llvm-6502/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
Roman Divacky 536a88ad5b When creating MCAsmBackend pass the CPU string as well. In X86AsmBackend
store this and use it to not emit long nops when the CPU is geode which
doesnt support them.

Fixes PR11212.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164132 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-18 16:08:49 +00:00

475 lines
15 KiB
C++

//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Object/MachOFormat.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Option to allow disabling arithmetic relaxation to workaround PR9807, which
// is useful when running bitwise comparison experiments on Darwin. We should be
// able to remove this once PR9807 is resolved.
static cl::opt<bool>
MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
cl::desc("Disable relaxation of arithmetic instruction for X86"));
static unsigned getFixupKindLog2Size(unsigned Kind) {
switch (Kind) {
default: llvm_unreachable("invalid fixup kind!");
case FK_PCRel_1:
case FK_SecRel_1:
case FK_Data_1: return 0;
case FK_PCRel_2:
case FK_SecRel_2:
case FK_Data_2: return 1;
case FK_PCRel_4:
case X86::reloc_riprel_4byte:
case X86::reloc_riprel_4byte_movq_load:
case X86::reloc_signed_4byte:
case X86::reloc_global_offset_table:
case FK_SecRel_4:
case FK_Data_4: return 2;
case FK_PCRel_8:
case FK_SecRel_8:
case FK_Data_8: return 3;
}
}
namespace {
class X86ELFObjectWriter : public MCELFObjectTargetWriter {
public:
X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
bool HasRelocationAddend, bool foobar)
: MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
};
class X86AsmBackend : public MCAsmBackend {
StringRef CPU;
public:
X86AsmBackend(const Target &T, StringRef _CPU)
: MCAsmBackend(), CPU(_CPU) {}
unsigned getNumFixupKinds() const {
return X86::NumTargetFixupKinds;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
{ "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
{ "reloc_signed_4byte", 0, 4 * 8, 0},
{ "reloc_global_offset_table", 0, 4 * 8, 0}
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value) const {
unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
assert(Fixup.getOffset() + Size <= DataSize &&
"Invalid fixup offset!");
// Check that uppper bits are either all zeros or all ones.
// Specifically ignore overflow/underflow as long as the leakage is
// limited to the lower bits. This is to remain compatible with
// other assemblers.
assert(isIntN(Size * 8 + 1, Value) &&
"Value does not fit in the Fixup field");
for (unsigned i = 0; i != Size; ++i)
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
bool mayNeedRelaxation(const MCInst &Inst) const;
bool fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCInstFragment *DF,
const MCAsmLayout &Layout) const;
void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
};
} // end anonymous namespace
static unsigned getRelaxedOpcodeBranch(unsigned Op) {
switch (Op) {
default:
return Op;
case X86::JAE_1: return X86::JAE_4;
case X86::JA_1: return X86::JA_4;
case X86::JBE_1: return X86::JBE_4;
case X86::JB_1: return X86::JB_4;
case X86::JE_1: return X86::JE_4;
case X86::JGE_1: return X86::JGE_4;
case X86::JG_1: return X86::JG_4;
case X86::JLE_1: return X86::JLE_4;
case X86::JL_1: return X86::JL_4;
case X86::JMP_1: return X86::JMP_4;
case X86::JNE_1: return X86::JNE_4;
case X86::JNO_1: return X86::JNO_4;
case X86::JNP_1: return X86::JNP_4;
case X86::JNS_1: return X86::JNS_4;
case X86::JO_1: return X86::JO_4;
case X86::JP_1: return X86::JP_4;
case X86::JS_1: return X86::JS_4;
}
}
static unsigned getRelaxedOpcodeArith(unsigned Op) {
switch (Op) {
default:
return Op;
// IMUL
case X86::IMUL16rri8: return X86::IMUL16rri;
case X86::IMUL16rmi8: return X86::IMUL16rmi;
case X86::IMUL32rri8: return X86::IMUL32rri;
case X86::IMUL32rmi8: return X86::IMUL32rmi;
case X86::IMUL64rri8: return X86::IMUL64rri32;
case X86::IMUL64rmi8: return X86::IMUL64rmi32;
// AND
case X86::AND16ri8: return X86::AND16ri;
case X86::AND16mi8: return X86::AND16mi;
case X86::AND32ri8: return X86::AND32ri;
case X86::AND32mi8: return X86::AND32mi;
case X86::AND64ri8: return X86::AND64ri32;
case X86::AND64mi8: return X86::AND64mi32;
// OR
case X86::OR16ri8: return X86::OR16ri;
case X86::OR16mi8: return X86::OR16mi;
case X86::OR32ri8: return X86::OR32ri;
case X86::OR32mi8: return X86::OR32mi;
case X86::OR64ri8: return X86::OR64ri32;
case X86::OR64mi8: return X86::OR64mi32;
// XOR
case X86::XOR16ri8: return X86::XOR16ri;
case X86::XOR16mi8: return X86::XOR16mi;
case X86::XOR32ri8: return X86::XOR32ri;
case X86::XOR32mi8: return X86::XOR32mi;
case X86::XOR64ri8: return X86::XOR64ri32;
case X86::XOR64mi8: return X86::XOR64mi32;
// ADD
case X86::ADD16ri8: return X86::ADD16ri;
case X86::ADD16mi8: return X86::ADD16mi;
case X86::ADD32ri8: return X86::ADD32ri;
case X86::ADD32mi8: return X86::ADD32mi;
case X86::ADD64ri8: return X86::ADD64ri32;
case X86::ADD64mi8: return X86::ADD64mi32;
// SUB
case X86::SUB16ri8: return X86::SUB16ri;
case X86::SUB16mi8: return X86::SUB16mi;
case X86::SUB32ri8: return X86::SUB32ri;
case X86::SUB32mi8: return X86::SUB32mi;
case X86::SUB64ri8: return X86::SUB64ri32;
case X86::SUB64mi8: return X86::SUB64mi32;
// CMP
case X86::CMP16ri8: return X86::CMP16ri;
case X86::CMP16mi8: return X86::CMP16mi;
case X86::CMP32ri8: return X86::CMP32ri;
case X86::CMP32mi8: return X86::CMP32mi;
case X86::CMP64ri8: return X86::CMP64ri32;
case X86::CMP64mi8: return X86::CMP64mi32;
// PUSH
case X86::PUSHi8: return X86::PUSHi32;
case X86::PUSHi16: return X86::PUSHi32;
case X86::PUSH64i8: return X86::PUSH64i32;
case X86::PUSH64i16: return X86::PUSH64i32;
}
}
static unsigned getRelaxedOpcode(unsigned Op) {
unsigned R = getRelaxedOpcodeArith(Op);
if (R != Op)
return R;
return getRelaxedOpcodeBranch(Op);
}
bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
// Branches can always be relaxed.
if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
return true;
if (MCDisableArithRelaxation)
return false;
// Check if this instruction is ever relaxable.
if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
return false;
// Check if it has an expression and is not RIP relative.
bool hasExp = false;
bool hasRIP = false;
for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
const MCOperand &Op = Inst.getOperand(i);
if (Op.isExpr())
hasExp = true;
if (Op.isReg() && Op.getReg() == X86::RIP)
hasRIP = true;
}
// FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
// how we do relaxations?
return hasExp && !hasRIP;
}
bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCInstFragment *DF,
const MCAsmLayout &Layout) const {
// Relax if the value is too big for a (signed) i8.
return int64_t(Value) != int64_t(int8_t(Value));
}
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
Res = Inst;
Res.setOpcode(RelaxedOp);
}
/// writeNopData - Write optimal nops to the output file for the \p Count
/// bytes. This returns the number of bytes written. It may return 0 if
/// the \p Count is more than the maximum optimal nops.
bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
static const uint8_t Nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 0(%[re]ax)
{0x0f, 0x1f, 0x40, 0x00},
// nopl 0(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopw 0(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopl 0L(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
// nopl 0L(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw 0L(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw %cs:0L(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
// This CPU doesnt support long nops. If needed add more.
if (CPU == "geode") {
for (uint64_t i = 0; i < Count; ++i)
OW->Write8(0x90);
return true;
}
// Write an optimal sequence for the first 15 bytes.
const uint64_t OptimalCount = (Count < 16) ? Count : 15;
const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
for (uint64_t i = 0, e = Prefixes; i != e; i++)
OW->Write8(0x66);
const uint64_t Rest = OptimalCount - Prefixes;
for (uint64_t i = 0, e = Rest; i != e; i++)
OW->Write8(Nops[Rest - 1][i]);
// Finish with single byte nops.
for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
OW->Write8(0x90);
return true;
}
/* *** */
namespace {
class ELFX86AsmBackend : public X86AsmBackend {
public:
uint8_t OSABI;
ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
: X86AsmBackend(T, CPU), OSABI(_OSABI) {
HasReliableSymbolDifference = true;
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
return ES.getFlags() & ELF::SHF_MERGE;
}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86ELFObjectWriter(OS, /*Is64Bit*/ false, OSABI);
}
};
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86ELFObjectWriter(OS, /*Is64Bit*/ true, OSABI);
}
};
class WindowsX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
public:
WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
: X86AsmBackend(T, CPU)
, Is64Bit(is64Bit) {
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86WinCOFFObjectWriter(OS, Is64Bit);
}
};
class DarwinX86AsmBackend : public X86AsmBackend {
public:
DarwinX86AsmBackend(const Target &T, StringRef CPU)
: X86AsmBackend(T, CPU) { }
};
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_32AsmBackend(const Target &T, StringRef CPU)
: DarwinX86AsmBackend(T, CPU) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
object::mach::CTM_i386,
object::mach::CSX86_ALL);
}
};
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_64AsmBackend(const Target &T, StringRef CPU)
: DarwinX86AsmBackend(T, CPU) {
HasReliableSymbolDifference = true;
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
object::mach::CTM_x86_64,
object::mach::CSX86_ALL);
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
// Temporary labels in the string literals sections require symbols. The
// issue is that the x86_64 relocation format does not allow symbol +
// offset, and so the linker does not have enough information to resolve the
// access to the appropriate atom unless an external relocation is used. For
// non-cstring sections, we expect the compiler to use a non-temporary label
// for anything that could have an addend pointing outside the symbol.
//
// See <rdar://problem/4765733>.
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
}
virtual bool isSectionAtomizable(const MCSection &Section) const {
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
// Fixed sized data sections are uniqued, they cannot be diced into atoms.
switch (SMO.getType()) {
default:
return true;
case MCSectionMachO::S_4BYTE_LITERALS:
case MCSectionMachO::S_8BYTE_LITERALS:
case MCSectionMachO::S_16BYTE_LITERALS:
case MCSectionMachO::S_LITERAL_POINTERS:
case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
case MCSectionMachO::S_INTERPOSING:
return false;
}
}
};
} // end anonymous namespace
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return new DarwinX86_32AsmBackend(T, CPU);
if (TheTriple.isOSWindows())
return new WindowsX86AsmBackend(T, false, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFX86_32AsmBackend(T, OSABI, CPU);
}
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return new DarwinX86_64AsmBackend(T, CPU);
if (TheTriple.isOSWindows())
return new WindowsX86AsmBackend(T, true, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFX86_64AsmBackend(T, OSABI, CPU);
}