llvm-6502/lib/Target/PowerPC/PPCSubtarget.cpp
Will Schmidt eb3092083f add ppc64/pwr8 as target
includes handling DIR_PWR8 where appropriate
The P7Model Itinerary is currently tied in for use under the P8Model, and will be updated later.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211779 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-26 13:36:19 +00:00

281 lines
8.8 KiB
C++

//===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPC specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "PPCSubtarget.h"
#include "PPC.h"
#include "PPCRegisterInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "ppc-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "PPCGenSubtargetInfo.inc"
/// Return the datalayout string of a subtarget.
static std::string getDataLayoutString(const PPCSubtarget &ST) {
const Triple &T = ST.getTargetTriple();
std::string Ret;
// Most PPC* platforms are big endian, PPC64LE is little endian.
if (ST.isLittleEndian())
Ret = "e";
else
Ret = "E";
Ret += DataLayout::getManglingComponent(T);
// PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit
// pointers.
if (!ST.isPPC64() || T.getOS() == Triple::Lv2)
Ret += "-p:32:32";
// Note, the alignment values for f64 and i64 on ppc64 in Darwin
// documentation are wrong; these are correct (i.e. "what gcc does").
if (ST.isPPC64() || ST.isSVR4ABI())
Ret += "-i64:64";
else
Ret += "-f64:32:64";
// PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones.
if (ST.isPPC64())
Ret += "-n32:64";
else
Ret += "-n32";
return Ret;
}
PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
resetSubtargetFeatures(CPU, FS);
return *this;
}
PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, PPCTargetMachine &TM,
bool is64Bit, CodeGenOpt::Level OptLevel)
: PPCGenSubtargetInfo(TT, CPU, FS), IsPPC64(is64Bit), TargetTriple(TT),
OptLevel(OptLevel),
FrameLowering(initializeSubtargetDependencies(CPU, FS)),
DL(getDataLayoutString(*this)), InstrInfo(*this), JITInfo(*this),
TLInfo(TM), TSInfo(&DL) {}
/// SetJITMode - This is called to inform the subtarget info that we are
/// producing code for the JIT.
void PPCSubtarget::SetJITMode() {
// JIT mode doesn't want lazy resolver stubs, it knows exactly where
// everything is. This matters for PPC64, which codegens in PIC mode without
// stubs.
HasLazyResolverStubs = false;
// Calls to external functions need to use indirect calls
IsJITCodeModel = true;
}
void PPCSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
AttributeSet FnAttrs = MF->getFunction()->getAttributes();
Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
"target-cpu");
Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
"target-features");
std::string CPU =
!CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : "";
std::string FS =
!FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
if (!FS.empty()) {
initializeEnvironment();
resetSubtargetFeatures(CPU, FS);
}
}
void PPCSubtarget::initializeEnvironment() {
StackAlignment = 16;
DarwinDirective = PPC::DIR_NONE;
HasMFOCRF = false;
Has64BitSupport = false;
Use64BitRegs = false;
UseCRBits = false;
HasAltivec = false;
HasQPX = false;
HasVSX = false;
HasFCPSGN = false;
HasFSQRT = false;
HasFRE = false;
HasFRES = false;
HasFRSQRTE = false;
HasFRSQRTES = false;
HasRecipPrec = false;
HasSTFIWX = false;
HasLFIWAX = false;
HasFPRND = false;
HasFPCVT = false;
HasISEL = false;
HasPOPCNTD = false;
HasLDBRX = false;
IsBookE = false;
DeprecatedMFTB = false;
DeprecatedDST = false;
HasLazyResolverStubs = false;
IsJITCodeModel = false;
}
void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
// Determine default and user specified characteristics
std::string CPUName = CPU;
if (CPUName.empty())
CPUName = "generic";
#if (defined(__APPLE__) || defined(__linux__)) && \
(defined(__ppc__) || defined(__powerpc__))
if (CPUName == "generic")
CPUName = sys::getHostCPUName();
#endif
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUName);
// Make sure 64-bit features are available when CPUname is generic
std::string FullFS = FS;
// If we are generating code for ppc64, verify that options make sense.
if (IsPPC64) {
Has64BitSupport = true;
// Silently force 64-bit register use on ppc64.
Use64BitRegs = true;
if (!FullFS.empty())
FullFS = "+64bit," + FullFS;
else
FullFS = "+64bit";
}
// At -O2 and above, track CR bits as individual registers.
if (OptLevel >= CodeGenOpt::Default) {
if (!FullFS.empty())
FullFS = "+crbits," + FullFS;
else
FullFS = "+crbits";
}
// Parse features string.
ParseSubtargetFeatures(CPUName, FullFS);
// If the user requested use of 64-bit regs, but the cpu selected doesn't
// support it, ignore.
if (use64BitRegs() && !has64BitSupport())
Use64BitRegs = false;
// Set up darwin-specific properties.
if (isDarwin())
HasLazyResolverStubs = true;
// QPX requires a 32-byte aligned stack. Note that we need to do this if
// we're compiling for a BG/Q system regardless of whether or not QPX
// is enabled because external functions will assume this alignment.
if (hasQPX() || isBGQ())
StackAlignment = 32;
// Determine endianness.
IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le);
// FIXME: For now, we disable VSX in little-endian mode until endian
// issues in those instructions can be addressed.
if (IsLittleEndian)
HasVSX = false;
}
/// hasLazyResolverStub - Return true if accesses to the specified global have
/// to go through a dyld lazy resolution stub. This means that an extra load
/// is required to get the address of the global.
bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV,
const TargetMachine &TM) const {
// We never have stubs if HasLazyResolverStubs=false or if in static mode.
if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static)
return false;
// If symbol visibility is hidden, the extra load is not needed if
// the symbol is definitely defined in the current translation unit.
bool isDecl = GV->isDeclaration() && !GV->isMaterializable();
if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage())
return false;
return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
GV->hasCommonLinkage() || isDecl;
}
bool PPCSubtarget::enablePostRAScheduler(
CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode& Mode,
RegClassVector& CriticalPathRCs) const {
Mode = TargetSubtargetInfo::ANTIDEP_ALL;
CriticalPathRCs.clear();
if (isPPC64())
CriticalPathRCs.push_back(&PPC::G8RCRegClass);
else
CriticalPathRCs.push_back(&PPC::GPRCRegClass);
return OptLevel >= CodeGenOpt::Default;
}
// Embedded cores need aggressive scheduling (and some others also benefit).
static bool needsAggressiveScheduling(unsigned Directive) {
switch (Directive) {
default: return false;
case PPC::DIR_440:
case PPC::DIR_A2:
case PPC::DIR_E500mc:
case PPC::DIR_E5500:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8:
return true;
}
}
bool PPCSubtarget::enableMachineScheduler() const {
// Enable MI scheduling for the embedded cores.
// FIXME: Enable this for all cores (some additional modeling
// may be necessary).
return needsAggressiveScheduling(DarwinDirective);
}
void PPCSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
MachineInstr *begin,
MachineInstr *end,
unsigned NumRegionInstrs) const {
if (needsAggressiveScheduling(DarwinDirective)) {
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
}
// Spilling is generally expensive on all PPC cores, so always enable
// register-pressure tracking.
Policy.ShouldTrackPressure = true;
}
bool PPCSubtarget::useAA() const {
// Use AA during code generation for the embedded cores.
return needsAggressiveScheduling(DarwinDirective);
}