llvm-6502/include/llvm/SymbolTable.h
Chris Lattner eaca89b48e Eliminate this form of SymbolTable::remove. It ignores the type argument
anyway.  Add a form that takes a type_iterator for the C backend.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13873 91177308-0d34-0410-b5e6-96231b3b80d8
2004-05-28 05:30:29 +00:00

394 lines
15 KiB
C++

//===-- llvm/SymbolTable.h - Implement a type plane'd symtab ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and re-written by Reid
// Spencer. It is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the main symbol table for LLVM.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SYMBOL_TABLE_H
#define LLVM_SYMBOL_TABLE_H
#include "llvm/Value.h"
#include <map>
namespace llvm {
/// This class provides a symbol table of name/value pairs that is broken
/// up by type. For each Type* there is a "plane" of name/value pairs in
/// the symbol table. Identical types may have overlapping symbol names as
/// long as they are distinct. The SymbolTable also tracks, separately, a
/// map of name/type pairs. This allows types to be named. Types are treated
/// distinctly from Values.
///
/// The SymbolTable provides several utility functions for answering common
/// questions about its contents as well as an iterator interface for
/// directly iterating over the contents. To reduce confusion, the terms
/// "type", "value", and "plane" are used consistently. For example,
/// There is a TypeMap typedef that is the mapping of names to Types.
/// Similarly there is a ValueMap typedef that is the mapping of
/// names to Values. Finally, there is a PlaneMap typedef that is the
/// mapping of types to planes of ValueMap. THis is the basic structure
/// of the symbol table. When you call type_begin() you're asking
/// for an iterator at the start of the TypeMap. When you call
/// plane_begin(), you're asking for an iterator at the start of
/// the PlaneMap. Finally, when you call value_begin(), you're asking
/// for an iterator at the start of a ValueMap for a specific type
/// plane.
class SymbolTable : public AbstractTypeUser {
/// @name Types
/// @{
public:
/// @brief A mapping of names to types.
typedef std::map<const std::string, Type*> TypeMap;
/// @brief An iterator over the TypeMap.
typedef TypeMap::iterator type_iterator;
/// @brief A const_iterator over the TypeMap.
typedef TypeMap::const_iterator type_const_iterator;
/// @brief A mapping of names to values.
typedef std::map<const std::string, Value *> ValueMap;
/// @brief An iterator over a ValueMap.
typedef ValueMap::iterator value_iterator;
/// @brief A const_iterator over a ValueMap.
typedef ValueMap::const_iterator value_const_iterator;
/// @brief A mapping of types to names to values (type planes).
typedef std::map<const Type *, ValueMap> PlaneMap;
/// @brief An iterator over the type planes.
typedef PlaneMap::iterator plane_iterator;
/// @brief A const_iterator over the type planes
typedef PlaneMap::const_iterator plane_const_iterator;
/// @}
/// @name Constructors
/// @{
public:
inline SymbolTable()
: pmap(), tmap(), InternallyInconsistent(false), LastUnique(0) {}
~SymbolTable();
/// @}
/// @name Accessors
/// @{
public:
/// This method finds the value with the given \p name in the
/// type plane \p Ty and returns it. This method will not find any
/// Types, only Values. Use lookupType to find Types by name.
/// @returns null on failure, otherwise the Value associated with
/// the \p name in type plane \p Ty.
/// @brief Lookup a named, typed value.
Value *lookup(const Type *Ty, const std::string &name) const;
/// This method finds the type with the given \p name in the
/// type map and returns it.
/// @returns null if the name is not found, otherwise the Type
/// associated with the \p name.
/// @brief Lookup a type by name.
Type* lookupType( const std::string& name ) const;
/// @returns true iff the type map is not empty.
/// @brief Determine if there are types in the symbol table
inline bool hasTypes() const { return ! tmap.empty(); }
/// @returns true iff the type map and the type plane are both not
/// empty.
/// @brief Determine if the symbol table is empty
inline bool isEmpty() const { return pmap.empty() && tmap.empty(); }
/// The plane associated with the \p TypeID parameter is found
/// and the number of entries in the plane is returned.
/// @returns Number of entries in the specified type plane or 0.
/// @brief Get the size of a type plane.
unsigned type_size(const Type *TypeID) const;
/// @brief The number of name/type pairs is returned.
inline unsigned num_types() const { return tmap.size(); }
/// Finds the value \p val in the symbol table and returns its
/// name. Only the type plane associated with the type of \p val
/// is searched.
/// @brief Return the name of a value
std::string get_name( const Value* Val ) const;
/// Finds the type \p Ty in the symbol table and returns its name.
/// @brief Return the name of a type
std::string get_name( const Type* Ty ) const;
/// Given a base name, return a string that is either equal to it or
/// derived from it that does not already occur in the symbol table
/// for the specified type.
/// @brief Get a name unique to this symbol table
std::string getUniqueName(const Type *Ty,
const std::string &BaseName) const;
/// This function can be used from the debugger to display the
/// content of the symbol table while debugging.
/// @brief Print out symbol table on stderr
void dump() const;
/// @}
/// @name Mutators
/// @{
public:
/// This method adds the provided value \p N to the symbol table.
/// The Value must have both a name and a type which are extracted
/// and used to place the value in the correct type plane under
/// the value's name.
/// @brief Add a named value to the symbol table
inline void insert(Value *Val) {
assert(Val && "Can't insert null type into symbol table!");
assert(Val->hasName() && "Value must be named to go into symbol table!");
insertEntry(Val->getName(), Val->getType(), Val);
}
/// Inserts a constant or type into the symbol table with the specified
/// name. There can be a many to one mapping between names and constants
/// or types.
/// @brief Insert a constant or type.
inline void insert(const std::string &Name, Value *Val) {
assert(Val && "Can't insert null type into symbol table!");
assert(!isa<Type>(Val) && "Cannot insert types with this interface!");
assert(isa<Constant>(Val) &&
"Can only insert constants into a symbol table!");
insertEntry(Name, Val->getType(), Val);
}
/// Inserts a type into the symbol table with the specified name. There
/// can be a many-to-one mapping between names and types. This method
/// allows a type with an existing entry in the symbol table to get
/// a new name.
/// @brief Insert a type under a new name.
inline void insert(const std::string &Name, Type *Typ) {
assert(Typ && "Can't insert null type into symbol table!");
insertEntry(Name, Typ );
}
/// This method removes a named value from the symbol table. The
/// type and name of the Value are extracted from \p N and used to
/// lookup the Value in the correct type plane. If the Value is
/// not in the symbol table, this method silently ignores the
/// request.
/// @brief Remove a named value from the symbol table.
void remove(Value* Val);
/// This method removes a named type from the symbol table. The
/// name of the type is extracted from \P T and used to look up
/// the Type in the type map. If the Type is not in the symbol
/// table, this method silently ignores the request.
/// @brief Remove a named type from the symbol table.
void remove(Type* Typ );
/// Remove a constant or type with the specified name from the
/// symbol table.
/// @returns the removed Value.
/// @brief Remove a constant or type from the symbol table.
inline Value* remove(const std::string &Name, Value *Val) {
assert(Val && "Can't remove null value from symbol table!");
assert(!isa<Type>(Val) && "Can't remove types with this interface!");
plane_iterator PI = pmap.find(Val->getType());
return removeEntry(PI, PI->second.find(Name));
}
/// Remove a type at the specified position in the symbol table.
/// @returns the removed Type.
inline Type* remove(type_iterator TI) {
return removeEntry(TI);
}
/// Removes a specific value from the symbol table.
/// @returns the removed value.
/// @brief Remove a specific value given by an iterator
inline Value *value_remove(const value_iterator &It) {
return this->removeEntry(pmap.find(It->second->getType()), It);
}
/// This method will strip the symbol table of its names leaving
/// the type and values.
/// @brief Strip the symbol table.
bool strip();
/// @brief Empty the symbol table completely.
inline void clear() { pmap.clear(); tmap.clear(); }
/// @}
/// @name Iteration
/// @{
public:
/// Get an iterator that starts at the beginning of the type planes.
/// The iterator will iterate over the Type/ValueMap pairs in the
/// type planes.
inline plane_iterator plane_begin() { return pmap.begin(); }
/// Get a const_iterator that starts at the beginning of the type
/// planes. The iterator will iterate over the Type/ValueMap pairs
/// in the type planes.
inline plane_const_iterator plane_begin() const { return pmap.begin(); }
/// Get an iterator at the end of the type planes. This serves as
/// the marker for end of iteration over the type planes.
inline plane_iterator plane_end() { return pmap.end(); }
/// Get a const_iterator at the end of the type planes. This serves as
/// the marker for end of iteration over the type planes.
inline plane_const_iterator plane_end() const { return pmap.end(); }
/// Get an iterator that starts at the beginning of a type plane.
/// The iterator will iterate over the name/value pairs in the type plane.
/// @note The type plane must already exist before using this.
inline value_iterator value_begin(const Type *Typ) {
assert(Typ && "Can't get value iterator with null type!");
return pmap.find(Typ)->second.begin();
}
/// Get a const_iterator that starts at the beginning of a type plane.
/// The iterator will iterate over the name/value pairs in the type plane.
/// @note The type plane must already exist before using this.
inline value_const_iterator value_begin(const Type *Typ) const {
assert(Typ && "Can't get value iterator with null type!");
return pmap.find(Typ)->second.begin();
}
/// Get an iterator to the end of a type plane. This serves as the marker
/// for end of iteration of the type plane.
/// @note The type plane must already exist before using this.
inline value_iterator value_end(const Type *Typ) {
assert(Typ && "Can't get value iterator with null type!");
return pmap.find(Typ)->second.end();
}
/// Get a const_iterator to the end of a type plane. This serves as the
/// marker for end of iteration of the type plane.
/// @note The type plane must already exist before using this.
inline value_const_iterator value_end(const Type *Typ) const {
assert(Typ && "Can't get value iterator with null type!");
return pmap.find(Typ)->second.end();
}
/// Get an iterator to the start of the name/Type map.
inline type_iterator type_begin() { return tmap.begin(); }
/// @brief Get a const_iterator to the start of the name/Type map.
inline type_const_iterator type_begin() const { return tmap.begin(); }
/// Get an iterator to the end of the name/Type map. This serves as the
/// marker for end of iteration of the types.
inline type_iterator type_end() { return tmap.end(); }
/// Get a const-iterator to the end of the name/Type map. This serves
/// as the marker for end of iteration of the types.
inline type_const_iterator type_end() const { return tmap.end(); }
/// This method returns a plane_const_iterator for iteration over
/// the type planes starting at a specific plane, given by \p Ty.
/// @brief Find a type plane.
inline plane_const_iterator find(const Type* Typ ) const {
assert(Typ && "Can't find type plane with null type!");
return pmap.find( Typ );
}
/// This method returns a plane_iterator for iteration over the
/// type planes starting at a specific plane, given by \p Ty.
/// @brief Find a type plane.
inline plane_iterator find( const Type* Typ ) {
assert(Typ && "Can't find type plane with null type!");
return pmap.find(Typ);
}
/// This method returns a ValueMap* for a specific type plane. This
/// interface is deprecated and may go away in the future.
/// @deprecated
/// @brief Find a type plane
inline const ValueMap* findPlane( const Type* Typ ) const {
assert(Typ && "Can't find type plane with null type!");
plane_const_iterator I = pmap.find( Typ );
if ( I == pmap.end() ) return 0;
return &I->second;
}
/// @}
/// @name Internal Methods
/// @{
private:
/// @brief Insert a value into the symbol table with the specified name.
void insertEntry(const std::string &Name, const Type *Ty, Value *V);
/// @brief Insert a type into the symbol table with the specified name.
void insertEntry(const std::string &Name, Type *T);
/// Remove a specific value from a specific plane in the SymbolTable.
/// @returns the removed Value.
Value* removeEntry(plane_iterator Plane, value_iterator Entry);
/// Remove a specific type from the SymbolTable.
/// @returns the removed Type.
Type* removeEntry(type_iterator Entry);
/// This function is called when one of the types in the type plane
/// is refined.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
/// This function markes a type as being concrete (defined).
virtual void typeBecameConcrete(const DerivedType *AbsTy);
/// @}
/// @name Internal Data
/// @{
private:
/// This is the main content of the symbol table. It provides
/// separate type planes for named values. That is, each named
/// value is organized into a separate dictionary based on
/// Type. This means that the same name can be used for different
/// types without conflict. Note that the Type::TypeTy plane is
/// not stored in this map but is in tmap.
/// @brief The mapping of types to names to values.
PlaneMap pmap;
/// This is the Type::TypeTy plane. It is separated from the pmap
/// because the elements of the map are name/Type pairs not
/// name/Value pairs and Type is not a Value.
TypeMap tmap;
/// There are times when the symbol table is internally inconsistent with
/// the rest of the program. In this one case, a value exists with a Name,
/// and it's not in the symbol table. When we call V->setName(""), it
/// tries to remove itself from the symbol table and dies. We know this
/// is happening, and so if the flag InternallyInconsistent is set,
/// removal from the symbol table is a noop.
/// @brief Indicator of symbol table internal inconsistency.
bool InternallyInconsistent;
/// This value is used to retain the last unique value used
/// by getUniqueName to generate unique names.
mutable unsigned long LastUnique;
/// @}
};
} // End llvm namespace
// vim: sw=2
#endif