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198737 91177308-0d34-0410-b5e6-96231b3b80d8
1447 lines
56 KiB
C++
1447 lines
56 KiB
C++
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dyld"
|
|
#include "RuntimeDyldELF.h"
|
|
#include "JITRegistrar.h"
|
|
#include "ObjectImageCommon.h"
|
|
#include "llvm/ADT/IntervalMap.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ExecutionEngine/ObjectBuffer.h"
|
|
#include "llvm/ExecutionEngine/ObjectImage.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
namespace {
|
|
|
|
static inline
|
|
error_code check(error_code Err) {
|
|
if (Err) {
|
|
report_fatal_error(Err.message());
|
|
}
|
|
return Err;
|
|
}
|
|
|
|
template<class ELFT>
|
|
class DyldELFObject
|
|
: public ELFObjectFile<ELFT> {
|
|
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
|
|
|
|
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
|
|
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
|
|
typedef
|
|
Elf_Rel_Impl<ELFT, false> Elf_Rel;
|
|
typedef
|
|
Elf_Rel_Impl<ELFT, true> Elf_Rela;
|
|
|
|
typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
|
|
|
|
typedef typename ELFDataTypeTypedefHelper<
|
|
ELFT>::value_type addr_type;
|
|
|
|
public:
|
|
DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
|
|
|
|
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
|
|
void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
|
|
|
|
// Methods for type inquiry through isa, cast and dyn_cast
|
|
static inline bool classof(const Binary *v) {
|
|
return (isa<ELFObjectFile<ELFT> >(v)
|
|
&& classof(cast<ELFObjectFile
|
|
<ELFT> >(v)));
|
|
}
|
|
static inline bool classof(
|
|
const ELFObjectFile<ELFT> *v) {
|
|
return v->isDyldType();
|
|
}
|
|
};
|
|
|
|
template<class ELFT>
|
|
class ELFObjectImage : public ObjectImageCommon {
|
|
protected:
|
|
DyldELFObject<ELFT> *DyldObj;
|
|
bool Registered;
|
|
|
|
public:
|
|
ELFObjectImage(ObjectBuffer *Input,
|
|
DyldELFObject<ELFT> *Obj)
|
|
: ObjectImageCommon(Input, Obj),
|
|
DyldObj(Obj),
|
|
Registered(false) {}
|
|
|
|
virtual ~ELFObjectImage() {
|
|
if (Registered)
|
|
deregisterWithDebugger();
|
|
}
|
|
|
|
// Subclasses can override these methods to update the image with loaded
|
|
// addresses for sections and common symbols
|
|
virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
|
|
{
|
|
DyldObj->updateSectionAddress(Sec, Addr);
|
|
}
|
|
|
|
virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
|
|
{
|
|
DyldObj->updateSymbolAddress(Sym, Addr);
|
|
}
|
|
|
|
virtual void registerWithDebugger()
|
|
{
|
|
JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
|
|
Registered = true;
|
|
}
|
|
virtual void deregisterWithDebugger()
|
|
{
|
|
JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
|
|
}
|
|
};
|
|
|
|
// The MemoryBuffer passed into this constructor is just a wrapper around the
|
|
// actual memory. Ultimately, the Binary parent class will take ownership of
|
|
// this MemoryBuffer object but not the underlying memory.
|
|
template<class ELFT>
|
|
DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
|
|
: ELFObjectFile<ELFT>(Wrapper, ec) {
|
|
this->isDyldELFObject = true;
|
|
}
|
|
|
|
template<class ELFT>
|
|
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
|
|
uint64_t Addr) {
|
|
DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
|
|
Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
|
|
reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
|
|
|
|
// This assumes the address passed in matches the target address bitness
|
|
// The template-based type cast handles everything else.
|
|
shdr->sh_addr = static_cast<addr_type>(Addr);
|
|
}
|
|
|
|
template<class ELFT>
|
|
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
|
|
uint64_t Addr) {
|
|
|
|
Elf_Sym *sym = const_cast<Elf_Sym*>(
|
|
ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
|
|
|
|
// This assumes the address passed in matches the target address bitness
|
|
// The template-based type cast handles everything else.
|
|
sym->st_value = static_cast<addr_type>(Addr);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
void RuntimeDyldELF::registerEHFrames() {
|
|
if (!MemMgr)
|
|
return;
|
|
for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
|
|
SID EHFrameSID = UnregisteredEHFrameSections[i];
|
|
uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
|
|
uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
|
|
size_t EHFrameSize = Sections[EHFrameSID].Size;
|
|
MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
|
|
RegisteredEHFrameSections.push_back(EHFrameSID);
|
|
}
|
|
UnregisteredEHFrameSections.clear();
|
|
}
|
|
|
|
void RuntimeDyldELF::deregisterEHFrames() {
|
|
if (!MemMgr)
|
|
return;
|
|
for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
|
|
SID EHFrameSID = RegisteredEHFrameSections[i];
|
|
uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
|
|
uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
|
|
size_t EHFrameSize = Sections[EHFrameSID].Size;
|
|
MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
|
|
}
|
|
RegisteredEHFrameSections.clear();
|
|
}
|
|
|
|
ObjectImage *RuntimeDyldELF::createObjectImageFromFile(object::ObjectFile *ObjFile) {
|
|
if (!ObjFile)
|
|
return NULL;
|
|
|
|
error_code ec;
|
|
MemoryBuffer* Buffer = MemoryBuffer::getMemBuffer(ObjFile->getData(),
|
|
"",
|
|
false);
|
|
|
|
if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
|
|
DyldELFObject<ELFType<support::little, 2, false> > *Obj =
|
|
new DyldELFObject<ELFType<support::little, 2, false> >(Buffer, ec);
|
|
return new ELFObjectImage<ELFType<support::little, 2, false> >(NULL, Obj);
|
|
}
|
|
else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
|
|
DyldELFObject<ELFType<support::big, 2, false> > *Obj =
|
|
new DyldELFObject<ELFType<support::big, 2, false> >(Buffer, ec);
|
|
return new ELFObjectImage<ELFType<support::big, 2, false> >(NULL, Obj);
|
|
}
|
|
else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
|
|
DyldELFObject<ELFType<support::big, 2, true> > *Obj =
|
|
new DyldELFObject<ELFType<support::big, 2, true> >(Buffer, ec);
|
|
return new ELFObjectImage<ELFType<support::big, 2, true> >(NULL, Obj);
|
|
}
|
|
else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
|
|
DyldELFObject<ELFType<support::little, 2, true> > *Obj =
|
|
new DyldELFObject<ELFType<support::little, 2, true> >(Buffer, ec);
|
|
return new ELFObjectImage<ELFType<support::little, 2, true> >(NULL, Obj);
|
|
}
|
|
else
|
|
llvm_unreachable("Unexpected ELF format");
|
|
}
|
|
|
|
ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
|
|
if (Buffer->getBufferSize() < ELF::EI_NIDENT)
|
|
llvm_unreachable("Unexpected ELF object size");
|
|
std::pair<unsigned char, unsigned char> Ident = std::make_pair(
|
|
(uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
|
|
(uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
|
|
error_code ec;
|
|
|
|
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
|
|
DyldELFObject<ELFType<support::little, 4, false> > *Obj =
|
|
new DyldELFObject<ELFType<support::little, 4, false> >(
|
|
Buffer->getMemBuffer(), ec);
|
|
return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
|
|
}
|
|
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
|
|
DyldELFObject<ELFType<support::big, 4, false> > *Obj =
|
|
new DyldELFObject<ELFType<support::big, 4, false> >(
|
|
Buffer->getMemBuffer(), ec);
|
|
return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
|
|
}
|
|
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
|
|
DyldELFObject<ELFType<support::big, 8, true> > *Obj =
|
|
new DyldELFObject<ELFType<support::big, 8, true> >(
|
|
Buffer->getMemBuffer(), ec);
|
|
return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
|
|
}
|
|
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
|
|
DyldELFObject<ELFType<support::little, 8, true> > *Obj =
|
|
new DyldELFObject<ELFType<support::little, 8, true> >(
|
|
Buffer->getMemBuffer(), ec);
|
|
return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
|
|
}
|
|
else
|
|
llvm_unreachable("Unexpected ELF format");
|
|
}
|
|
|
|
RuntimeDyldELF::~RuntimeDyldELF() {
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint64_t Value,
|
|
uint32_t Type,
|
|
int64_t Addend,
|
|
uint64_t SymOffset) {
|
|
switch (Type) {
|
|
default:
|
|
llvm_unreachable("Relocation type not implemented yet!");
|
|
break;
|
|
case ELF::R_X86_64_64: {
|
|
uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
|
|
*Target = Value + Addend;
|
|
DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
|
|
<< " at " << format("%p\n",Target));
|
|
break;
|
|
}
|
|
case ELF::R_X86_64_32:
|
|
case ELF::R_X86_64_32S: {
|
|
Value += Addend;
|
|
assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
|
|
(Type == ELF::R_X86_64_32S &&
|
|
((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
|
|
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
|
|
uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
|
|
*Target = TruncatedAddr;
|
|
DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
|
|
<< " at " << format("%p\n",Target));
|
|
break;
|
|
}
|
|
case ELF::R_X86_64_GOTPCREL: {
|
|
// findGOTEntry returns the 'G + GOT' part of the relocation calculation
|
|
// based on the load/target address of the GOT (not the current/local addr).
|
|
uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
|
|
uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
|
|
uint64_t FinalAddress = Section.LoadAddress + Offset;
|
|
// The processRelocationRef method combines the symbol offset and the addend
|
|
// and in most cases that's what we want. For this relocation type, we need
|
|
// the raw addend, so we subtract the symbol offset to get it.
|
|
int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
|
|
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
|
|
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
|
|
*Target = TruncOffset;
|
|
break;
|
|
}
|
|
case ELF::R_X86_64_PC32: {
|
|
// Get the placeholder value from the generated object since
|
|
// a previous relocation attempt may have overwritten the loaded version
|
|
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
|
|
+ Offset);
|
|
uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
|
|
uint64_t FinalAddress = Section.LoadAddress + Offset;
|
|
int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
|
|
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
|
|
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
|
|
*Target = TruncOffset;
|
|
break;
|
|
}
|
|
case ELF::R_X86_64_PC64: {
|
|
// Get the placeholder value from the generated object since
|
|
// a previous relocation attempt may have overwritten the loaded version
|
|
uint64_t *Placeholder = reinterpret_cast<uint64_t*>(Section.ObjAddress
|
|
+ Offset);
|
|
uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
|
|
uint64_t FinalAddress = Section.LoadAddress + Offset;
|
|
*Target = *Placeholder + Value + Addend - FinalAddress;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint32_t Value,
|
|
uint32_t Type,
|
|
int32_t Addend) {
|
|
switch (Type) {
|
|
case ELF::R_386_32: {
|
|
// Get the placeholder value from the generated object since
|
|
// a previous relocation attempt may have overwritten the loaded version
|
|
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
|
|
+ Offset);
|
|
uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
|
|
*Target = *Placeholder + Value + Addend;
|
|
break;
|
|
}
|
|
case ELF::R_386_PC32: {
|
|
// Get the placeholder value from the generated object since
|
|
// a previous relocation attempt may have overwritten the loaded version
|
|
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
|
|
+ Offset);
|
|
uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
|
|
uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
|
|
uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
|
|
*Target = RealOffset;
|
|
break;
|
|
}
|
|
default:
|
|
// There are other relocation types, but it appears these are the
|
|
// only ones currently used by the LLVM ELF object writer
|
|
llvm_unreachable("Relocation type not implemented yet!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint64_t Value,
|
|
uint32_t Type,
|
|
int64_t Addend) {
|
|
uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
|
|
uint64_t FinalAddress = Section.LoadAddress + Offset;
|
|
|
|
DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
|
|
<< format("%llx", Section.Address + Offset)
|
|
<< " FinalAddress: 0x" << format("%llx",FinalAddress)
|
|
<< " Value: 0x" << format("%llx",Value)
|
|
<< " Type: 0x" << format("%x",Type)
|
|
<< " Addend: 0x" << format("%llx",Addend)
|
|
<< "\n");
|
|
|
|
switch (Type) {
|
|
default:
|
|
llvm_unreachable("Relocation type not implemented yet!");
|
|
break;
|
|
case ELF::R_AARCH64_ABS64: {
|
|
uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
|
|
*TargetPtr = Value + Addend;
|
|
break;
|
|
}
|
|
case ELF::R_AARCH64_PREL32: {
|
|
uint64_t Result = Value + Addend - FinalAddress;
|
|
assert(static_cast<int64_t>(Result) >= INT32_MIN &&
|
|
static_cast<int64_t>(Result) <= UINT32_MAX);
|
|
*TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
|
|
break;
|
|
}
|
|
case ELF::R_AARCH64_CALL26: // fallthrough
|
|
case ELF::R_AARCH64_JUMP26: {
|
|
// Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
|
|
// calculation.
|
|
uint64_t BranchImm = Value + Addend - FinalAddress;
|
|
|
|
// "Check that -2^27 <= result < 2^27".
|
|
assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
|
|
static_cast<int64_t>(BranchImm) < (1LL << 27));
|
|
|
|
// AArch64 code is emitted with .rela relocations. The data already in any
|
|
// bits affected by the relocation on entry is garbage.
|
|
*TargetPtr &= 0xfc000000U;
|
|
// Immediate goes in bits 25:0 of B and BL.
|
|
*TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
|
|
break;
|
|
}
|
|
case ELF::R_AARCH64_MOVW_UABS_G3: {
|
|
uint64_t Result = Value + Addend;
|
|
|
|
// AArch64 code is emitted with .rela relocations. The data already in any
|
|
// bits affected by the relocation on entry is garbage.
|
|
*TargetPtr &= 0xffe0001fU;
|
|
// Immediate goes in bits 20:5 of MOVZ/MOVK instruction
|
|
*TargetPtr |= Result >> (48 - 5);
|
|
// Shift must be "lsl #48", in bits 22:21
|
|
assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
|
|
break;
|
|
}
|
|
case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
|
|
uint64_t Result = Value + Addend;
|
|
|
|
// AArch64 code is emitted with .rela relocations. The data already in any
|
|
// bits affected by the relocation on entry is garbage.
|
|
*TargetPtr &= 0xffe0001fU;
|
|
// Immediate goes in bits 20:5 of MOVZ/MOVK instruction
|
|
*TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
|
|
// Shift must be "lsl #32", in bits 22:21
|
|
assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
|
|
break;
|
|
}
|
|
case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
|
|
uint64_t Result = Value + Addend;
|
|
|
|
// AArch64 code is emitted with .rela relocations. The data already in any
|
|
// bits affected by the relocation on entry is garbage.
|
|
*TargetPtr &= 0xffe0001fU;
|
|
// Immediate goes in bits 20:5 of MOVZ/MOVK instruction
|
|
*TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
|
|
// Shift must be "lsl #16", in bits 22:2
|
|
assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
|
|
break;
|
|
}
|
|
case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
|
|
uint64_t Result = Value + Addend;
|
|
|
|
// AArch64 code is emitted with .rela relocations. The data already in any
|
|
// bits affected by the relocation on entry is garbage.
|
|
*TargetPtr &= 0xffe0001fU;
|
|
// Immediate goes in bits 20:5 of MOVZ/MOVK instruction
|
|
*TargetPtr |= ((Result & 0xffffU) << 5);
|
|
// Shift must be "lsl #0", in bits 22:21.
|
|
assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint32_t Value,
|
|
uint32_t Type,
|
|
int32_t Addend) {
|
|
// TODO: Add Thumb relocations.
|
|
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
|
|
Offset);
|
|
uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
|
|
uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
|
|
Value += Addend;
|
|
|
|
DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
|
|
<< Section.Address + Offset
|
|
<< " FinalAddress: " << format("%p",FinalAddress)
|
|
<< " Value: " << format("%x",Value)
|
|
<< " Type: " << format("%x",Type)
|
|
<< " Addend: " << format("%x",Addend)
|
|
<< "\n");
|
|
|
|
switch(Type) {
|
|
default:
|
|
llvm_unreachable("Not implemented relocation type!");
|
|
|
|
// Write a 32bit value to relocation address, taking into account the
|
|
// implicit addend encoded in the target.
|
|
case ELF::R_ARM_TARGET1:
|
|
case ELF::R_ARM_ABS32:
|
|
*TargetPtr = *Placeholder + Value;
|
|
break;
|
|
// Write first 16 bit of 32 bit value to the mov instruction.
|
|
// Last 4 bit should be shifted.
|
|
case ELF::R_ARM_MOVW_ABS_NC:
|
|
// We are not expecting any other addend in the relocation address.
|
|
// Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
|
|
// non-contiguous fields.
|
|
assert((*Placeholder & 0x000F0FFF) == 0);
|
|
Value = Value & 0xFFFF;
|
|
*TargetPtr = *Placeholder | (Value & 0xFFF);
|
|
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
|
|
break;
|
|
// Write last 16 bit of 32 bit value to the mov instruction.
|
|
// Last 4 bit should be shifted.
|
|
case ELF::R_ARM_MOVT_ABS:
|
|
// We are not expecting any other addend in the relocation address.
|
|
// Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
|
|
assert((*Placeholder & 0x000F0FFF) == 0);
|
|
|
|
Value = (Value >> 16) & 0xFFFF;
|
|
*TargetPtr = *Placeholder | (Value & 0xFFF);
|
|
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
|
|
break;
|
|
// Write 24 bit relative value to the branch instruction.
|
|
case ELF::R_ARM_PC24 : // Fall through.
|
|
case ELF::R_ARM_CALL : // Fall through.
|
|
case ELF::R_ARM_JUMP24: {
|
|
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
|
|
RelValue = (RelValue & 0x03FFFFFC) >> 2;
|
|
assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
|
|
*TargetPtr &= 0xFF000000;
|
|
*TargetPtr |= RelValue;
|
|
break;
|
|
}
|
|
case ELF::R_ARM_PRIVATE_0:
|
|
// This relocation is reserved by the ARM ELF ABI for internal use. We
|
|
// appropriate it here to act as an R_ARM_ABS32 without any addend for use
|
|
// in the stubs created during JIT (which can't put an addend into the
|
|
// original object file).
|
|
*TargetPtr = Value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint32_t Value,
|
|
uint32_t Type,
|
|
int32_t Addend) {
|
|
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
|
|
Offset);
|
|
uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
|
|
Value += Addend;
|
|
|
|
DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
|
|
<< Section.Address + Offset
|
|
<< " FinalAddress: "
|
|
<< format("%p",Section.LoadAddress + Offset)
|
|
<< " Value: " << format("%x",Value)
|
|
<< " Type: " << format("%x",Type)
|
|
<< " Addend: " << format("%x",Addend)
|
|
<< "\n");
|
|
|
|
switch(Type) {
|
|
default:
|
|
llvm_unreachable("Not implemented relocation type!");
|
|
break;
|
|
case ELF::R_MIPS_32:
|
|
*TargetPtr = Value + (*Placeholder);
|
|
break;
|
|
case ELF::R_MIPS_26:
|
|
*TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
|
|
break;
|
|
case ELF::R_MIPS_HI16:
|
|
// Get the higher 16-bits. Also add 1 if bit 15 is 1.
|
|
Value += ((*Placeholder) & 0x0000ffff) << 16;
|
|
*TargetPtr = ((*Placeholder) & 0xffff0000) |
|
|
(((Value + 0x8000) >> 16) & 0xffff);
|
|
break;
|
|
case ELF::R_MIPS_LO16:
|
|
Value += ((*Placeholder) & 0x0000ffff);
|
|
*TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
|
|
break;
|
|
case ELF::R_MIPS_UNUSED1:
|
|
// Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
|
|
// are used for internal JIT purpose. These relocations are similar to
|
|
// R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
|
|
// account.
|
|
*TargetPtr = ((*TargetPtr) & 0xffff0000) |
|
|
(((Value + 0x8000) >> 16) & 0xffff);
|
|
break;
|
|
case ELF::R_MIPS_UNUSED2:
|
|
*TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Return the .TOC. section address to R_PPC64_TOC relocations.
|
|
uint64_t RuntimeDyldELF::findPPC64TOC() const {
|
|
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
|
|
// order. The TOC starts where the first of these sections starts.
|
|
SectionList::const_iterator it = Sections.begin();
|
|
SectionList::const_iterator ite = Sections.end();
|
|
for (; it != ite; ++it) {
|
|
if (it->Name == ".got" ||
|
|
it->Name == ".toc" ||
|
|
it->Name == ".tocbss" ||
|
|
it->Name == ".plt")
|
|
break;
|
|
}
|
|
if (it == ite) {
|
|
// This may happen for
|
|
// * references to TOC base base (sym@toc, .odp relocation) without
|
|
// a .toc directive.
|
|
// In this case just use the first section (which is usually
|
|
// the .odp) since the code won't reference the .toc base
|
|
// directly.
|
|
it = Sections.begin();
|
|
}
|
|
assert (it != ite);
|
|
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
|
|
// thus permitting a full 64 Kbytes segment.
|
|
return it->LoadAddress + 0x8000;
|
|
}
|
|
|
|
// Returns the sections and offset associated with the ODP entry referenced
|
|
// by Symbol.
|
|
void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
|
|
ObjSectionToIDMap &LocalSections,
|
|
RelocationValueRef &Rel) {
|
|
// Get the ELF symbol value (st_value) to compare with Relocation offset in
|
|
// .opd entries
|
|
|
|
error_code err;
|
|
for (section_iterator si = Obj.begin_sections(),
|
|
se = Obj.end_sections(); si != se; si.increment(err)) {
|
|
section_iterator RelSecI = si->getRelocatedSection();
|
|
if (RelSecI == Obj.end_sections())
|
|
continue;
|
|
|
|
StringRef RelSectionName;
|
|
check(RelSecI->getName(RelSectionName));
|
|
if (RelSectionName != ".opd")
|
|
continue;
|
|
|
|
for (relocation_iterator i = si->begin_relocations(),
|
|
e = si->end_relocations(); i != e;) {
|
|
check(err);
|
|
|
|
// The R_PPC64_ADDR64 relocation indicates the first field
|
|
// of a .opd entry
|
|
uint64_t TypeFunc;
|
|
check(i->getType(TypeFunc));
|
|
if (TypeFunc != ELF::R_PPC64_ADDR64) {
|
|
i.increment(err);
|
|
continue;
|
|
}
|
|
|
|
uint64_t TargetSymbolOffset;
|
|
symbol_iterator TargetSymbol = i->getSymbol();
|
|
check(i->getOffset(TargetSymbolOffset));
|
|
int64_t Addend;
|
|
check(getELFRelocationAddend(*i, Addend));
|
|
|
|
i = i.increment(err);
|
|
if (i == e)
|
|
break;
|
|
check(err);
|
|
|
|
// Just check if following relocation is a R_PPC64_TOC
|
|
uint64_t TypeTOC;
|
|
check(i->getType(TypeTOC));
|
|
if (TypeTOC != ELF::R_PPC64_TOC)
|
|
continue;
|
|
|
|
// Finally compares the Symbol value and the target symbol offset
|
|
// to check if this .opd entry refers to the symbol the relocation
|
|
// points to.
|
|
if (Rel.Addend != (int64_t)TargetSymbolOffset)
|
|
continue;
|
|
|
|
section_iterator tsi(Obj.end_sections());
|
|
check(TargetSymbol->getSection(tsi));
|
|
Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
|
|
Rel.Addend = (intptr_t)Addend;
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Attempting to get address of ODP entry!");
|
|
}
|
|
|
|
// Relocation masks following the #lo(value), #hi(value), #higher(value),
|
|
// and #highest(value) macros defined in section 4.5.1. Relocation Types
|
|
// in PPC-elf64abi document.
|
|
//
|
|
static inline
|
|
uint16_t applyPPClo (uint64_t value)
|
|
{
|
|
return value & 0xffff;
|
|
}
|
|
|
|
static inline
|
|
uint16_t applyPPChi (uint64_t value)
|
|
{
|
|
return (value >> 16) & 0xffff;
|
|
}
|
|
|
|
static inline
|
|
uint16_t applyPPChigher (uint64_t value)
|
|
{
|
|
return (value >> 32) & 0xffff;
|
|
}
|
|
|
|
static inline
|
|
uint16_t applyPPChighest (uint64_t value)
|
|
{
|
|
return (value >> 48) & 0xffff;
|
|
}
|
|
|
|
void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint64_t Value,
|
|
uint32_t Type,
|
|
int64_t Addend) {
|
|
uint8_t* LocalAddress = Section.Address + Offset;
|
|
switch (Type) {
|
|
default:
|
|
llvm_unreachable("Relocation type not implemented yet!");
|
|
break;
|
|
case ELF::R_PPC64_ADDR16_LO :
|
|
writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
|
|
break;
|
|
case ELF::R_PPC64_ADDR16_HI :
|
|
writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
|
|
break;
|
|
case ELF::R_PPC64_ADDR16_HIGHER :
|
|
writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
|
|
break;
|
|
case ELF::R_PPC64_ADDR16_HIGHEST :
|
|
writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
|
|
break;
|
|
case ELF::R_PPC64_ADDR14 : {
|
|
assert(((Value + Addend) & 3) == 0);
|
|
// Preserve the AA/LK bits in the branch instruction
|
|
uint8_t aalk = *(LocalAddress+3);
|
|
writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
|
|
} break;
|
|
case ELF::R_PPC64_ADDR32 : {
|
|
int32_t Result = static_cast<int32_t>(Value + Addend);
|
|
if (SignExtend32<32>(Result) != Result)
|
|
llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
|
|
writeInt32BE(LocalAddress, Result);
|
|
} break;
|
|
case ELF::R_PPC64_REL24 : {
|
|
uint64_t FinalAddress = (Section.LoadAddress + Offset);
|
|
int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
|
|
if (SignExtend32<24>(delta) != delta)
|
|
llvm_unreachable("Relocation R_PPC64_REL24 overflow");
|
|
// Generates a 'bl <address>' instruction
|
|
writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
|
|
} break;
|
|
case ELF::R_PPC64_REL32 : {
|
|
uint64_t FinalAddress = (Section.LoadAddress + Offset);
|
|
int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
|
|
if (SignExtend32<32>(delta) != delta)
|
|
llvm_unreachable("Relocation R_PPC64_REL32 overflow");
|
|
writeInt32BE(LocalAddress, delta);
|
|
} break;
|
|
case ELF::R_PPC64_REL64: {
|
|
uint64_t FinalAddress = (Section.LoadAddress + Offset);
|
|
uint64_t Delta = Value - FinalAddress + Addend;
|
|
writeInt64BE(LocalAddress, Delta);
|
|
} break;
|
|
case ELF::R_PPC64_ADDR64 :
|
|
writeInt64BE(LocalAddress, Value + Addend);
|
|
break;
|
|
case ELF::R_PPC64_TOC :
|
|
writeInt64BE(LocalAddress, findPPC64TOC());
|
|
break;
|
|
case ELF::R_PPC64_TOC16 : {
|
|
uint64_t TOCStart = findPPC64TOC();
|
|
Value = applyPPClo((Value + Addend) - TOCStart);
|
|
writeInt16BE(LocalAddress, applyPPClo(Value));
|
|
} break;
|
|
case ELF::R_PPC64_TOC16_DS : {
|
|
uint64_t TOCStart = findPPC64TOC();
|
|
Value = ((Value + Addend) - TOCStart);
|
|
writeInt16BE(LocalAddress, applyPPClo(Value));
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint64_t Value,
|
|
uint32_t Type,
|
|
int64_t Addend) {
|
|
uint8_t *LocalAddress = Section.Address + Offset;
|
|
switch (Type) {
|
|
default:
|
|
llvm_unreachable("Relocation type not implemented yet!");
|
|
break;
|
|
case ELF::R_390_PC16DBL:
|
|
case ELF::R_390_PLT16DBL: {
|
|
int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
|
|
assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
|
|
writeInt16BE(LocalAddress, Delta / 2);
|
|
break;
|
|
}
|
|
case ELF::R_390_PC32DBL:
|
|
case ELF::R_390_PLT32DBL: {
|
|
int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
|
|
assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
|
|
writeInt32BE(LocalAddress, Delta / 2);
|
|
break;
|
|
}
|
|
case ELF::R_390_PC32: {
|
|
int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
|
|
assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
|
|
writeInt32BE(LocalAddress, Delta);
|
|
break;
|
|
}
|
|
case ELF::R_390_64:
|
|
writeInt64BE(LocalAddress, Value + Addend);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The target location for the relocation is described by RE.SectionID and
|
|
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
|
|
// SectionEntry has three members describing its location.
|
|
// SectionEntry::Address is the address at which the section has been loaded
|
|
// into memory in the current (host) process. SectionEntry::LoadAddress is the
|
|
// address that the section will have in the target process.
|
|
// SectionEntry::ObjAddress is the address of the bits for this section in the
|
|
// original emitted object image (also in the current address space).
|
|
//
|
|
// Relocations will be applied as if the section were loaded at
|
|
// SectionEntry::LoadAddress, but they will be applied at an address based
|
|
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
|
|
// Target memory contents if they are required for value calculations.
|
|
//
|
|
// The Value parameter here is the load address of the symbol for the
|
|
// relocation to be applied. For relocations which refer to symbols in the
|
|
// current object Value will be the LoadAddress of the section in which
|
|
// the symbol resides (RE.Addend provides additional information about the
|
|
// symbol location). For external symbols, Value will be the address of the
|
|
// symbol in the target address space.
|
|
void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
|
|
uint64_t Value) {
|
|
const SectionEntry &Section = Sections[RE.SectionID];
|
|
return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
|
|
RE.SymOffset);
|
|
}
|
|
|
|
void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
|
|
uint64_t Offset,
|
|
uint64_t Value,
|
|
uint32_t Type,
|
|
int64_t Addend,
|
|
uint64_t SymOffset) {
|
|
switch (Arch) {
|
|
case Triple::x86_64:
|
|
resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
|
|
break;
|
|
case Triple::x86:
|
|
resolveX86Relocation(Section, Offset,
|
|
(uint32_t)(Value & 0xffffffffL), Type,
|
|
(uint32_t)(Addend & 0xffffffffL));
|
|
break;
|
|
case Triple::aarch64:
|
|
resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
|
|
break;
|
|
case Triple::arm: // Fall through.
|
|
case Triple::thumb:
|
|
resolveARMRelocation(Section, Offset,
|
|
(uint32_t)(Value & 0xffffffffL), Type,
|
|
(uint32_t)(Addend & 0xffffffffL));
|
|
break;
|
|
case Triple::mips: // Fall through.
|
|
case Triple::mipsel:
|
|
resolveMIPSRelocation(Section, Offset,
|
|
(uint32_t)(Value & 0xffffffffL), Type,
|
|
(uint32_t)(Addend & 0xffffffffL));
|
|
break;
|
|
case Triple::ppc64: // Fall through.
|
|
case Triple::ppc64le:
|
|
resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
|
|
break;
|
|
case Triple::systemz:
|
|
resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
|
|
break;
|
|
default: llvm_unreachable("Unsupported CPU type!");
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
|
|
RelocationRef RelI,
|
|
ObjectImage &Obj,
|
|
ObjSectionToIDMap &ObjSectionToID,
|
|
const SymbolTableMap &Symbols,
|
|
StubMap &Stubs) {
|
|
uint64_t RelType;
|
|
Check(RelI.getType(RelType));
|
|
int64_t Addend;
|
|
Check(getELFRelocationAddend(RelI, Addend));
|
|
symbol_iterator Symbol = RelI.getSymbol();
|
|
|
|
// Obtain the symbol name which is referenced in the relocation
|
|
StringRef TargetName;
|
|
if (Symbol != Obj.end_symbols())
|
|
Symbol->getName(TargetName);
|
|
DEBUG(dbgs() << "\t\tRelType: " << RelType
|
|
<< " Addend: " << Addend
|
|
<< " TargetName: " << TargetName
|
|
<< "\n");
|
|
RelocationValueRef Value;
|
|
// First search for the symbol in the local symbol table
|
|
SymbolTableMap::const_iterator lsi = Symbols.end();
|
|
SymbolRef::Type SymType = SymbolRef::ST_Unknown;
|
|
if (Symbol != Obj.end_symbols()) {
|
|
lsi = Symbols.find(TargetName.data());
|
|
Symbol->getType(SymType);
|
|
}
|
|
if (lsi != Symbols.end()) {
|
|
Value.SectionID = lsi->second.first;
|
|
Value.Offset = lsi->second.second;
|
|
Value.Addend = lsi->second.second + Addend;
|
|
} else {
|
|
// Search for the symbol in the global symbol table
|
|
SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
|
|
if (Symbol != Obj.end_symbols())
|
|
gsi = GlobalSymbolTable.find(TargetName.data());
|
|
if (gsi != GlobalSymbolTable.end()) {
|
|
Value.SectionID = gsi->second.first;
|
|
Value.Offset = gsi->second.second;
|
|
Value.Addend = gsi->second.second + Addend;
|
|
} else {
|
|
switch (SymType) {
|
|
case SymbolRef::ST_Debug: {
|
|
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
|
|
// and can be changed by another developers. Maybe best way is add
|
|
// a new symbol type ST_Section to SymbolRef and use it.
|
|
section_iterator si(Obj.end_sections());
|
|
Symbol->getSection(si);
|
|
if (si == Obj.end_sections())
|
|
llvm_unreachable("Symbol section not found, bad object file format!");
|
|
DEBUG(dbgs() << "\t\tThis is section symbol\n");
|
|
// Default to 'true' in case isText fails (though it never does).
|
|
bool isCode = true;
|
|
si->isText(isCode);
|
|
Value.SectionID = findOrEmitSection(Obj,
|
|
(*si),
|
|
isCode,
|
|
ObjSectionToID);
|
|
Value.Addend = Addend;
|
|
break;
|
|
}
|
|
case SymbolRef::ST_Data:
|
|
case SymbolRef::ST_Unknown: {
|
|
Value.SymbolName = TargetName.data();
|
|
Value.Addend = Addend;
|
|
|
|
// Absolute relocations will have a zero symbol ID (STN_UNDEF), which
|
|
// will manifest here as a NULL symbol name.
|
|
// We can set this as a valid (but empty) symbol name, and rely
|
|
// on addRelocationForSymbol to handle this.
|
|
if (!Value.SymbolName)
|
|
Value.SymbolName = "";
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unresolved symbol type!");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
uint64_t Offset;
|
|
Check(RelI.getOffset(Offset));
|
|
|
|
DEBUG(dbgs() << "\t\tSectionID: " << SectionID
|
|
<< " Offset: " << Offset
|
|
<< "\n");
|
|
if (Arch == Triple::aarch64 &&
|
|
(RelType == ELF::R_AARCH64_CALL26 ||
|
|
RelType == ELF::R_AARCH64_JUMP26)) {
|
|
// This is an AArch64 branch relocation, need to use a stub function.
|
|
DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
|
|
SectionEntry &Section = Sections[SectionID];
|
|
|
|
// Look for an existing stub.
|
|
StubMap::const_iterator i = Stubs.find(Value);
|
|
if (i != Stubs.end()) {
|
|
resolveRelocation(Section, Offset,
|
|
(uint64_t)Section.Address + i->second, RelType, 0);
|
|
DEBUG(dbgs() << " Stub function found\n");
|
|
} else {
|
|
// Create a new stub function.
|
|
DEBUG(dbgs() << " Create a new stub function\n");
|
|
Stubs[Value] = Section.StubOffset;
|
|
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
|
|
Section.StubOffset);
|
|
|
|
RelocationEntry REmovz_g3(SectionID,
|
|
StubTargetAddr - Section.Address,
|
|
ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
|
|
RelocationEntry REmovk_g2(SectionID,
|
|
StubTargetAddr - Section.Address + 4,
|
|
ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
|
|
RelocationEntry REmovk_g1(SectionID,
|
|
StubTargetAddr - Section.Address + 8,
|
|
ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
|
|
RelocationEntry REmovk_g0(SectionID,
|
|
StubTargetAddr - Section.Address + 12,
|
|
ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
|
|
|
|
if (Value.SymbolName) {
|
|
addRelocationForSymbol(REmovz_g3, Value.SymbolName);
|
|
addRelocationForSymbol(REmovk_g2, Value.SymbolName);
|
|
addRelocationForSymbol(REmovk_g1, Value.SymbolName);
|
|
addRelocationForSymbol(REmovk_g0, Value.SymbolName);
|
|
} else {
|
|
addRelocationForSection(REmovz_g3, Value.SectionID);
|
|
addRelocationForSection(REmovk_g2, Value.SectionID);
|
|
addRelocationForSection(REmovk_g1, Value.SectionID);
|
|
addRelocationForSection(REmovk_g0, Value.SectionID);
|
|
}
|
|
resolveRelocation(Section, Offset,
|
|
(uint64_t)Section.Address + Section.StubOffset,
|
|
RelType, 0);
|
|
Section.StubOffset += getMaxStubSize();
|
|
}
|
|
} else if (Arch == Triple::arm &&
|
|
(RelType == ELF::R_ARM_PC24 ||
|
|
RelType == ELF::R_ARM_CALL ||
|
|
RelType == ELF::R_ARM_JUMP24)) {
|
|
// This is an ARM branch relocation, need to use a stub function.
|
|
DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
|
|
SectionEntry &Section = Sections[SectionID];
|
|
|
|
// Look for an existing stub.
|
|
StubMap::const_iterator i = Stubs.find(Value);
|
|
if (i != Stubs.end()) {
|
|
resolveRelocation(Section, Offset,
|
|
(uint64_t)Section.Address + i->second, RelType, 0);
|
|
DEBUG(dbgs() << " Stub function found\n");
|
|
} else {
|
|
// Create a new stub function.
|
|
DEBUG(dbgs() << " Create a new stub function\n");
|
|
Stubs[Value] = Section.StubOffset;
|
|
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
|
|
Section.StubOffset);
|
|
RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
|
|
ELF::R_ARM_PRIVATE_0, Value.Addend);
|
|
if (Value.SymbolName)
|
|
addRelocationForSymbol(RE, Value.SymbolName);
|
|
else
|
|
addRelocationForSection(RE, Value.SectionID);
|
|
|
|
resolveRelocation(Section, Offset,
|
|
(uint64_t)Section.Address + Section.StubOffset,
|
|
RelType, 0);
|
|
Section.StubOffset += getMaxStubSize();
|
|
}
|
|
} else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
|
|
RelType == ELF::R_MIPS_26) {
|
|
// This is an Mips branch relocation, need to use a stub function.
|
|
DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
|
|
SectionEntry &Section = Sections[SectionID];
|
|
uint8_t *Target = Section.Address + Offset;
|
|
uint32_t *TargetAddress = (uint32_t *)Target;
|
|
|
|
// Extract the addend from the instruction.
|
|
uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
|
|
|
|
Value.Addend += Addend;
|
|
|
|
// Look up for existing stub.
|
|
StubMap::const_iterator i = Stubs.find(Value);
|
|
if (i != Stubs.end()) {
|
|
RelocationEntry RE(SectionID, Offset, RelType, i->second);
|
|
addRelocationForSection(RE, SectionID);
|
|
DEBUG(dbgs() << " Stub function found\n");
|
|
} else {
|
|
// Create a new stub function.
|
|
DEBUG(dbgs() << " Create a new stub function\n");
|
|
Stubs[Value] = Section.StubOffset;
|
|
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
|
|
Section.StubOffset);
|
|
|
|
// Creating Hi and Lo relocations for the filled stub instructions.
|
|
RelocationEntry REHi(SectionID,
|
|
StubTargetAddr - Section.Address,
|
|
ELF::R_MIPS_UNUSED1, Value.Addend);
|
|
RelocationEntry RELo(SectionID,
|
|
StubTargetAddr - Section.Address + 4,
|
|
ELF::R_MIPS_UNUSED2, Value.Addend);
|
|
|
|
if (Value.SymbolName) {
|
|
addRelocationForSymbol(REHi, Value.SymbolName);
|
|
addRelocationForSymbol(RELo, Value.SymbolName);
|
|
} else {
|
|
addRelocationForSection(REHi, Value.SectionID);
|
|
addRelocationForSection(RELo, Value.SectionID);
|
|
}
|
|
|
|
RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
|
|
addRelocationForSection(RE, SectionID);
|
|
Section.StubOffset += getMaxStubSize();
|
|
}
|
|
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
|
|
if (RelType == ELF::R_PPC64_REL24) {
|
|
// A PPC branch relocation will need a stub function if the target is
|
|
// an external symbol (Symbol::ST_Unknown) or if the target address
|
|
// is not within the signed 24-bits branch address.
|
|
SectionEntry &Section = Sections[SectionID];
|
|
uint8_t *Target = Section.Address + Offset;
|
|
bool RangeOverflow = false;
|
|
if (SymType != SymbolRef::ST_Unknown) {
|
|
// A function call may points to the .opd entry, so the final symbol value
|
|
// in calculated based in the relocation values in .opd section.
|
|
findOPDEntrySection(Obj, ObjSectionToID, Value);
|
|
uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
|
|
int32_t delta = static_cast<int32_t>(Target - RelocTarget);
|
|
// If it is within 24-bits branch range, just set the branch target
|
|
if (SignExtend32<24>(delta) == delta) {
|
|
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
|
|
if (Value.SymbolName)
|
|
addRelocationForSymbol(RE, Value.SymbolName);
|
|
else
|
|
addRelocationForSection(RE, Value.SectionID);
|
|
} else {
|
|
RangeOverflow = true;
|
|
}
|
|
}
|
|
if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
|
|
// It is an external symbol (SymbolRef::ST_Unknown) or within a range
|
|
// larger than 24-bits.
|
|
StubMap::const_iterator i = Stubs.find(Value);
|
|
if (i != Stubs.end()) {
|
|
// Symbol function stub already created, just relocate to it
|
|
resolveRelocation(Section, Offset,
|
|
(uint64_t)Section.Address + i->second, RelType, 0);
|
|
DEBUG(dbgs() << " Stub function found\n");
|
|
} else {
|
|
// Create a new stub function.
|
|
DEBUG(dbgs() << " Create a new stub function\n");
|
|
Stubs[Value] = Section.StubOffset;
|
|
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
|
|
Section.StubOffset);
|
|
RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
|
|
ELF::R_PPC64_ADDR64, Value.Addend);
|
|
|
|
// Generates the 64-bits address loads as exemplified in section
|
|
// 4.5.1 in PPC64 ELF ABI.
|
|
RelocationEntry REhst(SectionID,
|
|
StubTargetAddr - Section.Address + 2,
|
|
ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
|
|
RelocationEntry REhr(SectionID,
|
|
StubTargetAddr - Section.Address + 6,
|
|
ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
|
|
RelocationEntry REh(SectionID,
|
|
StubTargetAddr - Section.Address + 14,
|
|
ELF::R_PPC64_ADDR16_HI, Value.Addend);
|
|
RelocationEntry REl(SectionID,
|
|
StubTargetAddr - Section.Address + 18,
|
|
ELF::R_PPC64_ADDR16_LO, Value.Addend);
|
|
|
|
if (Value.SymbolName) {
|
|
addRelocationForSymbol(REhst, Value.SymbolName);
|
|
addRelocationForSymbol(REhr, Value.SymbolName);
|
|
addRelocationForSymbol(REh, Value.SymbolName);
|
|
addRelocationForSymbol(REl, Value.SymbolName);
|
|
} else {
|
|
addRelocationForSection(REhst, Value.SectionID);
|
|
addRelocationForSection(REhr, Value.SectionID);
|
|
addRelocationForSection(REh, Value.SectionID);
|
|
addRelocationForSection(REl, Value.SectionID);
|
|
}
|
|
|
|
resolveRelocation(Section, Offset,
|
|
(uint64_t)Section.Address + Section.StubOffset,
|
|
RelType, 0);
|
|
if (SymType == SymbolRef::ST_Unknown)
|
|
// Restore the TOC for external calls
|
|
writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
|
|
Section.StubOffset += getMaxStubSize();
|
|
}
|
|
}
|
|
} else {
|
|
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
|
|
// Extra check to avoid relocation againt empty symbols (usually
|
|
// the R_PPC64_TOC).
|
|
if (SymType != SymbolRef::ST_Unknown && TargetName.empty())
|
|
Value.SymbolName = NULL;
|
|
|
|
if (Value.SymbolName)
|
|
addRelocationForSymbol(RE, Value.SymbolName);
|
|
else
|
|
addRelocationForSection(RE, Value.SectionID);
|
|
}
|
|
} else if (Arch == Triple::systemz &&
|
|
(RelType == ELF::R_390_PLT32DBL ||
|
|
RelType == ELF::R_390_GOTENT)) {
|
|
// Create function stubs for both PLT and GOT references, regardless of
|
|
// whether the GOT reference is to data or code. The stub contains the
|
|
// full address of the symbol, as needed by GOT references, and the
|
|
// executable part only adds an overhead of 8 bytes.
|
|
//
|
|
// We could try to conserve space by allocating the code and data
|
|
// parts of the stub separately. However, as things stand, we allocate
|
|
// a stub for every relocation, so using a GOT in JIT code should be
|
|
// no less space efficient than using an explicit constant pool.
|
|
DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
|
|
SectionEntry &Section = Sections[SectionID];
|
|
|
|
// Look for an existing stub.
|
|
StubMap::const_iterator i = Stubs.find(Value);
|
|
uintptr_t StubAddress;
|
|
if (i != Stubs.end()) {
|
|
StubAddress = uintptr_t(Section.Address) + i->second;
|
|
DEBUG(dbgs() << " Stub function found\n");
|
|
} else {
|
|
// Create a new stub function.
|
|
DEBUG(dbgs() << " Create a new stub function\n");
|
|
|
|
uintptr_t BaseAddress = uintptr_t(Section.Address);
|
|
uintptr_t StubAlignment = getStubAlignment();
|
|
StubAddress = (BaseAddress + Section.StubOffset +
|
|
StubAlignment - 1) & -StubAlignment;
|
|
unsigned StubOffset = StubAddress - BaseAddress;
|
|
|
|
Stubs[Value] = StubOffset;
|
|
createStubFunction((uint8_t *)StubAddress);
|
|
RelocationEntry RE(SectionID, StubOffset + 8,
|
|
ELF::R_390_64, Value.Addend - Addend);
|
|
if (Value.SymbolName)
|
|
addRelocationForSymbol(RE, Value.SymbolName);
|
|
else
|
|
addRelocationForSection(RE, Value.SectionID);
|
|
Section.StubOffset = StubOffset + getMaxStubSize();
|
|
}
|
|
|
|
if (RelType == ELF::R_390_GOTENT)
|
|
resolveRelocation(Section, Offset, StubAddress + 8,
|
|
ELF::R_390_PC32DBL, Addend);
|
|
else
|
|
resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
|
|
} else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
|
|
// The way the PLT relocations normally work is that the linker allocates the
|
|
// PLT and this relocation makes a PC-relative call into the PLT. The PLT
|
|
// entry will then jump to an address provided by the GOT. On first call, the
|
|
// GOT address will point back into PLT code that resolves the symbol. After
|
|
// the first call, the GOT entry points to the actual function.
|
|
//
|
|
// For local functions we're ignoring all of that here and just replacing
|
|
// the PLT32 relocation type with PC32, which will translate the relocation
|
|
// into a PC-relative call directly to the function. For external symbols we
|
|
// can't be sure the function will be within 2^32 bytes of the call site, so
|
|
// we need to create a stub, which calls into the GOT. This case is
|
|
// equivalent to the usual PLT implementation except that we use the stub
|
|
// mechanism in RuntimeDyld (which puts stubs at the end of the section)
|
|
// rather than allocating a PLT section.
|
|
if (Value.SymbolName) {
|
|
// This is a call to an external function.
|
|
// Look for an existing stub.
|
|
SectionEntry &Section = Sections[SectionID];
|
|
StubMap::const_iterator i = Stubs.find(Value);
|
|
uintptr_t StubAddress;
|
|
if (i != Stubs.end()) {
|
|
StubAddress = uintptr_t(Section.Address) + i->second;
|
|
DEBUG(dbgs() << " Stub function found\n");
|
|
} else {
|
|
// Create a new stub function (equivalent to a PLT entry).
|
|
DEBUG(dbgs() << " Create a new stub function\n");
|
|
|
|
uintptr_t BaseAddress = uintptr_t(Section.Address);
|
|
uintptr_t StubAlignment = getStubAlignment();
|
|
StubAddress = (BaseAddress + Section.StubOffset +
|
|
StubAlignment - 1) & -StubAlignment;
|
|
unsigned StubOffset = StubAddress - BaseAddress;
|
|
Stubs[Value] = StubOffset;
|
|
createStubFunction((uint8_t *)StubAddress);
|
|
|
|
// Create a GOT entry for the external function.
|
|
GOTEntries.push_back(Value);
|
|
|
|
// Make our stub function a relative call to the GOT entry.
|
|
RelocationEntry RE(SectionID, StubOffset + 2,
|
|
ELF::R_X86_64_GOTPCREL, -4);
|
|
addRelocationForSymbol(RE, Value.SymbolName);
|
|
|
|
// Bump our stub offset counter
|
|
Section.StubOffset = StubOffset + getMaxStubSize();
|
|
}
|
|
|
|
// Make the target call a call into the stub table.
|
|
resolveRelocation(Section, Offset, StubAddress,
|
|
ELF::R_X86_64_PC32, Addend);
|
|
} else {
|
|
RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
|
|
Value.Offset);
|
|
addRelocationForSection(RE, Value.SectionID);
|
|
}
|
|
} else {
|
|
if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
|
|
GOTEntries.push_back(Value);
|
|
}
|
|
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
|
|
if (Value.SymbolName)
|
|
addRelocationForSymbol(RE, Value.SymbolName);
|
|
else
|
|
addRelocationForSection(RE, Value.SectionID);
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
|
|
|
|
SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator it;
|
|
SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator end = GOTs.end();
|
|
|
|
for (it = GOTs.begin(); it != end; ++it) {
|
|
GOTRelocations &GOTEntries = it->second;
|
|
for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
|
|
if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) {
|
|
GOTEntries[i].Offset = Addr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t RuntimeDyldELF::getGOTEntrySize() {
|
|
// We don't use the GOT in all of these cases, but it's essentially free
|
|
// to put them all here.
|
|
size_t Result = 0;
|
|
switch (Arch) {
|
|
case Triple::x86_64:
|
|
case Triple::aarch64:
|
|
case Triple::ppc64:
|
|
case Triple::ppc64le:
|
|
case Triple::systemz:
|
|
Result = sizeof(uint64_t);
|
|
break;
|
|
case Triple::x86:
|
|
case Triple::arm:
|
|
case Triple::thumb:
|
|
case Triple::mips:
|
|
case Triple::mipsel:
|
|
Result = sizeof(uint32_t);
|
|
break;
|
|
default: llvm_unreachable("Unsupported CPU type!");
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
|
|
uint64_t Offset) {
|
|
|
|
const size_t GOTEntrySize = getGOTEntrySize();
|
|
|
|
SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator it;
|
|
SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator end = GOTs.end();
|
|
|
|
int GOTIndex = -1;
|
|
for (it = GOTs.begin(); it != end; ++it) {
|
|
SID GOTSectionID = it->first;
|
|
const GOTRelocations &GOTEntries = it->second;
|
|
|
|
// Find the matching entry in our vector.
|
|
uint64_t SymbolOffset = 0;
|
|
for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
|
|
if (GOTEntries[i].SymbolName == 0) {
|
|
if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
|
|
GOTEntries[i].Offset == Offset) {
|
|
GOTIndex = i;
|
|
SymbolOffset = GOTEntries[i].Offset;
|
|
break;
|
|
}
|
|
} else {
|
|
// GOT entries for external symbols use the addend as the address when
|
|
// the external symbol has been resolved.
|
|
if (GOTEntries[i].Offset == LoadAddress) {
|
|
GOTIndex = i;
|
|
// Don't use the Addend here. The relocation handler will use it.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (GOTIndex != -1) {
|
|
if (GOTEntrySize == sizeof(uint64_t)) {
|
|
uint64_t *LocalGOTAddr = (uint64_t*)getSectionAddress(GOTSectionID);
|
|
// Fill in this entry with the address of the symbol being referenced.
|
|
LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
|
|
} else {
|
|
uint32_t *LocalGOTAddr = (uint32_t*)getSectionAddress(GOTSectionID);
|
|
// Fill in this entry with the address of the symbol being referenced.
|
|
LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
|
|
}
|
|
|
|
// Calculate the load address of this entry
|
|
return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
|
|
}
|
|
}
|
|
|
|
assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
|
|
return 0;
|
|
}
|
|
|
|
void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
|
|
// If necessary, allocate the global offset table
|
|
if (MemMgr) {
|
|
// Allocate the GOT if necessary
|
|
size_t numGOTEntries = GOTEntries.size();
|
|
if (numGOTEntries != 0) {
|
|
// Allocate memory for the section
|
|
unsigned SectionID = Sections.size();
|
|
size_t TotalSize = numGOTEntries * getGOTEntrySize();
|
|
uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
|
|
SectionID, ".got", false);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate memory for GOT!");
|
|
|
|
GOTs.push_back(std::make_pair(SectionID, GOTEntries));
|
|
Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
|
|
// For now, initialize all GOT entries to zero. We'll fill them in as
|
|
// needed when GOT-based relocations are applied.
|
|
memset(Addr, 0, TotalSize);
|
|
}
|
|
}
|
|
else {
|
|
report_fatal_error("Unable to allocate memory for GOT!");
|
|
}
|
|
|
|
// Look for and record the EH frame section.
|
|
ObjSectionToIDMap::iterator i, e;
|
|
for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
|
|
const SectionRef &Section = i->first;
|
|
StringRef Name;
|
|
Section.getName(Name);
|
|
if (Name == ".eh_frame") {
|
|
UnregisteredEHFrameSections.push_back(i->second);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
|
|
if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
|
|
return false;
|
|
return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
|
|
}
|
|
|
|
bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
|
|
return Obj->isELF();
|
|
}
|
|
|
|
} // namespace llvm
|